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 This dissertation aims to study how the rising algorithmic trading activities in 

the Stock Exchange of Thailand affects the market quality. I conducted three researches 

to investigate the impact of algorithmic trading. One is on the impact of algorithmic 

trading on volatility. Second is on the effect of algorithmic trading on liquidity and third 

is on the relationship between algorithmic trading and price efficiency. Furthermore, I 

introduced two new algorithmic trading proxies, namely, algorithmic trading initiated 

by institutional and foreign investors to investigate the effect of algorithmic trading 

initiated by these two investors on the market quality.  

The first research demonstrates how algorithmic trading affects stock volatility 

in the Stock Exchange of Thailand. The study is based on SET100 stocks from March 

to December 2016. I implemented the OLS regression to establish the relationship 

between algorithmic trading and volatility and the two-stage least square regression and 

the Granger causality test to verify the causal relationship. I showed that on average, 

algorithmic trading proxy is associated and has a causal relationship with negative 

volatility. However, individually, algorithmic trading proxy is related to positive 

volatility. Similarly, algorithmic trading initiated by institutional and foreign investors 

lower realized and range-based volatility. During the volatile period, algorithmic 

trading decreases range-based volatility. There is no evidence that algorithmic trading 

affects realized volatility in the volatile period.  

The second research investigates the relationship between algorithmic trading 

and liquidity. In general, I found that algorithmic trading deteriorates liquidity by 
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widening effective spread and lowering share turnover in the short run and reducing 

liquidity ratio in the long run. I confirmed the result by using the two-stage least square 

and showed that algorithmic trading causes liquidity to decrease by enlarging effective 

spread and shrinking share turnover. Information asymmetry is used to explain this 

phenomenon. An increase in algorithmic trading imposes adverse selection cost onto 

other investors, causing them to decrease their participation. Algorithmic trading 

initiated by foreign investors has more profound effect on deteriorating short-run 

liquidity while algorithmic trading initiated by institutional has more profound effect 

on decreasing long-run liquidity. During the volatile period, algorithmic trading also 

associates with lowering liquidity for all measures. The slope coefficient of algorithmic 

trading during volatile period is higher than during the whole sample except for the 

share turnover. Therefore, algorithmic traders have less effect on lowering share 

turnover during the volatile period than during the entire period.  

The third research determines whether the rise of algorithmic trading enhances 

price efficiency. There is no evidence that algorithmic trading influences price 

efficiency. However, when probing further, I found that algorithmic trading initiated by 

institutional and foreign investors and their interaction terms decrease pricing error, 

facilitating price efficiency. Furthermore, algorithmic trading initiated by foreign 

investors has a larger effect on augmenting price efficiency. During the volatile period, 

algorithmic trading, on the contrary, decreases price efficiency and enlarges price 

errors.  

Finally, this dissertation investigates the effect of algorithmic trading on market 

quality in detail and provides insightful conclusion for policymakers, regulators and 

investors in order to regulate or react to the increase in algorithmic trading strategies in 

the Stock Exchange of Thailand. 
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CHAPTER 1 

 

INTRODUCTION 

 

Algorithmic trading (AT) is the trading which is executed by computer 

algorithms to take certain positions in response to market information. Algorithmic 

traders utilize mathematical models, fast network system and automated program. They 

use historical data to determine their trading strategies and backtest their algorithms to 

verify their correctness and performance (Chan, 2009). When the strategies are 

executed, the trading programs gather market information, process the acquired 

information and decide the trading securities, the positions, the order types, the volume 

and the prices. Finally, the algorithms submit the orders automatically without any 

human interference. The orders may be sent to various trading venues in order to 

execute the orders via the best venues. Examples of the venues are: direct market access 

(DMA), electronic communication network (ECN), dark pools and multiple execution 

venues. While sending their orders, they also use computer programs to implement real-

time risk management. Figure 1.1 illustrates the process. Algorithmic trading is present 

in all financial assets: equity, commodities, currency and futures.  

          

 

 

Figure 1.1  The Process of Algorithmic Trading 

 

Algorithmic trading employs many different strategies. Figure 1.2 categorizes 

the type of the algorithmic traders. Algorithms can be as simple as using computer 

programs to avoid price impact; or they can be as sophisticated as using artificial 

intelligence to trade stocks. High frequency trading is a subset of algorithmic trading. 
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It engages in an ultrafast trading. The latency for the high frequency arbitragers is less 

than 100 milliseconds (Scholtus, van Dijk, & Frijns, 2014).  

 

 

 

Figure 1.2  Types of Algorithmic Trading 

 

The Securities and Exchange Commission (SEC & CFTC, 2010) defined high 

frequency traders with the following characteristics: 1) use of high-speed algorithms, 

2) use of co-location, 3) very short latency, 4) fleeting orders and 5) net zero position 

at the end of the day. The main characteristic of algorithmic trading is its speed or 

latency. Hasbrouck and Saar (2013) defined latency as the time delays in which traders 

react to the new information. Riordan and Storkenmaier (2012) defined latency as the 

time taken between the submission and feedback of the orders. As market becomes 

more complex, more information is available. Speed is important for the profitability 

of the investors. The typical latency ranges from 50 to 150 milliseconds whereas the 

fastest high frequency traders can achieve five millisecond latency (Scholtus & van 

Dijk, 2012). With this speed, human traders cannot compete with algorithmic traders.  

As a result, hedge funds and broker dealers implement high frequency trading 

by using the fastest algorithms and locating their computers at the nearest locations to 

the trading venues in order to reduce latency and outperform their competitors 

(Hasbrouck & Saar, 2013). Brogaard, Hendershott, and Riordan (2014) proposed that 

high frequency trading starts to replace the task of market makers. They utilize the law 
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of large numbers-they trade a lot of transactions at a high frequency and an ultra-high 

speed. The speed of trading is in the matter of milliseconds. The difference between 

market makers and high frequency traders are the privileged access to the markets. 

Market makers have the privileged access to the market, but they also have obligations 

to be the liquidity suppliers because they have access to better information about the 

market; whereas, high frequency traders can be both liquidity suppliers and liquidity 

demands. Thusly, they can profit by either buying low and selling high; or locating 

where the large orders are and filling these orders. 

Researchers categorize algorithmic trading strategies into two main groups, 

namely, agency and proprietary algorithms (Hagströmer & Nordén, 2013; Hasbrouck 

& Saar, 2013; Menkveld, 2014). Agency algorithms are used to minimize execution 

costs by slicing large orders into smaller orders. This enables institutional investors 

such as pension funds, brokers and mutual funds, to mitigate market impact, reduce 

transaction cost and control volatility risk in order to achieve optimal executions 

(Almgren & Chriss, 2001; Biais & Foucault, 2014).  

Another type of algorithmic trader is the proprietary algorithm. Trades of 

proprietary algorithms often involve in shorter holding period than the ones of agency 

algorithms. Proprietary algorithms aim to profit from the trades. High-frequency 

trading is a subset of proprietary algorithms. There are two types of proprietary 

algorithms: market-making and opportunistic trading. The market-making algorithmic 

traders offer the best bids and asks in the limit order book and hence provide liquidity 

when needed. Their profits are from the bid-ask spread. They are different from the 

traditional market makers because their roles in providing liquidity are not mandatory.  

Opportunistic algorithmic traders implement statistical arbitrage, directional 

trading, structural and manipulation strategies (Aldridge, 2013; Biais & Foucault, 

2014). Statistical arbitragers use their fast market access to search for arbitrage 

opportunities, which is the deviations in the prices of paired or related assets. They use 

high frequency trading and market orders to exploit these opportunities. Directional 

strategies gather market information such as index future prices (Jovanovic & 

Menkveld, 2016), news announcement, limit order book updates and market-wide 

returns (Brogaard, Hendershott, & Riordan, 2014) to predict future price movements. 

Then, they place the directional bet. Structural strategies take advantage of certain 
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market structure. The example of this type of strategies are cross-quote in a fragmented 

market, co-location etc. Manipulation strategies use their fast market access to involve 

in market manipulation. The strategies are momentum ignition strategies, smoking, 

spoofing, quote stuffing etc.  

Financial institutions face numbers of challenges such as market complexity, 

risks, high competition, regulation and low trading volume. Financial institutions and 

investors adopt various types of technology to overcome these challenges. One of the 

technological advancements is algorithm trading. Kirilenko and Lo (2013) explained 

that the factors which facilitate algorithmic trading are financial complexity, 

quantitative modeling and technological advancement. The complexity of the stock 

markets is due to an increasing number of market participants, various types of financial 

instruments and large flow of data. Algorithms provide the investors the instruments to 

retrieve and analyze incoming information more effectively. Furthermore, the 

quantitative models such as Markowitz’s portfolio theory, Sharpe’s capital asset pricing 

model, Rosenberg’s linear multifactor risk model and Black-Scholes’ option-pricing 

model, enable computer programs to make trade decisions. Algorithms can easily 

execute the strategies such as passive investment, arbitrage trading, automated 

execution, market making and high frequency trading, thus, enabling algorithmic 

trading to increase in quantity.  

Therefore, financial institutions and investors use algorithmic trading to 

improve efficiency, reduce cost, possess competitive advantages, eliminate human 

errors, foster productivity and manage risks (Hammer, 2013; Kirilenko & Lo, 2013). 

The transaction cost is reduced due to its large trading volume and the reduced 

opportunity cost of monitoring the market. Furthermore, as computer algorithms can 

monitor the market information and execute the orders with lightning speed, these 

abilities generate more trading opportunities. Algorithmic traders execute orders 

according to pre-programmed and tested algorithms. Therefore, this reduces the amount 

of errors, which are typically occurred using manual entries. More importantly, the use 

of algorithmic trading technology eliminates human emotion, which is normally 

associated with irrational decisions and psychological biases.  

Algorithmic trading has become a significant market participant, in term of both 

trading volume and the number of trades, in many exchanges. In 2018, 80% of all trades 
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in the U.S. were generated by algorithms (Amaro, 2018). At its peak, high frequency 

trading was accounted for 70% of all trading in the US stocks. In 2017, algorithmic 

trading generated about 60% of the trading in the U.S. (Cheng, 2017) whereas in 

Europe, 40% of all trading volumes were algorithmic (QY Research Group, 2018). In 

Thailand, program trading (one of the services for algorithmic traders provided by SET) 

was accounted for 3% of trading volume and 13.25% of number of trades (Likitapiwat, 

2016). In 2015, the combined trading volume via direct market access (DMA) and 

program trading accounted for 14% of trading volume (Stock Exchange of Thailand, 

2015). I believe that the number at the moment is around 20% although the exact 

number is not known due to the proprietary nature of the intraday data. 

The increasing dominance of algorithmic trading alters market microstructure 

because it causes the number of fleeting orders to increase. Fleeting orders are the limit 

orders which are cancelled within a short period after the order submission. Hasbrouck 

and Saar (2009) investigated one hundred stocks listed in NASDAQ and found that 

within two seconds, 33% of limit orders got cancelled. Viljoen, Westerholm, Zheng, 

and Gerace (2015) provided the evidence that the algorithmic traders in the Austrian 

Stock Exchange used the fleeting orders to search for market liquidity.  

Another characteristic of the algorithmic trading is that human has a little or no 

involvement with trading executions. Though this may eliminate emotions and biases 

from the trading decisions, without human interference, the trading may have errors 

and can result in a huge loss as witnessed in the case of Knight Capital who lost 440 

million US dollar in the wake of faulty test of trading software. 

Algorithmic trading has many drawbacks. One is its complexity. The 

interactions among computer software, various type of human traders, financial 

instruments and systems are very complex to conceptualize and model. Second, as 

algorithmic traders possess information with higher speed and obtain faster market 

access, they might profit on the expense of other traders, rising the questions about 

fairness and the need for regulations.  

Furthermore, many researchers concern that algorithmic trading is the source of 

market instability due to the increasing frequency of the incidents which might be 

related to algorithmic trading. They are the Quant meltdown of August 2007, the Flash 

crash of May 6, 2010, the Facebook IPO of May 18, 2012, the Flash crash of British 
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pound of October 7, 2016, the Flash crash of Ethereum of June 22, 2017 and many 

more. These events often result in billions of dollar loss, a massive decline in prices and 

in some case, the rapid rebound of the prices within a few hours and finally lawsuits. 

For example, the Flash crash of May 6, 2010, which was triggered by the 

implementation of spoofing algorithms by a trader in London named Navinder Singh 

Sarao, resulted in trillion dollars loss, 9% drop in S&P 500 and 1,010 points drop in the 

Dow Jones Industrial Average. The aftermath of this incident led to an introduction of 

the individual stock circuit breakers and the regulation of the direct access. The flash 

crash in pound sterling caused pound sterling to drop by 9%. Furthermore, recently, in 

the stock market of Thailand, a mini flash crash for AOT on October 15, 2016 where 

its price dropped from 350 baht to 300 baht within one second and regained its value 

within a few second was documented.  

Given both benefits and detriments of algorithmic trading, the rise of 

algorithmic trading has puzzled researchers on its impact on market quality. This 

question is of interest to the regulators. If algorithmic traders exert negative externalities 

on other investors, there might be the need for regulation. For example, the Securities 

and Exchange Board of India proposed to implement the minimum resting time 

mechanism which do not allow traders to update or cancel the orders before 500 

milliseconds after the receipt of the orders due to the increasing numbers of fleeting 

orders (Securities and Exchange Board of India, 2016).  

McMillian, Pinto, Pirie, and van de Venter (2011) listed the functions of the 

financial systems: 1) to facilitate the achievement of the goals of traders, 2) to enable 

price discovery process and 3) to allocate capital to its best uses. Harris (2003) defined 

efficient market by the following terms: liquidity, transaction costs, informative prices, 

volatility and trading profits. High quality market is essential for the economic growth. 

The regulator needs to ensure that the markets are efficient and fair for all traders. 

Information and liquidity are motives for trading. The efficient market hypothesis 

suggests that market prices fully reflect all available information and should follow a 

random walk (Fama, 1970). This assumes that the market is frictionless, information is 

complete, underlying asset is liquid and investors are rational and optimize their utility 

functions. Foucault, Pagano, and Roell (2013) stated that the conditions for the efficient 

market hypothesis to hold is that “all potential participants are present on the market; 
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these participants convey to the market orders that reflect their demands or supply of 

securities, and they are not affected by actions of other market participants; an 

auctioneer balances the quantities demanded and supplied at a single equilibrium price 

that reflects a consensus view of the security’s ‘fundamental value’”.  

In reality, there are various degree of frictions preventing the efficient prices to 

take place and reducing liquidity. First, all potential participants are not present on the 

market at all time. Second, there are information asymmetry among traders; thus, some 

traders may infer their information from the behaviors of other traders. Third, the 

market is not always at equilibrium. Grossman and Stiglitz (1980) suggested that the 

idea that it is impossible for the market are always efficient. This is because it is costly 

to obtain information, informed investors, therefore, need to be compensated. Thus, if 

prices are always efficient, then there cannot be a compensation for the investors. Black 

(1986) characterized investors into informed and noise traders. Informed investors are 

the investors who obtain and submit their orders according to their information about 

fundamentals. Noise traders, on the other hand, infer information from prices and 

quotes. Admati and Pfleiderer (1988) categorized investors into two types according to 

their motives: informed investors and liquidity traders. Similar to Black (1986), 

informed investors are the investors who trade based on their private information. On 

the contrary, liquidity traders trade for other reasons besides firm’s fundamental values. 

They are, for example large, institutional investors who trade on the behalf of their 

clients or to perform portfolio-balancing. The behavior of the market, therefore, 

depends on the interaction between groups of traders (Harris, 2003).  

An increase in algorithmic trading also raises concerns among practitioners. 

Upon closing Jabre Capital Partners SA, Phillippe Jabre wrote in his letter to investors 

that “financial markets have significantly evolved over the last decade driven by new 

technologies and the market itself is becoming more difficult to anticipate as traditional 

participants are imperceptibly replaced by computerized models” (Horta e Costa & Hu, 

2018). Algorithmic trading is often blamed for increased risk and withdrawn liquidity 

during market distress. In response to the Flash Crash of May 6th, 2010, BlackRock 

published the white paper, stating that “The lesson of the event [the Flash Crash] was 

clear from the beginning: better rules are needed to help protect investors, and to reflect 

the tremendous evolution that has occurred in the markets in recent years. What has 
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happened since the Flash Crash to reform markets to reduce the risk of another?” 

(BlackRock, 2011). This also emphasizes in the report by Charles Himmelberg, a co-

head of global market research at Goldman Sachs. He wrote that “One theory that has 

been proposed for why market fragility could be higher today is that because HFTs 

[high-frequency trading] supply liquidity without taking into account fundamental 

information, they are forced to withdraw liquidity during periods of market stress to 

avoid being adversely selected… In our view, this at least raises the risk …. the inability 

of the market’s liquidity providers to process complex information may lead to 

surprisingly large drops in liquidity when the next crisis hits,” (Kim, 2018).  

Due to its implication to regulators and practitioners, an increasing number of 

researches are conducted to investigate the effect of algorithmic trading on market 

quality and market stability such as Brogaard (2011), Brogaard, Hendershott, and 

Riordan (2014), Hendershott, Jones, and Menkveld (2011), Biais, Foucoult, and Moinas 

(2015), Brogaard, Henershott, Hunt, Latza, Pedace, and Ysusu (2012), Foucault, 

Hombert, and Rosu (2016), Malinova, Parks, and Riordan (2018), Chaboud, Chiquoine, 

Hjalmarsson and Vega (2014), Boehmer, Fong, and Wu (2015) and etc.  

In the Stock Exchange of Thailand, the number of algorithmic trading is 

increasing. Therefore, it is interesting to investigate the impact of algorithmic trading 

on market quality. This is useful for policymakers such as the Securities and Exchange 

Commission, Thailand (SEC) and the Stock Exchange of Thailand (SET). However, 

the research on the topic of the effect of algorithmic trading on market quality in an 

emerging market is limited. Furthermore, an emerging market has a unique feature in 

which the type of investors plays a different role in term of price impact (Richards, 

2005), information advantage (Dvořák, 2005) and trading behaviour and performance 

(Phansatan, Powell, Tanthanongsakkun, & Treepongkaruna, 2012). By incorporating 

the type of investors into the algorithmic trading measurement, I can investigate how 

the use of technological advancement affects the characteristics of the institutional and 

foreign investors. In this thesis, I investigated in detail the effect of algorithmic trading 

on market quality. 
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1.1  Research Objectives 

 

This thesis focuses on the analysis of the impact of algorithmic trading on three 

dimensions of interrelated market quality, namely, volatility, liquidity and price 

efficiency in the Stock Exchange of Thailand. Furthermore, we introduced a new 

measurement to measure the algorithmic trading initiated by institutional investors 

proxy and the algorithmic trading initiated by foreign investors proxy to understand 

their effects on market quality. Therefore, the primary objectives of this paper are:  

1) To understand the effect of algorithmic trading on volatility, 

liquidity and price efficiency. 

2) To investigate the causal relationship between algorithmic trading 

and volatility, liquidity and price efficiency. 

3) To find out the effect of algorithmic trading on volatility, liquidity 

and price efficiency during the volatile market. 

4) To establish the effect of algorithmic trading initiated by 

institutional investors on volatility, liquidity and price efficiency. 

5) To determine the effect of algorithmic trading initiated by foreign 

investors on volatility, liquidity and price efficiency. 

6) To examine the effect of algorithmic trading initiated by institutional 

investors on volatility, liquidity and price efficiency during the volatile period. 

7) To study the effect of algorithmic trading initiated by foreign 

investors on volatility, liquidity and price efficiency during the volatile period. 

 

1.2  Contributions of the Research 

 

The primary aim of this thesis is to research the effect of algorithmic trading on 

the market quality, namely, volatility, liquidity and price discovery, in the Stock 

Exchange of Thailand. So far, most studies focus on the effect of algorithmic trading 

on developed markets and concern only the effects of aggregate algorithmic trading. 

This thesis contributes to the market microstructure and financial economics fields. 

First, this study demonstrates how AT affects market quality in an emerging market. 
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Second, to the best of my knowledge, this is the first study to introduce the method of 

identifying AT proxies associated to each types of investors and examine their effects 

on market quality. Finally, it provides the evidence to the policy debates on whether 

there should be regulations on algorithmic trading or not 

The effects of AT on market quality affect both investors’ welfare and cost of 

capital for companies because illiquidity represents costs to all types of investors. By 

holding less liquid stocks, investors require higher return which eventually leads to an 

increase in the cost of capital for firms and their stock values. In the first essay, I 

demonstrate that algorithmic trading is negatively related to price volatility and cause 

the price volatility to change. In the second essay, I showed that the increase in 

algorithmic trading deteriorates liquidity and presented the causal relationship using the 

instrumental variable. Finally, in the third essay, along with two previous results, I 

demonstrate that algorithmic trading initiated by institutional and foreign investors are 

associated with a decline in price efficiency. All in all, I present the effect and the causal 

relationship between algorithmic trading (as a whole and separated by the type of 

investors who initiated the trade) and market quality.  

 

1.3  Research Outline 

 

The following is the outline of this thesis. In Chapter 2, I present the overview 

of the Stock Exchange of Thailand and describe our data. In Chapter 3, I examine the 

effect of algorithmic trading on volatility. In Chapter 4, I demonstrate the effect of 

algorithmic trading on liquidity and introduce the instrumental variable to verify the 

causal relationship. Furthermore, the algorithmic trading initiated by each type of 

investors proxies are introduced and are used to examine how the algorithmic trading 

initiated by each type of investors affect liquidity. In Chapter 5, I determine the impact 

of algorithmic trading and price efficiency. Finally, I conclude in Chapter 6. 
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CHAPTER 2 

 

THE STOCK EXCHANGE OF THAILAND 

 

All results presented in this thesis are based on the analysis of the SET100 

stocks listed in the Stock Exchange of Thailand. The intraday order and deal data were 

obtained from the Stock Exchange of Thailand database. I used this data to perform the 

analysis of the effect of algorithmic trading on market quality. In this chapter, I 

introduced the overview of the Stock Exchange of Thailand.  

 

2.1  SET Trading System and Period 

 

The Stock Exchange of Thailand (SET) is a fully computerized trading and has 

the continuous order-driven trading and auction systems. SET has implemented a fully 

computerized trading system since April 1991 and in August 2008, it has implemented 

“Advance Resilience Matching System” (ARMS). By September 2012, SET used the 

securities trading system called “SET CONNECT” which speeds up transaction and 

improves international market access. 

 The trading hour is between 9.30 and 17.00, with eight trading session: Pre-

opening I, Morning Trading Session, Intermission, Pre-opening II, Afternoon Trading 

Session, Pre-close, Off-Hour Trading and Market Close. Pre-Opening I starts at 9.30 to 

time T1 which is the time between 9.55 and 10.00 randomized for the opening trading 

time while Pre-Openings II starts at 14.00 to time T2 which is the time between 14.25 

and 14.30 randomized for the opening trade time. For the opening prices, they use the 

auction method. Following the opening time is the morning and the afternoon trading 

sessions which run from T1 to 12.30 and T2 to 16.30 respectively.  

The trading methods are automatic order matching (AOM) and trade report. 

AOM matches orders first by price and then by time. After receiving orders from the 

brokerage houses, SET CONNECT system queues them by prices and then by ordering 

time. So, orders are first arranged according to prices and the best price are priorized. 
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For each price group, orders are queued first-in-first-out. For the big lots, foreign buy-

in, member buy-in and off hour, brokers may trade directly with each other. The actual 

trading prices may not be the same as their bid/ask prices. After deals are made, brokers 

report back to SET CONNECT system regarding their transactions. During the regular 

trading hour, SET CONNECT will match the orders according to the queuing system 

as described above and trade reports occur while during the pre-opening sections. 

Auction methods are used in order to prevent price manipulations and to stabilize 

opening prices. For the auction trading method, opening and closing prices are 

determined by using the prices that generate the highest executable volume. If there are 

multiple prices that fit the mentioned criteria, the system will open or close at the prices 

that have the greatest executable volume and the minimum imbalance. The exchange 

stops trading during the intermission period which lasts from 12.30 to 14.00. Pre-close 

is the period between 16.30 to T3 which is between 16.35 and 16.40. The closing prices 

are determined by the auction method. Next is the off-hour trading period from time T3 

to 17.00 where only the trade report trading method is permitted. After 17.00, SET is 

closed. 

In the Stock Exchange of Thailand, there is a limitation on the minimum price 

movement called tick size. Table 2.1 shows the tick sizes for each price level. 

 

Table 2.1  Tick Sizes 

 

Market Price Level (THB) Tick Size (THB) 

(0.00, 2.00) 0.01 

(2.00, 5.00) 0.02 

(5.00, 10.00) 0.05 

(10.00, 25.00) 0.10 

(25.00, 100.00) 0.25 

(100.00, 200.00) 0.50 

(200.00, 400.00) 1.00 

400.00 up 2.00 
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2.2  SET Services 

 

The Stock Exchange of Thailand (SET) has several services that support the 

implementation of algorithmic trading activities. They are: Direct market access, 

Program trading and Co-location services. Direct Market Access (DMA) enables 

eligible investors to place the orders directly to the broker’s order management system 

which then routes the quotes in the SET trading system. Figure 2.1 illustrates the 

process. Program trading enables algorithmic traders or high frequency traders to 

generate orders automatically via their pre-programmed algorithms. This service is 

available for broker members. This helps algorithmic traders to grow in the Stock 

Exchange of Thailand. Furthermore, SET offers the co-location service which allow 

investors to install their servers at the SET data center. This helps to diminish the 

execution times. Therefore, the Stock of Exchange of Thailand is a good platform to 

study the impact of algorithmic trading on market quality. Figure 2.2 illustrates the 

process. 

 

 

 

Figure 2.1  Direct Market Access (DMA) Channel 

Source:  Set Group, 2019a. 
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Figure 2.2  Co-location Channel 

Source:  Set Group, 2019b. 

 

2.3  Data 

 

  I utilized a sample of algorithmic trading activities and market quality. The 

sampling period was from March to December 2016. During the sampled period, the 

SET index experienced an upward trend. The SET index was at 1,346.95 on March 1, 

2016 and at 1,542.94 on December 30, 2016. The market return was 14.55% for 10 

months. The highest SET index was 1,552.64 whereas the lowest SET index was 

1,346.95. Figure 2.3 illustrates the SET index between March and December 2016. 

 

 

 

Figure 2.3  SET Index (March-December 2016) 
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The SET100 or the composite index for the top 100 stocks with the largest 

market capitalization was between 1,921.78 on March 1, 2016 and 2,178.19 on 

December 30, 2016, with the return of 13.34% for 10 months. For SET100 index, the 

highest value was 2,219.43 while the lowest value was 1,916.74. Table 2.4 illustrates 

the SET100 index.  

 

 

  

Figure 2.4  SET100 Index (March-December 2016) 

 

I attained the data from the Stock Exchange of Thailand database. The data 

consists of the intraday order submission data and the intraday order transaction data of 

the stocks listed in the SET100 index during March 2016 to December 2016. The 

intraday order submission data is the detailed data of all the orders submitted to the 

stock exchange. It has the information about the type of investors (retail, institutional 

or foreign), order side (buy or sell), order type (market order, special market order, 

market to limit, ATO, ATC, IOC, FOK or Iceberg), price condition (market, limit, peg 

best bid, peg best offer, peg midpoint, market to level, special market), valid till, order 

number, trade price, trade size and cancel time. The intraday transaction data is the data 

of all the transaction executed in the stock exchange which composed of the data of the 

buyer and seller order time, trade price, trade size and the type of investors who engage 

in buying and selling. The SET100 stocks are one hundred stocks which have the largest 

average daily market capitalization for the past 3 months. All of the data are time-
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stamped to the nearest millisecond. Datastream database provided the information on 

the market capitalization and the total number of outstanding stocks. They are used to 

compute the logarithmic of market capitalization and the share turnover.  

  The data is a panel data. The daily sample is composed of 20,400 observations 

for 204 trading days. One daily observation is equal to the set of dependent variables, 

independent variables and control variables for each stock on each day. I removed the 

data of non-trading day. Further, I eliminated the data on the days that the institutional 

or foreign investors have zero trading volume. The final number of observations is 

20,299. Figure 2.5 and 2.6 illustrate the time plot of the algorithmic trading activities 

over time by date and month respectively. Figure 2.7 and 2.8 show the time plot of the 

algorithmic trading initiated by institutional investors over time by date and month 

respectively. Lastly, figure 2.9 and 2.10 display the time plot of the algorithmic trading 

activities initiated by foreign investors over time by date and month respectively. 

 

 

 

Figure 2.5  Time Plot of Algorithmic Trading Activities by Date 
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Figure 2.6  Time Plot of Algorithmic Trading Activities by Month 

 

 

 

Figure 2.7  Time Plot of Algorithmic Trading Initiated by Institutional Investors  

                   Activities by Date 
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Figure 2.8  Time Plot of Algorithmic Trading Initiated by Institutional Investors  

                   Activities by Month 

 

 

 

Figure 2.9  Time Plot of Algorithmic Trading Initiated by Foreign Investors Activities  

                   by Date 
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Figure 2.10  Time Plot of Algorithmic Trading Initiated by Foreign Investors  

                     Activities by Month 
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CHAPTER 3 

 

THE IMPACT OF ALGORITHMIC TRADING ON VOLATILITY 

 

3.1  Introduction 

 

Algorithmic trading affects the behavior of traders in the stock market. It may 

increase the risk in the market. The dynamic asset pricing model describes three sources 

of risk, namely, cash flow risk, discount rate risk and volatility risk – each exerts a risk 

premium and therefore, an increase in volatility increases risk premium (Bansal, Kiku, 

Shaliastovich, & Yaron, 2014). Return volatility is the variation of the stock price 

process over time. Volatility captures the strength of the variations in price changes 

during certain period of time. 

Return volatility is an essential issue to investors and firms as return volatility 

is associated with asset pricing, portfolio allocation, cost of capital and risk 

management. Higher volatility makes limit orders more expensive. Thus, it obstructs 

investor participation and deters risk sharing (Allen & Gale, 1994). Moreover, by 

holding volatile stocks, investors require higher rate of return, implying higher cost of 

capital to the firms (Lee, Ng, & Swaminathan, 2009). Schill (2004) demonstrated that 

market volatility affects the frequency of initial public offering (IPO) transaction. 

Furthermore, volatility in firm value changes the value of stock options and 

compensation to managers; hence, affecting the firms. In addition, it also affects the 

investors’ portfolio values. Loungani, Rush, and Tave (1990b) showed that stock 

market dispersion significantly affects unemployment. In addition, Loungani, Rush, 

and Tave (1990a) found that the stock market dispersion is also related to business 

cycle. Therefore, in this chapter, I investigate the effect of algorithmic trading on risk, 

using the return volatility measure. This understanding is useful for policymakers, 

investors and firms. If algorithmic traders cause volatility to increase, this poses risks 

onto other investors and causes an increase in cost of capital for firms. Therefore, this 

may raise the need for regulation.  
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There are two competing reasons predicting the effect of algorithmic trading on 

volatility. On the one hand, algorithmic trading reduces volatility as high frequency 

market makers supply liquidity when there are large block orders, reducing price 

impact. On the other hand, algorithmic trading increases volatility because 1) algorithmic 

trading can trigger large price movement when there are large number of orders to be 

executed, 2) as algorithmic trading responds to new information faster, this may induce 

volatility, 3) momentum traders can trigger excessive price movement and 4) when 

institutional investors want to dissolve large position, HFT can trigger extreme 

volatilities by front-running orders submitted by slower institutional traders or engaging 

in quote stuffing strategy. The presence of algorithmic traders may affect volatility. 

Moreover, in an emerging market, it is found that volatility is more volatile (Bekaert & 

Harvey, 1997). Therefore, it is interesting to understand the differences between the 

impact of algorithmic trading on volatility in a developed market and the one in an 

emerging market. This study, thus, investigates the effect of algorithmic trading on 

volatility in the Stock Exchange of Thailand. Therefore, our research questions are: 

RQ# 1:  What is the effect of algorithmic trading on return volatility? 

RQ# 2:  Is there a causal relationship between algorithmic trading and return 

volatility? 

RQ# 3:  What is the effect of algorithmic trading initiated by each type of 

investors on return volatility? 

RQ# 4:  What is the effect of algorithmic trading on return volatility during the 

volatile period? 

RQ# 5:  Is there a causal relationship between algorithmic trading and return 

volatility during the volatile market? 

RQ# 6:  What is the effect of algorithmic trading initiated by each type of 

investors on return volatility during the volatile period? 

 

3.2  Literature Review 

 

3.2.1  Volatility 

Returns are associated with risk, which is defined as the variance of the asset 

returns (Markowitz, 1952). There are two types of risk: systematic and unsystematic 
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risk. Systematic risk is the risk associated with the economy and the market as a whole; 

whereas unsystematic risk or idiosyncratic volatility is due to individual effect. Merton 

(1987) showed that expected returns are subjected to unsystematic risk such as size of 

firms, the popularity of the firms, etc. Kumari, Mahakud, & Hiremath (2017) 

demonstrated that the variation in price returns or idiosyncratic volatility increases 

when the firm size is smaller, liquidity is higher, momentum is lower, the book-to-

market ratio is higher and the cash flow-to-price is lower. Along the same line, Lee, Ng 

and Swaminathan (2009) found that firm-specific expected returns are associated with 

market beta, idiosyncratic volatility, leverage, book-to-market ratio, currency beta and 

firm size. 

There are many determinants of return volatility. Traditionally, volatility is 

explained by the arrival of new information about payoff and discount rates. However, 

many researchers observe that large portions of variations in volatility cannot be 

explained by the efficient market model (LeRoy & Porter, 1981). Shiller (1981) found 

that variations in volatility can be explained by market psychology. Furthermore, 

volatility is affected by returns. Black (1986) and Duffie (2010) found that volatility 

increases after a decrease in returns. Another determinant of return is liquidity trading. 

Asset price can be altered due to a number of investors present in the market; therefore, 

volatility is affected by liquidity. Allen and Gale (1994) showed that when market 

participation is limited, a small liquidity shock results in a significant price volatility. 

Another explanation of the variation in asset returns is asymmetric information. Longin 

(1997) provided the theoretical model indicating that the asymmetric information 

causes nonlinearity in the expected volatility. Jones, Kaul, and Lipson (1994) provided 

the evidence that information contributes to the change in short-term return volatility. 

Similarly, Admati and Pfleiderer (1988) indicated that the rate of the availability of 

public information and the amount of nondiscretionary liquidity trading affect the level 

of volatility. Furthermore, they extended the Kyle (1985) model and showed that the 

number of informed investors in the market affects the price equilibrium.  

Type of investors also affects volatility. Black (1986) suggested that a change 

in number of noise traders or in the characteristics of noise trading alters price volatility. 

Campbell and Kyle (1993) showed that noise traders increase securities volatility. 

Morck, Yeung, and Yu (2000) demonstrated that stock volatility is higher in an 
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emerging economy due to larger noise or systematic risk that is unrelated to 

fundamentals. Foucault, Sraer, and Thesmar (2011) tested whether the trades initiated 

by retail investors affect idiosyncratic volatility. They showed that retail investors act 

like noise traders, raising volatility of the stock return. Vo (2016) reported a negative 

and significant relationship between institutional ownership and volatility on stock 

returns. In contrast, Sias (1996) described a positive contemporaneous relationship 

between institutional ownership and return volatility. A negative relationship between 

foreign ownership (LFO) and volatility is documented (Li, Nguyen, Pham, & Wei, 

2011). 

Volatility measurement is characterized into ex-post and ex-ante. Ex-post 

measurement is computed given the actual return observations. This can be calculated 

without models. Ex-ante or implied volatility is the forecast of future return volatility, 

based on current information set. There are two methods of volatility estimation and 

predictions: parametric and nonparametric approaches. Parametric procedure makes 

certain assumptions regarding the expected volatility, 𝜗2(𝑡, ℎ) such as the 

autoregressive conditional heteroskedastic (ARCH) model (Engle, 1982), whereas 

nonparametric volatility measurements quantify notional volatility, 𝑣2(𝑡, ℎ), directly 

from the ex-post returns. 

 

3.2.2  Theoretical Model of the Effect of Algorithmic Trading on Volatility 

Previous works model investors as fully rational individuals. Simon (1991) 

introduced the investors with bounded rationality. Furthermore, investors are 

heterogeneous with different preference (Weinbaum, 2009). The limit order book is 

modelled as a continuous double auction. Kirman (1993) and Alfarano, Lux, and 

Wagner (2005) provided the stochastic process of agent-based models of financial 

markets. 

Several models are used to describe the effect of algorithmic trading on 

volatility. Xue and Genḉay (2012) modelled different traders with heterogenous 

information. Cespa and Vives (2015) studied the effect of high frequency trading on 

market welfare. They modelled the trading equilibrium and found that the presence of 

high frequency traders causes the hedgers to consume more liquidity and induce higher 

volatility, causing liquidity fragility and eventually, the flash crashes. For the agency 
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strategy, Gsell (2008) simulated the market with the participation of algorithmic traders. 

He showed that the low-latency traders decrease market volatility by slicing orders into 

smaller pieces and controlling the volume-weighted average price. Nonetheless, this 

simulation only included one type of algorithmic trading strategies. Therefore, the 

aggregate effects of various strategies may yield different results. 

For the speculation strategies, Froot, Scharfstein, and Stein (1992) studied the 

effect of speculators’ trading on asset prices. They found that if the speculators trade 

on short horizon, they base their decisions on the behaviors of the other traders, rather 

than the fundamental information. These behaviors of the speculators are similar to 

those of the high frequency traders. Hanson (2012) modelled the effect of high 

frequency traders using an agent-based simulation and founded that high frequency 

traders increase price volatility. Leal, Napoletano, Roventini, and Fagiolo (2016) 

provided an agent-based model of the interaction between low- and high-frequency 

trading assuming HFT uses directional strategies. Their simulation results showed that 

HFT increases volatility and helps to generate flash crashes. 

 

3.2.3  Empirical Studies of The Effect of Algorithmic Trading on Volatility 

Empirical studies yielded mixed results. Several studies proved that volatility is 

positively correlated with algorithmic trading, deteriorating market quality. For the U.S. 

stocks, Zhang (2010) reported a positive relationship between high frequency trading 

and volatility. In addition, their effects were more substantial for the stocks in Russell 

3000 Index, the stocks with high institutional investors holdings, and when the markets 

were more volatile. For the 35 major stocks listed in Borsa Italiana market during 2011-

2013, Caivano (2015) investigated the impact of high frequency trading on volatility 

by using a change in market microstructure as an instrumental variable and showed that 

high frequency trading enhanced volatility. Boehmer, Fong, and Wu (2015) carried out 

the study of the effect of algorithmic trading on volatility in 42 international markets 

and drew the conclusion that algorithmic trading increased the short-term volatility. As 

a better representation of the impact of algorithmic trading onto other types of traders, 

Kelejian and Mukerji (2016) used a daily volatility to examine the relationship between 

high frequency trading and volatility. They revealed that high frequency trading 

intensifies volatility.  
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 On the other hand, other studies found that the relationship between algorithmic 

trading and volatility is negative, inferring that an increase in algorithmic trading 

reduces volatility. Westerholm (2016) investigated the relation between high frequency 

trading and price volatility on the stocks listed in the NASDAQ OMX Helsinki Stock 

Exchange between 2007 and 2009 and found that it is negative. The effect persists even 

during the uncertain periods. Hagströmer and Nordén (2013) identified market-making 

and opportunistic high frequency traders in the NASDAQ-OMX Stockholm stocks and 

found that both types of high frequency traders decrease intraday volatility while an 

increase in tick size does not affect intraday volatility.  Brogaard (2011) utilized the 

NASDAQ OMX dataset which identified high frequency traders from non-high 

frequency traders. He applied vector autoregression (VAR) to demonstrate that high 

frequency trading is associated with negative volatility. However, when studied the 

impact of algorithmic trading on volatility, they found no evidence that high frequency 

trading increases volatility. Similar result prevailed in the foreign exchange market.  

Volatility is negatively associated with algorithmic trading, but no causal relationship 

is found (Chaboud et al., 2014). Other studies found no evidence that algorithmic 

trading is associated with volatility (Hendershott & Riordan, 2009). 

One of the important events for the empirical study of the relationship between 

algorithmic trading and volatility is the flash crash. The flash crash of May 6, 2010 

caused major U.S. equity indices such as Dow Jones Industrial Average, S&P etc., to 

drop substantially and regained most of their pre-drop levels within 26 minutes. This 

event generated unusually high intraday volatility and extremely low intraday liquidity 

and resulted in trillion of dollars loss. Many claimed that high frequency trading was a 

cause of such volatility spike. Investigating the Flash Crash 2010 event, Kirilenko, 

Kyle, Samadi, and Tuzun (2017) demonstrated that the trading pattern and the inventory 

level of market-making high frequency traders did not change in response to large and 

temporary changes in prices on May 6, 2010, which was consistent with the theory of 

limited risk-bearing capacity. In conclusion, they argued that high frequency trading 

did not cause the flash crash but helped to amplify market volatility. Brogaard, Carrion, 

Moyaert, Riordan, Shkilko, and Sokolov (2018) examined the role of liquidity-

providing HFT around the event of extreme price movements and found that during 

extreme volatility, liquidity providers did not withdraw their positions and still provided 
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liquidity to other types of investors and there was no evidence that high frequency 

traders caused extreme price movements.  

 

3.3  Sample and Methodology 

 

3.3.1  Algorithmic Trading Measurement (AT) 

  The major challenge of this type of empirical research is the difficulty to identify 

and measure algorithmic trading activities. In general, to capture algorithmic trading, 

we need to be able to access the limit order book information and identify whether the 

orders are submitted by algorithmic traders or not. Several researchers have access to 

this type of information. They are Hagströmer and Nordén (2013), Menkveld (2013) 

and Caivano (2015). However, this information is often difficult to obtain. Therefore, 

researchers use indirect method to capture algorithmic trading activities. Carrion (2013) 

detected algorithmic trading activities based on their behaviors. Hasbrouck and Saar 

(2013) measured “strategic runs” of the linked messages used by proprietary high 

frequency traders to place their orders which involves a large quantity of consecutive 

submissions and cancellations. Finally, Hendershott, Jones, and Menkveld (2011) used 

a normalized message traffic as a proxy for algorithmic trading. Message traffic 

includes all submissions (buy, sell and revision), cancellation and trade report. The 

rationale is that while algorithmic traders increase the number of message traffic, the 

ratio of the number of the orders that get executed to the total number of orders 

decreases.  

Due to the data unavailability, I cannot directly measure algorithmic trading 

activity. I followed the method of Hendershott et al. (2011) who used a normalized 

message traffic as a proxy for algorithmic trading. The message traffic is the sum of all 

messages in both order data, which included all buys, sells, revisions and cancellations, 

and deal data which contained all the trade reports. Hence, I measured the algorithmic 

trading using the following formula: 
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𝐴𝑇𝑖𝑡 =  
−𝑉𝑖𝑡

𝑀𝑇𝑖𝑡
 (3.1) 

where 𝐴𝑇𝑖𝑡 is the proxy for algorithmic trading for stock i at day t, 𝑉𝑖𝑡 is the trading 

volume for stock i at day t and 𝑀𝑇𝑖𝑡 is the traffic message for stock i at day t.  

 

3.3.2  Volatility Measurement 

3.3.2.1  Realized Volatility (𝑅𝑉)  

Most studies use the standard deviation of the return as the measure of 

volatility. I used the historical or realized volatility to measure the variability of the 

prices of the stocks. I assumed the return process to be covariance stationary with 

𝜎𝑖𝑡 = √𝑣𝑎𝑟(𝑅𝑖𝑡) =  √𝐸[(𝑅𝑖𝑡 − 𝐸[𝑅𝑖𝑡])2], (3.2) 

where 𝑅𝑖𝑡 is the stock return. The sample estimate of the volatility of the return process 

can be defined as: 

𝑅𝑉𝑖𝑡 =  √
∑ (𝑅𝑖𝑡 − �̅�)2𝑑

𝑡=1

𝑑 − 1
, (3.3) 

where 𝑅𝑉𝑖𝑡 is the realized volatility, �̅� is the mean stock return and 𝑑 is the number 

of periods during the measured time. As the return observation is subjected to 

microstructure effects, such as noise, bid-ask bounce, discrete price grids, etc., 

interval return is used instead of instantaneous price. The frequency of sampling is 

difficult to identify. For robustness, I performed one-minute and five-minute intraday 

realized volatilities. Therefore, the one-minute realized volatility can be defined as: 

𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛 =  √

∑ (𝑅𝑖𝑡 − �̅�)2𝑑
𝑡=1

𝑑 − 1
, 

(3.4) 

where 𝑅𝑖𝑡 is the stock return sampling the prices at every one minute. The five-minute 

realized volatility can be defined as: 

𝑅𝑉𝑖𝑡
5𝑚𝑖𝑛 =  √

∑ (𝑅𝑖𝑡 − �̅�)2𝑑
𝑡=1

𝑑 − 1
, 

(3.5) 

where 𝑅𝑖𝑡 is the stock return sampling the prices at every five minute. 
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3.3.2.2  Range-based Volatility (𝑅𝐵𝑉)  

Another measure of volatility is the range-based volatility (𝑅𝐵𝑉𝑖𝑡). It is 

defined as the natural logarithm of the ratio of the daily high (𝑃𝑖𝑡
𝐻) trading price to the 

daily low (𝑃𝑖𝑡
𝐿 )  trading price. 

𝑅𝐵𝑉𝑖𝑡 =  ln (
𝑃𝑖𝑡

𝐻

𝑃𝑖𝑡
𝐿 ). (3.6) 

 

3.3.3  Control Variables 

Confounding is one of the major issues with establishing the causal relationship 

between algorithmic trading and volatility and therefore, control variables are included 

to eliminate the confounding effects. Control variables are the variables which affect 

volatility. As volatility is associated with stock returns, volatility is related to firm size 

and value (Cheung & Ng, 1992; Fama & French, 1992). Cheung and Ng (1992) 

demonstrated that small firms tend to associate with higher level of volatility. Bushee 

and Noe (2000) showed that volatility is positively correlated with firm value. 

Subsequently, firm size is represented by the market capitalization and firm value is 

represented by the market-to-book ratio.  

Numerous studies found that higher trading volume is associated with higher 

return variations (Jain & Joh, 1986; Wood, McInish, & Ord, 1985). Theoretical models 

are used to explain the relationship between return volatility and trading volume. 

Admati and Pfleiderer (1988) provided the intraday pattern model with the interaction 

between liquidity traders and informed traders and disclosed that return variability is 

higher during the period of high trading volume. Wang and Yau (2000) showed that 

volatility is positively associated with trading volume, consistent with the empirical 

result obtained by Foster and Viswanathan (1993). 

Moreover, bid-ask spread and volatility are related according to Zhang, Russell, 

and Tsay (2001). Wang and Yau (2000) found a positive relationship between bid-ask 

spread and volatility. Weber and Rosenow (2006) investigated the extreme price 

movement and found that liquidity contributes to the occurrence of extreme price 

movement. Furthermore, I used the inverse of price as a proxy for transaction cost and 

tick size, which affects the volatility (Hau, 2006, p. 2006). Upon a change in tick size 

in Taiwan Stock Exchange, Ke, Jiang, and Huang (2004) documented a positive 



29 

   
 

relationship between volatility and tick size. As a result, I included the logarithmic of 

market capitalization, the book-to-market ratio, the share turnover, the inverse of price 

and the bid-ask spread as the control variables.  

 

3.3.4  Model Specification 

3.3.4.1  Linear Regression Model 

In this section, I found the appropriate model to establish the relationship 

between algorithmic trading and volatility. A regression analysis is the simple but 

powerful method of statistical analysis on relating multiple variables by calculating the 

best fit line. For robustness, I used multiple volatility measures and to avoid 

confounding effects, I included the control variables. As a result, I conducted a 

multivariate regression analysis using ordinary least square. The model specification is 

as following: 

         𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝜀𝑖𝑡    

(3.7) 

         𝑅𝑉𝑖𝑡
5𝑚𝑖𝑛 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝜀𝑖𝑡    

(3.8) 

        𝑅𝐵𝑉𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝜀𝑖𝑡   

(3.9) 

Furthermore, the independent variables may be correlated with each 

other. This problem is called multicollinearity. This problem causes the model to be 

unstable. To assess the possible presence of multicollinearity, the variance inflation 

factor (VIF) is used to measure the inverse of 1 - R-square for the regression with the 

tested predictor as the dependent variable on other independent variables. This 

evaluates the inflation of the variance of a coefficient due to the dependence with other 

independent variables. Therefore, I computed the variance inflation factor to ensure that 

all regressors are not subjected to multicollinearity. Multiple regressions were 

performed with the null hypothesis being there is no relation between algorithmic 

trading and volatility. The description of dependent and independent variables is listed 

in Table 3.1. 
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Table 3.1  Description of the Variables 

 

Variables Description 

Dependent  

𝑅𝑉1𝑚𝑖𝑛 One-minute realized volatility  

𝑅𝑉5𝑚𝑖𝑛 Five-minute realized volatility  

𝑅𝐵𝑉 Range-based volatility  

Independent  

AT Algorithmic trading. The negative ratio of the volume 

traded to the traffic messages 

P/B RATIO Price-to-book ratio indicates the ratio of the market 

value of the firm to the book value 

TURNOVER Share turnover is the total number of shares traded by 

the average number of shares outstanding over a period 

PRICE The daily average price traded 

SPREAD The end of the day bid-ask spread 

MARKET CAP Market capitalization is the total market value of a 

company’s outstanding shares 

 

Therefore, the null hypothesis is defined as: 

H0: 𝛽1= 0 

H1: 𝛽1is not equal to 0 

As traders make decisions from the behaviors of other traders and 

algorithmic traders tends to trade in small-sized orders, we hypothesize that algorithmic 

traders are noise traders, and thereby, increase volatility. 

To analyze the multiple regression models, it is initially assumed that 

there is no heterogeneity in the variables. Therefore, I analyzed the model using the 

pooled OLS regression. The pooled OLS model has the following assumptions: 

(1) 𝐸(𝜀𝑖𝑡) = 0, 

(2) There is no perfect collinearity, 

(3) There is no endogeneity, 

(4) The variables are homoscedasticity, 



31 

   
 

(5) The cross-sectional and time-series observations are not 

correlated, 

(6) The disturbance term has a normal distribution.  

Peterson (2009) claimed that there might be an unobserved heterogeneity 

when using the pooled OLS regression. The residuals from the pooled OLS might be 

correlated by: 1) the individual effect which happens when the residuals are correlated 

across time for a given stock and 2) the time effect which occurs when the residuals are 

correlated across individuals for a given time. In the other word, there are variations 

across stock or time units of observations. Therefore, their standard errors are biased. 

As a result, the individuality is summed up in the disturbance term (𝜀𝑖𝑡), causing the 

estimated coefficients (𝛽𝑖) to be biased and inconsistent. Alternatively, the disturbance 

term can be written as 𝜀𝑖𝑡 =  𝛼𝑖 + 𝑢𝑖𝑡, where 𝛼𝑖 is the heterogeneity effect and 𝑢𝑖𝑡 is 

the error term. 

To address the heterogeneity problem, I eliminated the fixed effects (𝛼𝑖). 

There are two methods in doing so: the fixed-effect estimator (FE) and the random 

effects model (REM). The fixed-effect estimator removes the fixed effects by 

expressing the variables for each individual as the deviation from their mean. On the 

other hand, the random effects model assumes that the error terms are random variables. 

Therefore, I expressed equation 3.7 to 3.9 as the fixed effects models: 

         𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝛽1𝐴𝑇𝑖𝑡

̅̅ ̅̅ ̅ + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜀𝑖𝑡    

(3.10) 

         𝑅𝑉𝑖𝑡
5𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝛽1𝐴𝑇𝑖𝑡

̅̅ ̅̅ ̅ + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜀𝑖𝑡    

(3.11) 

        𝑅𝐵𝑉𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ = 𝛽1𝐴𝑇𝑖𝑡

̅̅ ̅̅ ̅ + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜀𝑖𝑡    

(3.12) 

where 𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑅𝑉𝑖𝑡

5𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑅𝐵𝑉𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅  are the mean-corrected values for volatility 

measures i.e. one-minute realized volatility, five-minute realized volatility and range-

based volatility for stock 𝑖 on day 𝑡. 𝐴𝑇𝑖𝑡
̅̅ ̅̅ ̅ is the mean-corrected value of the algorithmic 

trading proxy for stock 𝑖 on day 𝑡. 𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,  (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
,  

𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,  and  𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the mean-corrected values for the price-to-
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book ratio, the share turnover, the inverse of average price, the spread and the natural 

logarithm of market capitalization for stock 𝑖 on day 𝑡. As a result, I conducted the 

individual, time and two-ways within-group fixed-effects models. 

The random-effects models can be expressed as: 

𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝑤𝑖𝑡   

(3.13) 

        𝑅𝑉𝑖𝑡
5𝑚𝑖𝑛 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝑤𝑖𝑡    

(3.14) 

        𝑅𝐵𝑉𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 + 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +

𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 + 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝑤𝑖𝑡   

(3.15) 

where 

𝑤𝑖𝑡 = 𝜀𝑖 + 𝑢𝑖𝑡 (3.16) 

𝑤𝑖𝑡 is the composite error terms, composing of two components: the individual-specific 

error component (𝜀𝑖) and the idiosyncratic term (𝑢𝑖𝑡) which combine both individual 

and time error components.  

To establish the appropriate models, I performed two tests: restricted F-

test and Hausman test. The restricted F test is used to determine whether there exist 

heterogeneity issues or not. Formally, I can express the model for testing the null 

hypothesis of the restricted F-test as: 

𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛 = 𝛼1 + 𝛼2𝐷2𝑖 + ⋯ + 𝛼𝑛𝐷𝑛𝑖 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡

+ 𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 + 𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡

+ 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡 

(3.17) 

        𝑅𝑉𝑖𝑡
5𝑚𝑖𝑛 = 𝛼1 + 𝛼2𝐷2𝑖 + ⋯ + 𝛼𝑛𝐷𝑛𝑖 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2

𝑃

𝐵
𝑅𝐴𝑇𝐼𝑂𝑖𝑡 +

𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 + 𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +

𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡    

(3.18) 

        𝑅𝐵𝑉𝑖𝑡 = 𝛼1 + 𝛼2𝐷2𝑖 + ⋯ + 𝛼𝑛𝐷𝑛𝑖 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 +

𝛽3𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 + 𝛽4 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽5𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +

𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡   

(3.19) 
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where 𝐷2𝑖 = 1 for stock 2 and zero otherwise and 𝐷𝑛𝑖 = 1 for stock n and zero 

otherwise. The null hypothesis for these models is that the differential intercepts are 

equal to zero. 

H0: 𝛼𝑖 = 0 for ∀ 𝑖 = 2, … , 𝑛 

Ha: At least one 𝛼𝑖 is not equal to 0. 

In addition, to choose between the fixed-effects and the random effects 

models, the Hausman test is the selection tool. The Hausman test asserts that 𝑤𝑖𝑡 is 

correlated with independent variables. The null hypothesis tests the significance of: 

𝑊 = (𝛽𝑅𝐸 −  𝛽𝐹𝐸)′Σ̂−1(𝛽𝑅𝐸 −  𝛽𝐹𝐸) ~ 𝜒2(𝑘) (3.20) 

where 𝛽𝑅𝐸 is the random effects estimator, 𝛽𝐹𝐸 is the fixed effects estimator and Σ̂−1 is 

their covariances. 

3.3.4.2  Two-stage Least Squares Estimation 

Algorithmic trading proxy and volatility may be endogenous variables. 

While Hendershott and Riordan (2009) found that algorithmic trading is not related to 

past volatility, Brook, Sharp, Ushaw, Blewitt, and Morgan (2013) showed that the 

algorithm developers design the trading algorithms to react to the market volatility. In 

addition, Brogaard (2011) showed that a change in idiosyncratic volatility causes the 

high frequency traders to change their aggressiveness.  

Therefore, to solve for possible endogeneity and to establish the causal 

relationship, I applied the two-stage least squares (2SLS) estimation technique to 

produce regression estimators for the relationship between algorithmic trading and 

volatility. This estimation method requires a proper instrumental variable (𝐼𝑉𝑖𝑡).  

Since 1991, The Stock Exchange of Thailand (SET) has utilized the 

computerized trading system. In 2012, SET upgraded the “SET CONNECT” system to 

improve the transaction speed and facilitate foreign investors to invest in the market. 

However, algorithmic traders participated in the Stock Exchange of Thailand during 

that period is still premature. Therefore, using these two incidents as instrumental 

variables is not appropriate. 

However, during October 2016, the market data displayed the 

participation of algorithmic traders and the market encountered a brief flash crash. I 

used this event as an instrumental variable for the participation of algorithmic trading 

in the Stock Exchange of Thailand. Thereby, I instrumented the algorithmic trading 
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activities with the instrumental variable. This assumed that algorithmic trading 

activities was higher after October 2016 than the one before October 2016. The dummy 

variable called 𝐼𝑉𝑡 is equal to 1 after October 2016 and 0 otherwise. Two assumptions 

are made for the instrumental variables: 1) the dummy variable 𝐼𝑉𝑖𝑡 is not correlated 

with the error term, and 2) the dummy variable 𝐼𝑉𝑖𝑡 is correlated with the independent 

variables so that the regression coefficients remain consistent. 

Therefore, the first stage regression is:  

𝐴𝑇𝑖𝑡
̂ = 𝛼 + 𝛽1𝐼𝑉𝑖𝑡 + 𝛽2𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

+ 𝛽4𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +  𝜇𝑖𝑡. 

(3.21) 

In the second stage regression, the relationship between algorithmic 

trading and volatility models can be expressed as following: 

𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡

̂ + 𝛽2𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +  𝜇𝑖𝑡.    

(3.22) 

𝑅𝑉𝑖𝑡
5𝑚𝑖𝑛 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡

̂ + 𝛽2𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

+ 𝛽4𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +  𝜇𝑖𝑡. 

(3.23) 

𝑅𝐵𝑉𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡
̂ + 𝛽2𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

+ 𝛽4𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +  𝜇𝑖𝑡. 

(3.24) 

3.3.4.3  Granger Causality Test 

Alternatively, to establish the causal relationship and alleviate the 

endogeneity problem, I conducted the Granger causality test between algorithmic 

trading and volatility measures. For a panel data, there are many estimation techniques 

such as a GMM estimator, a SUR estimator and a multivariate least square estimator. I 

employed the multivariate least square estimator (Dumitrescu & Hurlin, 2012, pp. 

1450-1460), which extends the work of Granger (1969). The interaction between 

algorithmic trading and volatility measures can be modelled using a panel data vector 

autoregressive (VAR). 

𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛 = 𝛽0𝑖 + ∑ 𝛼𝑖,𝑗𝐴𝑇𝑖,𝑡−𝑗  𝑛

𝑗=1 +  ∑ 𝛽𝑖,𝑘𝑅𝑉𝑖,𝑡−𝑘
1𝑚𝑖𝑛 + 𝑢1𝑖,𝑡

𝑛
𝑘=1    (3.25) 

𝐴𝑇𝑖,𝑡 = 𝜆0𝑖 + ∑ 𝜆𝑖,𝑗𝐴𝑇𝑖,𝑡−𝑗 𝑛
𝑗=1 +  ∑ 𝛿𝑖,𝑘𝑅𝑉𝑖,𝑡−𝑘

1𝑚𝑖𝑛 + 𝑢2𝑖,𝑡
𝑛
𝑘=1 . (3.26) 
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𝑅𝑉𝑖𝑡
5𝑚𝑖𝑛 = 𝛽0𝑖 + ∑ 𝛼𝑖,𝑗𝐴𝑇𝑖,𝑡−𝑗  𝑛

𝑗=1 +  ∑ 𝛽𝑖,𝑘𝑅𝑉𝑖,𝑡−𝑘
5𝑚𝑖𝑛 + 𝑢1𝑖,𝑡

𝑛
𝑘=1    (3.27) 

𝐴𝑇𝑖,𝑡 = 𝜆0𝑖 + ∑ 𝜆𝑖,𝑗𝐴𝑇𝑖,𝑡−𝑗 𝑛
𝑗=1 +  ∑ 𝛿𝑖,𝑘𝑅𝑉𝑖,𝑡−𝑘

5𝑚𝑖𝑛 + 𝑢2𝑖,𝑡
𝑛
𝑘=1 . (3.28) 

𝑅𝐵𝑉𝑖,𝑡 = 𝛽0𝑖 + ∑ 𝛼𝑖,𝑗𝐴𝑇𝑖,𝑡−𝑗 𝑛
𝑗=1 + ∑ 𝛽𝑖,𝑘𝑅𝐵𝑉𝑖,𝑡−𝑘 + 𝑢1𝑖,𝑡

𝑛
𝑘=1    (3.29) 

𝐴𝑇𝑖,𝑡 = 𝜆0𝑖 + ∑ 𝜆𝑖,𝑗𝐴𝑇𝑖,𝑡−𝑗 𝑛
𝑗=1 +  ∑ 𝛿𝑖,𝑘𝑅𝐵𝑉𝑖,𝑡−𝑘 + 𝑢2𝑖,𝑡

𝑛
𝑘=1 . (3.30) 

The Dumitrescu-Hurlin test makes the following assumptions: (i) the 

observations of the variables are time-stationary, (ii) the panel data is balanced, and (iii) 

the lag orders are the same for all stocks. Therefore, I conducted the unit root tests for 

both variables using Choi (2001)’s test statistics. The null hypothesis for the 

Dumitrescu-Hurlin test is that the coefficient for the lagged algorithmic trading terms 

in the equation 3.25, 3.27 and 3.29 do not fit in the regression, implying that algorithmic 

trading does not cause volatility measures to change. The alternative hypothesis is that 

at least one coefficient for the lagged algorithmic trading for some stocks is not equal 

to zero. 

H0: 𝛼𝑖,𝑗 = 0 for all stock i and all lag j  

H1: 𝛼𝑖,1 = … = 𝛼𝑖,𝑛 = 0 for all i = 1 , …, 𝑁1 

 𝛼𝑖,1  ≠ 0 or … or 𝛼𝑖,𝑛  ≠ 0 for all i = 𝑁1 + 1 , …, 𝑁 

For Equation 3.26, 3.28 and 3.30, to determine whether volatility causes 

the change in algorithmic trading, the null hypothesis is defined as below.  

H0: 𝛿𝑖,𝑗 = 0 for all stock i and all lag j  

H1: 𝛿𝑖,1 = … = 𝛿𝑖,𝑛 = 0 for all i = 1, …, 𝑁1 

      𝛿𝑖,1  ≠ 0 or … or 𝛿𝑖,𝑛  ≠ 0 for all i = 𝑁1 + 1 , …, 𝑁 

The Dumitrescu-Hurlin tests analyze equation 3.25 to 3.30 using VAR 

for each stock and computed the F-statistics for each stock using the Wald test. The test 

statistics is calculated as the average of the Wald statistics for each stock. It is 

hypothesized that volatility should create the opportunity for algorithmic traders to 

make profit. Therefore, volatility should Granger cause AT to increase. However, the 

causality of algorithmic trading on volatility is unclear, depending on the magnitude 

and direction of their activities.  

3.3.4.4  Volatile Market 

To explore the effect of algorithmic trading on volatility during the 

volatile market, I conducted the hypothesis testing during the volatile market. The 
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volatile market is characterized by the period when the stock market indices are the 

most fluctuated. Table 3.2 exhibits the monthly SET index volatility. For our sample, 

October 2016 is the most volatile period.  

 

Table 3.2  Monthly SET Index Volatility 

 

Month SET Index Volatility 

March 2016 0.8039% 

April 2016 0.8723% 

May 2016 0.6041% 

June 2016 0.7320% 

July 2016 0.4541% 

August 2016 0.5886% 

September 2016 1.1805% 

October 2016 1.4559% 

November 2016 0.6617% 

December 2016 0.4423% 

 

According to Biais et al. (2013), an increase in volatility leads algorithmic 

traders to trade more. Therefore, the magnitude of the effect of algorithmic trading 

should amplify during the volatile market. Hence, the coefficient of algorithmic trading 

during the volatile market should be positive and higher than the one during the entire 

period. I used the panel data analysis to establish the relationship between algorithmic 

trading and volatility measures. Furthermore, I used the Granger causality test to 

determine whether there is a bilateral causal relationship between algorithmic trading 

and volatility measures during the volatile market. It is hypothesized that the coefficient 

of algorithmic trading should be significant during the volatile period as high volatility 

should induce algorithmic traders to participate and thus, AT should cause the volatility 

to change. 
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3.3.5  Model Extension 

 As algorithmic traders need to gain the access to Direct market access service 

(DMA) provided by the Stock Exchange of Thailand, it is likely that the main group of 

algorithmic traders in the Stock Exchange of Thailand are institutional and foreign 

investors. Both types of investors are informed investors with different level of 

information advantages (Dvořák, 2005). Therefore, it is interesting to determine 

whether the use of technology changes the level of information advantages of these two 

types of investors and how it affects return volatility. By investigating these variables, 

I can better quantify the algorithmic trading measurement. As a result, one can 

comprehend the effect of algorithmic trading initiated by institutional investors vs 

foreign investors on market quality. Therefore, I developed the new proxies to capture 

the activities of algorithmic trading initiated by foreign and institutional investors. 

Algorithmic trading initiated by institutional investors is calculated as: 

𝐴𝑇𝑖𝑡
𝐼 =

−𝑉𝑖𝑡
𝐼

𝑀𝑇𝑖𝑡
𝐼   

(3.31) 

And, algorithmic trading initiated by foreign investors is measured as: 

𝐴𝑇𝑖𝑡
𝐹 =

−𝑉𝑖𝑡
𝐹

𝑀𝑇𝑖𝑡
𝐹 

(3.32) 

where 𝐴𝑇𝑖𝑡
𝐼  and 𝐴𝑇𝑖𝑡

𝐹 are the proxies for algorithmic trading initiated by institutional and 

foreign investors respectively. 𝑉𝑖𝑡
𝐼  and 𝑉𝑖𝑡

𝐹 are trading volumes in Thai Baht initiated by 

institutional and foreign investors respectively. 𝑀𝑇𝑖𝑡
𝐼  and 𝑀𝑇𝑖𝑡

𝐹 are the message traffic 

for stock 𝑖 on day 𝑡 initiated by institutional and foreign investors respectively.  

 To establish the relationship between algorithmic trading initiated by each types 

of investors on volatility, I employed the panel data regression analysis. As the effects 

of algorithmic trading initiated by institutional and foreign investors occur 

simultaneously, I included both terms in the model. Furthermore, to study the 

interaction between algorithmic trading initiated by institutional investors and one 

initiated by foreign investors, I incorporated the interaction term between these two 

variables into the models. Therefore, I can express the regression models as follows: 
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         𝑅𝑉𝑖𝑡
1𝑚𝑖𝑛 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡

𝐼 + 𝛽2𝐴𝑇𝑖𝑡
𝐹 + 𝛽3𝐴𝑇𝑖𝑡

𝐼 𝐴𝑇𝑖𝑡
𝐹 + 𝛽4𝑃/

𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 + 𝛽6 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽7𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +

𝛽8𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡 

(3.33) 

         𝑅𝑉𝑖𝑡
5𝑚𝑖𝑛 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡

𝐼 + 𝛽2𝐴𝑇𝑖𝑡
𝐹 + 𝛽3𝐴𝑇𝑖𝑡

𝐼 𝐴𝑇𝑖𝑡
𝐹 + 𝛽4𝑃/

𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 + 𝛽6 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽7𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +

𝛽8𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡 

(3.34) 

        𝑅𝐵𝑉𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡
𝐼 + 𝛽2𝐴𝑇𝑖𝑡

𝐹 + 𝛽3𝐴𝑇𝑖𝑡
𝐼 𝐴𝑇𝑖𝑡

𝐹 + 𝛽4𝑃/𝐵 𝑅𝐴𝑇𝐼𝑂𝑖𝑡 +

𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 + 𝛽6 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽7𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 +

𝛽8𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡 

(3.35) 

Hence, the null hypothesis is formed to test whether there exists no relationship 

between algorithmic trading and volatility. 

H0: 𝛽1 = 𝛽2 = 𝛽3 = 0 

H1: At least one 𝛽 is not equal to 0. 

 To understand the effect of algorithmic trading initiated by institutional and 

foreign investors on volatility during the volatile market, I ran the regression using the 

data during the volatile period which is in October. The model utilizes the Equation 

3.33 to 3.35 using the dataset during October 2016 to test the above null hypothesis. 

 

3.3.6  Descriptive Statistics 

In order to conduct the panel data Granger causality test, the unbalanced data is 

eliminated. The descriptive statistics is shown in Table 3.3. The average of one-minute 

and five-minute realized volatilities are 0.2920 and 0.4048 percent respectively. Range-

based volatility averages at 0.0263. The average of the algorithmic trading proxy is -

42.1811 and the standard deviation of the algorithmic trading proxy is 37.0363. The 

average of the algorithmic trading initiated by institutional investors proxy is -98.5739 

and the standard deviation of the algorithmic trading proxy is 93.7883. The average of 

the algorithmic trading initiated by foreign investors proxy is -40.3647 and the standard 

deviation of the algorithmic trading proxy is 48.7118. Therefore, the mean of the 

algorithmic trading initiated by institutional investors is smaller than the one of the 

algorithmic trading initiated by foreign investors. So, foreign investors initiate more 
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traffic messages. Therefore, there are more algorithmic trading activities initiated by 

foreign investors. On average, the market capitalization is 117 billion baht, the price-

per-book ratio is 3.4700 and the share turnover is 0.0043. The average of the inverse of 

the average price and the effective half spread are 0.1034 and 0.2731 percent 

respectively. Figure 3.1 to 3.3 provide the time series plot of one-minute realized 

volatility, five-minute realized volatility and range-based volatility vs. algorithmic 

trading activity accordingly. 

 

Table 3.3  Summary Statistics 

 

Variables Mean Median Std. 

Dev. 

Min. Max. 

Dependent Variables      

One-minute realized 

volatility (%) 

0.2920 0.2742 0.1096 0.0000 2.3374 

Five-minute realized 

volatility (%) 

0.4048 0.3861 0.1450 0.0000 3.1380 

Range-based volatility 0.0263 0.0226 0.0162 0.0025 0.0284 

Independent variables      

Algorithmic trading 

proxy (all) 

-42.1811 -30.9240 37.0363 -1006.93 -1.9105 

Algorithmic trading 

proxy (institutional 

investors) 

-98.5739 -70.0395 93.7883 -1289.32 -0.0047 

Algorithmic trading 

proxy  

(foreign investors) 

-40.3647 -23.5131 48.7118 -1555.68 -0.0071 

Stock Characteristics      

Market capitalization 

(Billion Baht) 

117.02 48.43 171.34 7.43 1,047.51 

Table 3.3  (Continued) 
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Variables Mean Median Std. 

Dev. 

Min. Max. 

Price-to-book ratio 3.4700 2.2800 3.5588 0.5600 27.7200 

Share turnover 0.0043 0.0026 0.0058 5.82x10-5 0.1246 

The inverse of share 

price (1/Baht) 

0.1034 0.0454 0.1364 0.0018 0.6824 

Effective Half Spread 

(%) 

0.2731 0.2490 0.1284 0.0000 1.1958 

 

 

 

 

Figure 3.1  Time Series Plot of One-minute Realized Volatility vs. Algorithmic Trading 
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Figure 3.2  Time Series Plot of Five-minute Realized Volatility vs. Algorithmic Trading 

 

 

 

Figure 3.3  Time Series Plot of Range-based Volatility vs. Algorithmic Trading 
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the summary statistics for the volatile period. The average values of one-minute and 

five-minute realized volatilities during the volatile market are 0.3100 and 0.4505 

percent respectively. Range-based volatility during the volatile market is 0.0333. The 

average of the algorithmic trading proxy during the volatile period is -44.3094. 

Furthermore, the mean of the algorithmic trading initiated by institutional investors 

proxy during the volatile market is -103.3188. In addition, the algorithmic trading 

initiated by foreign investors proxy averages at -41.2547 during the volatile period. 

Table 3.4 reveals that the algorithmic trading proxy and the algorithmic trading initiated 

by foreign investors during the volatile period is lower than the ones during the entire 

sample. This indicates that the algorithmic trading activities and the algorithmic trading 

activities initiated by foreign investors activities are less active during the volatile 

period than during the entire period. This may assert that during the volatile period, 

algorithmic traders reduce their participation in the market. 

 

Table 3.4  Summary Statistics for the Volatile Period 

 

Variables Mean Median Std. 

Dev. 

Min. Max. 

Dependent Variables      

One-minute realized 

volatility (%) 

0.3100 0.2813 0.1365 0.0838 2.3374 

Five-minute realized 

volatility (%) 

0.4505 0.4065 0.2335 0.1334 3.1380 

Range-based volatility 0.0333 0.0252 0.0273 0.0031 0.2844 

Independent Variables      

Algorithmic trading 

proxy (all) 

-44.3094 -33.6595 37.6396 -262.8045 -2.1917 

Algorithmic trading 

proxy (institutional 

investors) 

-

103.3188 

-72.1200 99.2081 -707.6388 -0.0246 
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Table 3.4  (Continued) 

 

     

Variables Mean Median Std. 

Dev. 

Min. Max. 

Algorithmic trading 

proxy  

(foreign investors) 

-41.2547 -24.3944 46.3279 -455.7125 -0.0421 

Stock Characteristics      

Ln(market_cap) 14.3197 14.1321 1.1080 12.2580 17.2062 

Price-to-book ratio 3.5157 2.2500 3.7816 0.5800 26.8100 

Share turnover 0.0049 0.0030 0.0062 6.76 x10-5 0.0716 

The inverse of share 

price (1/Baht) 

0.1047 0.0465 0.1387 0.0019 0.6785 

Effective Half Spread 

(%) 

0.2642 0.2392 0.1225 0.0684 0.7455 

 

3.4   Results and Discussion 

 

3.4.1  Correlation Analysis 

3.4.1.1  All Periods 

Table 3.5 reports the correlation matrix. All the variables exhibit 

significant correlations except the pair of the algorithmic trading initiated by foreign 

investor proxy and the price-to-book ratio. Noticeably, algorithmic trading is positively 

correlated with one-minute realized volatility (r = 0.131 and p < 0.01) and five-minute 

realized volatility (r = 0.156 and p < 0.01). The magnitude of correlation (𝑟) increases 

when the sampling time for computing realized volatility increases. In contrast, range-

based volatility exhibits a negative relationship with algorithmic trading (r = 0.131 and 

p < 0.01). 

Consistent with the previous results, algorithmic trading initiated by 

institutional and foreign investors proxies have positive correlations with the one-

minute and five-minute realized volatilities and a negative correlation with range-based 

volatility. The correlations between algorithmic trading initiated by institutional 
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investors and realized volatilities using one-minute and five-minute sampling time are 

0.064 (p < 0.01) and 0.118 (p < 0.01) respectively. The correlations between 

algorithmic trading initiated by foreign investors and realized volatilities using one-

minute and five-minute sampling time are 0.105 (p < 0.01) and 0.154 (p < 0.01) 

respectively. Range-based volatility is negatively correlated with the algorithmic 

trading initiated by institutional investors proxy (r = -0.059 and p < 0.01) and the 

algorithmic trading initiated by foreign investors proxy (r = -0.022 and p < 0.01).  

 

Table 3.5  Correlation matrix. *, ** and *** denote significance at the 10%, 5% and 1% 

level. 1 = 1-minute realized volatility, 2 = 5-minute realized volatility, 3 = 

range-based volatility, 4 = algorithmic trading proxy, 5 = algorithmic 

trading initiated by institutional investors, 6 = algorithmic trading initiated 

by foreign investors, 7 = the natural logarithmic of market capitalization, 8 

= price-to-book ratio, 9 = share turnover, 10 = the inverse of price and 11 

= effective half spread 

 

 1 2 3 4 5 6 7 8 9 10 11 

1 1           

2 0.844*** 1          

3 0.390*** 0.610*** 1         

4 0.131*** 0.156*** -0.092*** 1        

5 0.064*** 0.118*** -0.059*** 0.835*** 1       

6 0.105*** 0.154*** -0.022*** 0.870*** 0.666*** 1      

7 -0.165*** -0.296*** -0.141*** -0.688*** -0.657*** -0.622*** 1     

8 0.041*** 0.068*** 0.123*** -0.037*** -0.028*** 0.004 0.056*** 1    

9 0.271*** 0.327*** 0.532*** -0.257*** -0.243*** -0.225*** -0.118*** -0.035*** 1   

10 0.217*** 0.168*** -0.004*** 0.306*** 0.250*** 0.215*** -0.346*** -0.119*** 0.044*** 1  

11 0.725*** 0.537*** -0.051*** 0.323*** 0.242*** 0.261*** -0.235*** -0.011 -0.101*** 0.223*** 1 

 

From the correlation analysis, the correlation between algorithmic 

trading initiated by foreign investors and realized volatility is higher than the correlation 

between algorithmic trading initiated by institutional investors and realized volatility. 

On the contrary, the magnitude of the correlation between algorithmic trading initiated 

by institutional investors and range-based volatility is higher than that between 

algorithmic trading initiated by foreign investors and range-based volatility. Therefore, 

the correlation analysis alludes that algorithmic trading initiated by foreign investors 

has more effect in increasing realized volatility than algorithmic trading initiated by 
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institutional investors does. However, algorithmic trading initiated by institutional 

investors has more effect in reducing range-based volatility than algorithmic trading 

initiated by foreign investors does. 

The control variables have the same correlation directions as predicted, 

except for the correlation between the range-based volatility and the inverse of the 

average price and the correlation between the range-based volatility and the effective 

half spread. The natural logarithm of the market capitalization is negatively correlated 

with all volatility measures. Therefore, the larger the firm size, the smaller the volatility. 

Furthermore, all the algorithmic trading proxies indicate negative correlations with the 

natural logarithm of the market capitalization, implying that algorithmic trading is more 

likely to participate in the smaller firms. The correlation between the natural logarithm 

of market capitalization and various measures of the algorithmic trading proxies i.e. the 

algorithmic trading proxy, the algorithmic trading initiated by institutional investors 

proxy and the algorithmic trading initiated by foreign investors proxy are -0.688, -0.657 

and -0.622 respectively, which are quite high. This may be subjected to the 

multicollinearity problems. 

Volatility is higher in the firms with larger price-to-book ratio which is 

rational because if stocks are overvalued, volatility should be higher. It is interesting to 

note that the algorithmic trading proxy is negatively correlated with the price-to-book 

ratio and I found no correlation between algorithmic trading initiated by foreign 

investors and the price-to-book ratio. 

As predicted, share turnover is positively correlated with volatility. In 

addition, the correlation between algorithmic trading and share turnover is small and 

negative (r = -0.257 and p < 0.01). The negative and small correlation between these 

two variables confirms that an increase in the algorithmic trading proxy using a 

normalized traffic message, is not due to an increase in trading volume. 

The correlation between the inverse of the average price and realized 

volatility is positive while the correlation between the inverse of the average price and 

range-based volatility is negative. The inverse of average price is positively correlated 

with all three types of algorithmic trading proxies. Additionally, the correlation between 

effective spread and realized volatility is positive while the correlation between 

effective spread and range-based volatility is negative. Effective spread shows positive 

correlations with algorithmic trading proxies.  
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3.4.1.2  Volatile Period 

Table 3.6 reports a correlation matrix during the volatile period. During 

the volatile period, the correlation between the algorithmic trading proxy and one-

minute and five-minute realized volatility are 0.096 and 0.096 respectively. The 

correlation between the algorithmic trading initiated by institutional investors proxy 

and one-minute and five-minute realized volatilities are 0.064 and 0.067 respectively. 

Finally, the correlation between the algorithmic trading initiated by foreign investors 

proxy and one-minute and five-minute realized volatility are 0.062 and 0.077 

respectively. The correlation between range-based volatility and the algorithmic trading 

proxy is -0.090 and the correlation between range-based volatility and the algorithmic 

trading initiated by institutional investors proxy is -0.056. The correlation between 

range-based volatility and the algorithmic trading initiated by foreign investors proxy 

is insignificant. 

Conclusively, the correlations between all algorithmic trading proxies 

and all realized volatilities are higher during the entire period than during the volatile 

period. On the contrary, the correlation between range-based volatility and the 

algorithmic trading proxy is lower during the volatile period than during the entire 

period. Similarly, the correlation between range-based volatility and the algorithmic 

trading initiated by institutional investors proxy is lower during the volatile period than 

during the entire period. 

The direction and the significance of the correlation between the control 

variables and the volatility measures remain unchanged except for two pairs of 

correlations. They are the correlation between range-based volatility and the inverse of 

price and the correlation between range-based volatility and effective half spread. 
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Table 3.6  Correlation Matrix during the Volatile period. *, ** and *** denote 

significance at the 10%, 5% and 1% level. 1 = 1-minute realized volatility, 

2 = 5-minute realized volatility, 3 = range-based volatility, 4 = algorithmic 

trading proxy, 5 = algorithmic trading initiated by institutional investors, 6 

= algorithmic trading initiated by foreign investors, 7 = the natural 

logarithmic of market capitalization, 8 = price-to-book ratio, 9 = share 

turnover, 10 = the inverse of price and 11 = effective half spread. 

 

 

3.4.2  The Effect of Algorithmic Trading Proxy on Volatility 

First, I estimated a multivariable regression using the pooled ordinary least 

square regression. There is no multicollinearity (See Appendix A-1). Table 3.7 

summarizes the pooled OLS regression coefficients. The algorithmic trading proxy is 

positively associated with one-minute realized volatility (𝛽1 = 6.3215x10-5 and p < 

0.01). One standard deviation increase in algorithmic trading, which is equivalent to 

37.0363, leads to an increase in one-minute realized volatility by 6.3215x10-5 x 37.0363 

= 0.0023 percent. As the mean value of one-minute realized volatility is equal to 0.2920 

percent, algorithmic trading is associated with an increase in one-minute realized 

volatility by 0.8018 percent from its average. 

However, the algorithmic trading proxy is negatively associated with the five-

minute realized volatility (𝛽1 = -0.0001 and p < 0.01), which is inconsistent with the 

correlation result. This implies that when algorithmic trading increases by one standard 

deviation, five-minute realized volatility decreases by 0.0037 percent, which is 

equivalent to 0.9149 percent decline in five-minute realized volatility from its mean 

value. 

 1 2 3 4 5 6 7 8 9 10 11 

1 1           

2 0.831*** 1          

3 0.611*** 0.811*** 1         

4 0.096*** 0.096*** -0.090*** 1        

5 0.064*** 0.067*** -0.056** 0.898*** 1       

6 0.062*** 0.077*** -0.030 0.861*** 0.732*** 1      

7 -0.136*** -0.226*** -0.164*** -0.704*** -0.687*** -0.666*** 1     

8 0.089*** 0.058** 0.095*** -0.022 -0.026 0.019 0.071*** 1    

9 0.282*** 0.344*** 0.472*** -0.324*** -0.303 -0.228*** -0.086*** -0.037 1   

10 0.201*** 0.133*** 0.029 0.313*** 0.266*** 0.215*** -0.350*** -0.122*** 0.061** 1  

11 0.637*** 0.375*** -0.002 0.316*** 0.254*** 0.223*** -0.183*** 0.038 -0.094*** 0.228*** 1 
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Consistent with the correlation result, the algorithmic trading proxy has a 

negative relationship with range-based volatility (𝛽1 = -8.6620x10-6 and p = 0.043). 

Range-based volatility is decreased by 0.0003 percent for each additional standard 

deviation of algorithmic trading, which is equal to 1.2198 percent decrease from its 

corresponding average value.  

 

Table 3.7  OLS Regression of Algorithmic Trading Proxy and Control Variables on  

                  Volatility Measures. *, ** and *** denote significance at the 10%, 5% and  

                  1% level.  

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

Intercept  -0.0354*** 

(-3.827) 

0.4812*** 

(30.836) 

0.0439*** 

(22.77) 

𝐴𝑇𝑖𝑡 6.3215 x 10-5*** 

(3.081) 

-0.0001*** 

(-3.342) 

-8.6620 x 10-6** 

(-2.024) 

Price-to-book ratio 0.0019*** 

(14.312) 

0.0038*** 

(16.564) 

0.0006*** 

(22.718) 

Share turnover 6.7606*** 

(71.848) 

9.0740*** 

(57.106) 

1.4403*** 

(73.388) 

The inverse of 

price  

0.0537*** 

(14.099) 

4.3429 x 10-5 

(0.007) 

-0.0050*** 

(-6.291) 

Effective half 

spread  

0.6446*** 

(162.424) 

0.6275*** 

(93.626) 

-0.0012 

(-1.505) 

Natural log of 

market cap 

0.0079*** 

(11.925) 

-0.0213*** 

(-19.015) 

-0.0018*** 

(12.903) 

Adjusted R2 65.25% 45.87% 31.17% 

 

Stock heterogeneity is an important source of variations in volatility measures. 

(See proof for heterogeneity in Appendix A-2). I conducted various tests to select the 

proper model. Appendix A-3 to A-4 provide the test results. I included the two-way 
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fixed effects in the model and estimated the multivariate models using the within-group 

two-way fixed effects estimator (Appendix A-5 presents regression outcomes for other 

estimation methods).  

 

Table 3.8  Within-group (Two ways) Fixed-effect Regression of Algorithmic Trading  

                  Proxy and Control Variables on Volatility Measures. *, ** and *** denote  

                  significance at the 10%, 5% and 1% level.  

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

𝐴𝑇𝑖𝑡 -1.3535x10-4*** 

(-5.951) 

-0.0003*** 

(-8.197) 

-3.1443x10-5*** 

(-6.830) 

Price-to-book ratio 0.0066*** 

(12.120) 

0.0068*** 

(7.694) 

0.0008*** 

(7.370) 

Share turnover 4.0987*** 

(41.745) 

6.7096*** 

(41.881) 

1.3644*** 

(68.650) 

The inverse of 

price  

-0.0155*** 

(-0.552) 

0.0786* 

(1.720) 

0.0184*** 

(3.250) 

Effective half 

spread  

0.5338*** 

(125.943) 

0.5106*** 

(73.829) 

-0.0050*** 

(-5.858) 

Natural log of 

market cap 

   

Adjusted R2 48.83% 28.45% 28.42% 

 

From Table 3.8, the regression coefficients of the algorithmic trading proxy for 

the realized volatility models are negative, implying that when algorithmic trading 

increases, realized volatility decreases. When the algorithmic trading proxy increases 

by one standard deviation, one-minute realized volatility and the five-minute realized 

volatility are decrease by 0.0050 and 0.0111 percent or 1.7167 and 2.7448 percent from 

their associated mean values respectively. Moreover, range-based volatility is 
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decreased by 0.0012 or 4.4279 percent from the mean value as algorithmic trading 

proxy enlarges by one standard deviation.  

However, this negative relationship between algorithmic trading and realized 

volatility is inconsistent with the correlation result. This may be because there are some 

stocks with large variations in volatility, affecting the overall result. As a result, to 

remedy this inconsistency, I implemented the ordinary least square regression analysis 

for each stock. Appendix A-6 depicts the regression coefficients of the algorithmic 

trading proxy on the realized volatility models for each stock. Table 3.9 summarizes 

the regression coefficients.  

Out of 91 stocks (I deleted all the stocks that were not listed in the SET100 for 

the entire year), forty-eight stocks have statistically significant relationships between 

algorithmic trading and one-minute realized volatility and forty-four stocks have 

statistically significant relationships between algorithmic trading and five-minute 

realized volatility. 

Evidently, from Table 3.9, for the relationship between algorithmic trading and 

one-minute realized volatility, three-third of all the significant coefficients are positive 

with the average value of 0.0013 whereas the rest are negative with the mean of -0.0015. 

Therefore, algorithmic trading is mostly related to increasing volatility. However, when 

algorithmic trading reduces volatility, the effect is higher. Therefore, for most of the 

stocks, one standard deviation increase in algorithmic trading leads to 16.49 percent 

increase in one-minute realized volatility.  

 

Table 3.9  Summary of OLS Regression of Volatility Measures on Algorithmic  

                  Trading Proxy and Control Variables for Each Stock. 

 

 1-minute Realized Volatility 5-minute Realized Volatility 

 Significant  

Number 48 44 

 Positive and Significant  

Number 36 32 

Average 0.0013 0.0018 
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Table 3.9  (Continued) 

 

 1-minute Realized Volatility 5-minute Realized Volatility 

 Negative and Significant  

Number 12 12 

Average -0.0015 -0.0025 

 

For the relationship between algorithmic trading and five-minute realized 

volatility, about seventy-three percent of all the significant coefficients are positive with 

the average value of 0.0018. The positive effect of algorithmic trading on five-minute 

realized volatility is higher than the one on one-minute realized volatility. One standard 

deviation increase in algorithmic trading leads to 22.83 percent increase in five-minute 

realized volatility. The average coefficient for the negative relationship is -0.0025 

which is higher than the positive relationship, confirming our assumption that the 

negative relationship between algorithmic trading and realized volatility is higher, and 

thus skew the within-effect regression results.  

 

3.4.3  The Causal Relationship between Algorithmic Trading Proxy and 

Volatility 

As the linear regression only establishes the relationship, in order to ascertain 

the causal relationships, which is essential for policy decisions, I conducted two 

additional estimation method and statistical analysis.  

3.4.3.1  Two-stage Least Square Estimation 

I conducted the two-stage least squares (2SLS) regression. The 2SLS 

regression coefficients are narrated in Table 3.10. I found that in the first stage 

regression, instrumental variable is related to algorithmic trading proxy (𝛽1̂ =

1.6585 𝑎𝑛𝑑 𝑝 < 0.01). In the second stage regression, all the regression coefficients 

for algorithmic trading proxies are statistically significant. Three outcomes can be 

drawn.  

Firstly, the slope coefficient from the regression of algorithmic trading 

on one-minute realized volatility is -0.0038 with the confidence level of 99%. 

Therefore, algorithmic trading causes one-minute realized volatility to decrease. One 



52 

   
 

standard deviation increase in algorithmic trading causes a decrease in one-minute 

realized volatility by 0.1396 percent, which is equivalent to 47.83 percent from the 

mean value.  

Secondly, the slope coefficient of the algorithmic trading proxy on five-

minute realized volatility is -0.0030 with the confidence level of 95%, which is slightly 

lower than the one on one-minute realized volatility. Consistent with the impact of 

algorithmic trading on one-minute realized volatility, algorithmic trading causes five-

minute realized volatility to decrease. One standard deviation increase in algorithmic 

trading causes five-minute realized volatility to decrease by 0.1125 percent, which is 

equivalent to 27.79 decline from the mean value. Together, algorithmic trading causes 

realized volatility to decrease.  

 

Table 3.10  2SLS Analysis for the Impact of Algorithmic Trading Proxy on Volatility  

                    Measures. *, ** and *** denote significance at the 10%, 5% and 1%. 

 

 

 

Variable 

First Stage 

Algorithmic 

Trading 

Second Stage 

1-min Realized 

Volatility 

Second Stage 

5-min Realized 

Volatility 

Second Stage 

Range-based 

Volatility 

Intercept 245.4933*** 

(85.388) 

1.0274*** 

(3.884) 

1.3638*** 

(4.385) 

0.1709*** 

(4.215) 

Instrumental 

Variable 

1.6585*** 

(3.930) 

   

Algorithmic 

trading 

 -3.7706x10-3*** 

(-3.511) 

-3.0370x10-3** 

(-2.405) 

-4.1874x10-4** 

(-2.544) 

Inverse of price 13.7264*** 

(8.955) 

0.1087*** 

(6.742) 

0.0397** 

(2.096) 

0.0004 

(0.181) 

Spread  47.1543*** 

(29.954) 

0.7829*** 

(15.341) 

0.7089*** 

(11.814) 

0.0092 

(1.173) 

Natural log of 

market cap 

-21.1312*** 

(-111.560) 

-0.0782*** 

(-3.441) 

-0.0897*** 

(-3.358) 

-0.0115*** 

(-3.306) 
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Lastly, the regression coefficient of the algorithmic trading proxy on 

range-based volatility is -0.0004 with the confidence level of 95%. Similar to the 

previous results, the direction of the effect of algorithmic trading on range-based 

volatility is negative. Therefore, when algorithmic trading increases by one standard 

deviation, range-based volatility is decreased by 0.0155 percent or 58.97 percent from 

the mean value.  

All in all, the regression coefficients estimated by the 2SLS regression 

have the same direction as the one estimated by the fixed-effects models. However, the 

magnitude of the coefficients estimated by 2SLS regression is higher than the one 

established by the fixed-effects models.  

3.4.3.2  Granger Causality Test 

The ordinary least square regression affirms the relationship between the 

algorithmic trading proxies and the volatility measures. In addition, to determine the 

causal relationship, I implemented the Granger Causality test (See Appendix A-7 for 

the stationary of the variables). The results from the Granger causality tests using the 

Dumitrescu-Hurlin framework are portrayed in Table 3.11. There are bilateral causal 

relationships between algorithmic trading and realized volatility sampling every one 

minute and five minutes. Similar result is established for the relationship between 

algorithmic trading and range-based volatility. Therefore, algorithmic trading granger 

causes one-minute realized volatility, five-minute realized volatility and range-based 

volatility to change. In turn, volatility measures also granger cause algorithmic trading 

activities to change, which corresponds to the literature review that algorithmic traders 

monitor the market volatility and adjust their trades accordingly. These results are also 

consistent with the results of the 2SLS regression analyses. 
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Table 3.11  Granger Causality Test of the Causal Relationship Between Algorithmic  

                    Trading Proxy and Volatility Measures 

 

Direction of 

Causality 

Ztilde Statistics p-value Decision 

𝑅𝑉𝑖,𝑡
1−𝑚𝑖𝑛 → 𝐴𝑇𝑖,𝑡 9.7115 < 0.01 Reject 

𝐴𝑇𝑖,𝑡  → 𝑅𝑉𝑖,𝑡
1−𝑚𝑖𝑛 4.6088 < 0.01 Reject 

𝑅𝑉𝑖,𝑡
5−𝑚𝑖𝑛 → 𝐴𝑇𝑖,𝑡 7.2857 < 0.01 Reject 

𝐴𝑇𝑖,𝑡  → 𝑅𝑉𝑖,𝑡
5−𝑚𝑖𝑛 3.7180 < 0.01 Reject 

𝑅𝐵𝑉𝑖,𝑡 → 𝐴𝑇𝑖,𝑡 3.2447 < 0.01 Reject 

𝐴𝑇𝑖,𝑡 → 𝑅𝐵𝑉𝑖,𝑡 4.4837 < 0.01 Reject 

 

3.4.4  The Effect of Algorithmic Trading Proxy Initiated by Institutional 

and Foreign Investors on Volatility 

Understanding the effect of algorithmic trading initiated by each types of 

investors is helpful for the regulators. This helps to determine the type of investors who 

implement algorithms that affects volatility. Does the algorithmic trading initiated by 

institutional or the algorithmic trading initiated by foreign investors destabilize the 

stock market? Therefore, in this section, I provided the fixed-effect regression results 

in Table 3.12. It yields the following results. 

First, the effects of algorithmic trading initiated by institutional and foreign 

investors on one-minute realized volatility are negative. The effect of algorithmic 

trading initiated by institutional investors on one-minute realized volatility is more 

intense than the effect of algorithmic trading initiated by foreign investors on one-

minute realized volatility. The regression coefficient of algorithmic trading initiated by 

institutional investors on one-minute realized volatility is -1.1491x10-4, denoting that 

one-minute realized volatility is diminished by 0.0108 percent or 3.69 percent from the 

mean value due to one standard deviation increment in algorithmic trading initiated by 

institutional investors. Likewise, algorithmic trading initiated by foreign investors 

decreases one-minute realized volatility by 0.0085 percent or 2.90 percent from the 

mean value per each additional standard deviation of algorithmic trading initiated by 
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foreign investors. The interaction term between two types of algorithmic trading 

proxies results in a decrease in one-minute realized volatility by 1.30 percent from the 

mean for each additional standard deviation increase in the interaction term between 

both types of the algorithmic trading proxies.  

Second, the slope coefficients of the algorithmic trading initiated by 

institutional and foreign investors proxies and their interaction term in the second 

regression model are -1.9654 x 10-4, -3.4470 x 10-4 and -1.3498 x 10-6 respectively. As 

a result, a change in one standard deviation in algorithmic trading initiated by 

institutional and foreign investors leads to a change in the five-minute realized volatility 

in a reverse direction by 4.55 percent and 4.15 percent from the mean values 

respectively. Aggregately, the interaction term between these two proxies results in a 

decrease in five-minute realized volatility by 1.52 percent from the mean value. Again, 

the effect of algorithmic trading initiated by institutional investors on five-minute 

realized volatility is more intense than the effect of algorithmic trading initiated by 

foreign investors on five-minute realized volatility. 

 

Table 3.12  Two-way Within-group Regression of Algorithmic Trading Initiated by 

Institutional and Foreign Investors Proxies and Control Variables on 

Volatility Measures. *, ** and *** denote significance at the 10%, 5% and 

1% level.  

 

 

 

Variable 

Model 1  

1-minute Realized 

Volatility 

Model 2 

5-minute Realized 

Volatility 

Model 3 

Range-based 

Volatility 

𝐴𝑇_𝐼 -1.1491x10-4*** 

(-12.199) 

-1.9654x10-4*** 

(-12.797) 

-1.0357x10-5*** 

(-5.400) 

𝐴𝑇_𝐹 -1.7384x10-4*** 

(-8.086) 

-3.4470x10-4*** 

(-9.833) 

-1.0963x10-5** 

(-2.504) 

𝐴𝑇_𝐼𝑥𝐴𝑇_𝐹 -8.3305x10-7*** 

(-11.934) 

-1.3498x10-6*** 

(-11.860) 

-7.2880x10-8*** 

(-5.127) 
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Table 3.12  (Continued) 

 

 

 

Variable 

Model 1  

1-minute Realized 

Volatility 

Model 2 

5-minute Realized 

Volatility 

Model 3 

Range-based 

Volatility 

Price-to-book ratio 0.0060*** 

(10.976) 

0.0057*** 

(6.343) 

0.0008*** 

(7.017) 

Share turnover 3.9427*** 

(39.748) 

6.4397*** 

(39.8159) 

1.3962*** 

(69.123) 

The inverse of price  0.0194 

(0.679) 

0.1260*** 

(2.7033) 

0.0225*** 

(3.859) 

Effective half spread  0.5355*** 

(125.144) 

0.5103*** 

(73.130) 

-0.0059*** 

(-6.764) 

Natural log of 

market cap 

   

Adjusted R2 48.91% 28.51% 28.33% 

 

Third, corresponding to the previous result, the effect of algorithmic trading 

initiated by institutional and foreign investors proxies on range-based volatility are 

negative. One standard deviation increase in algorithmic trading initiated by 

institutional and foreign investors lead to declines in range-based volatility by 3.69 and 

2.03 percent from the mean value respectively. Moreover, range-based volatility is also 

decreased by 1.27 percent from the mean value due to one standard deviation increase 

in the interaction term between algorithmic trading initiated by institutional and foreign 

investors. Similar to the previous result, algorithmic trading initiated by institutional 

investors contributes more in decreasing volatility than algorithmic trading initiated by 

foreign investors does.  

Overall, algorithms initiated by institutional and foreign investors are beneficial 

to the market by reducing both realized volatility and range-based volatility. Furthermore, 

algorithmic trading initiated by institutional investors contributes more in lowering 

volatility than algorithmic trading initiated by foreign investors. However, the results 

for the effect of algorithmic trading initiated by each types of investors on realized 

volatility is inconsistent with the result from the correlation analysis. Like in previous 
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section, there might be large variation in the data that might affect the overall result. 

Therefore, I separated the data to compute the regression analysis for each stock. Table 

3.13 provides the summary of the result and appendix A-8 provides the detailed results.  

 

Table 3.13  Summary of OLS Regression of Volatility Measures on Algorithmic 

Trading Initiated by Institutional and Foreign Investors Proxies and 

Control Variables for Each Stock. AT_I is the algorithmic trading 

initiated by institutional investors proxy and AT_F is the algorithmic 

trading initiated by foreign investors proxy. 

 

 AT_I AT_F AT_I x 

AT_F 

AT_I AT_F AT_I x 

AT_F 

 1-minute realized volatility 5-minute realized volatility 

 Significant coefficients 

Number 25 32 29 22 28 32 

 Positive coefficients 

Number 9 15 2 5 11 2 

Average 0.0044 0.0013 1.8x10-5 0.00084 0.0013 4.2x10-5 

 Negative coefficients 

Number 16 17 27 17 17 30 

Average -3.4x10-4 -7.2x10-4 -8.7x10-6 -0.0006 -0.0017 -1.5x10-5 

 

 Out of 91 stocks, I discovered that twenty-five of all stocks have a significant 

relationship between the algorithmic trading initiated by institutional investors proxy 

and one-minute realized volatility. Nine of which have positive coefficients with the 

average of 0.0044 and the rest have negative coefficients with the average of -0.00034. 

Thirty-two of all stocks have a significant relationship between the algorithmic trading 

initiated by foreign investors proxy and one-minute realized volatility where fifteen of 

them are positively related with the average of 0.0013 and the rest are negatively related 

with the average of -0.00072. Twenty-nine of the interaction terms are significant. 

Almost all these variables are negative with the average coefficient of -8.7x10-6. 
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 Out of 91 stocks, twenty-two of them have significant relationships between the 

algorithmic trading initiated by institutional investors proxy and five-minute realized 

volatility, twenty-eight of them have significant relationships between the algorithmic 

trading initiated by foreign investors proxy and five-minute realized volatility and 

thirty-two of them have significant relationships between the interaction term and five-

minute realized volatility. The majority of the coefficients are negative. Therefore, it is 

conclusive that algorithmic trading initiated by institutional and foreign investors have 

negative relationships with one-minute and five-minute realized volatility. 

 

3.4.5  The Effect of Algorithmic Trading Proxy on Volatility during the 

Volatile Market 

To understand the role of algorithmic traders on volatility during the volatile 

market period, I conducted the within-group two-way fixed-effect regression analysis 

using the October sample (See multicollinearity problem test, heterogeneity test, model 

selection test and regression coefficients of estimation methods in Appendix A-9 to A-13). 

From Table 3.14, similar to the coefficient estimated by the pooled OLS 

method, the regression coefficients of algorithmic trading on one-minute and the five-

minute realized volatility are insignificant. Therefore, this assures that there is no 

relationship between the algorithmic trading proxy and realized volatility during the 

volatile period. Hence, algorithmic trading is not associated with realized volatility 

during the volatile period.  

On the other hand, the regression coefficient of the algorithmic trading proxy 

on the range-based volatility is significantly negative which is -0.00005. Hence, when 

the algorithmic trading proxy increases by one standard deviation, range-based 

volatility is decreased by 0.0019 or 5.70% from the mean value. 
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Table 3.14  Two-Way Within-group Fixed-effect Regression of Algorithmic Trading 

Proxy and Control Variables on Volatility Measures during the Volatile 

Period. *, ** and *** denote significance at the 10%, 5% and 1% level.  

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

𝐴𝑇𝑖𝑡 -5.7738x10-5 

(-0.500) 

-1.0705x10-4 

(-0.496) 

-5.0449x10-5** 

(-1.977) 

Price-to-book ratio -0.0068 

(-1.155) 

0.0019 

(0.172) 

-0.0021 

(-1.630) 

Share turnover 3.3853*** 

(6.770) 

7.2396*** 

(7.744) 

1.5400*** 

(13.928) 

The inverse of 

price  

0.3570 

(1.193) 

0.9352* 

(1.672) 

0.1974*** 

(2.984) 

Effective half 

spread  

0.5970*** 

(27.055) 

0.6205*** 

(15.044) 

0.0134*** 

(2.750) 

Adjusted R2 27.24% 9.06% 8.79% 

 

3.4.6  The Causal Relationship between Algorithmic Trading Proxy and 

Volatility during the Volatile Period 

I utilized the Granger causality test to assess the causal relationship between 

algorithmic trading and volatility during the volatile period. Analogous to the previous 

section, the volatile period is during October. I utilized the sample from October 2016 

which is defined as the volatile period to determine the causal relationship between 

algorithmic trading proxy and volatility measures. All variables during the volatile 

period are stationary (See Appendix A-14). The Granger causality test results are 

depicted in Table 3.15 using the Dumitrescu-Hurlin’s method and show that there is no 

causal relationship between algorithmic trading and volatility measures. 

 

 



60 

   
 

Table 3.15  Granger Causality Test of the Causal Relationship between Algorithmic 

Trading and Volatility Measures during the Volatile Period 

 

Direction of 

Causality 

Ztilde Statistics p-value Decision 

𝑅𝑉𝑖,𝑡
1−𝑚𝑖𝑛 → 𝐴𝑇𝑖,𝑡 1.1443 0.2525 Fail to reject 

𝐴𝑇𝑖,𝑡  → 𝑅𝑉𝑖,𝑡
1−𝑚𝑖𝑛 -1.1279 0.2594 Fail to reject 

𝑅𝑉𝑖,𝑡
5−𝑚𝑖𝑛 → 𝐴𝑇𝑖,𝑡 1.0942 0.2739 Fail to reject 

𝐴𝑇𝑖,𝑡  → 𝑅𝑉𝑖,𝑡
5−𝑚𝑖𝑛 -1.2236 0.2173 Fail to reject 

𝑅𝐵𝑉𝑖,𝑡 → 𝐴𝑇𝑖,𝑡 -0.9726 0.3308 Fail to reject 

𝐴𝑇𝑖,𝑡 → 𝑅𝐵𝑉𝑖,𝑡 0.5483 0.5835 Fail to reject 

 

3.4.7 The Effect of Algorithmic Trading Initiated by Institutional and 

Foreign Investors Proxies on Volatility during the Volatile Markets 

The algorithmic trading initiated by institutional and foreign investors enable us 

to probe into the effect of algorithmic trading initiated by each type of market 

participants on volatility during the volatile period. This allows us to investigate which 

type of investors lessens or enlarges volatility. Therefore, I estimated the regression 

analysis using the two-way within-group fixed-effect models as depicted in Table 3.16. 

Appendix A-15 shows the regression coefficient estimated by OLS.  

Evidently, during the volatile period, there are negative relationships between 

algorithmic trading proxies and both types of realized volatility. In particular, the 

algorithmic trading initiated by institutional investors proxy is associated with negative 

change in one minute and five-minute realized volatility by 0.0145 and 0.0283 percent 

respectively, which are equal to 4.67 and 6.28 percent from the average values for every 

additional standard deviation increase in the algorithmic trading initiated by 

institutional investors proxy. Furthermore, one standard deviation increase in 

algorithmic trading initiated by foreign investors lowers one-minute and five-minute 

realized volatility by 0.0163 and 0.0348 percent respectively. They are equal to 5.26 

and 7.73 percent change from the mean value. Together, the interaction term between 

algorithmic trading initiated by institutional and foreign investors decreases one-minute 
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and five-minute realized volatility by 0.0065 and 0.0123 percent or 2.10 and 2.73 

percent from their averages respectively. There is no evidence of the relationship 

between the algorithmic trading proxies and range-based volatility. 

 

Table 3.16  Two-way Within-group Fixed-effect Regression of Algorithmic Trading 

Initiated by Institutional and Foreign Investors Proxies and Control 

Variables on Volatility Measures during the Volatile Period. 

  

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

𝐴𝑇_𝐼 -1.4590x10-4*** 

(-3.205) 

-2.8539 x10-4*** 

(-3.351) 

-6.7525x10-6 

(-0.666) 

𝐴𝑇_𝐹 -3.5189x10-4*** 

(-3.411) 

-7.5201x10-4*** 

(-3.897) 

-3.6305x10-5 

(-1.580) 

𝐴𝑇_𝐼 𝑥 𝐴𝑇_𝐹 -1.4193x10-6*** 

(-4.375) 

-2.6758x10-6*** 

(-4.409) 

-2.6966x10-8 

(-0.373) 

Price-to-book ratio -0.0072 

(-1.216) 

0.0005 

(0.042) 

-0.0019 

(-1.468) 

Share turnover 2.9443*** 

(6.022) 

6.2141*** 

(6.793) 

1.5447*** 

(14.179) 

The inverse of price  0.3641 

(1.210) 

1.0061* 

(1.787) 

0.2044*** 

(3.050) 

Effective half 

spread  

0.6105*** 

(27.359) 

0.6503*** 

(15.577) 

0.0140*** 

(2.807) 

Adjusted R2 27.86% 10.01% 8.62% 

 

Note:  *, ** and *** denote significance at the 10%, 5% and 1% level. 

 

All in all, the effect of algorithmic trading initiated by foreign investors is 

stronger than the one initiated by institutional investors during the volatile period. 

Furthermore, the effects of algorithmic trading initiated by both investors are stronger 
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during the volatile market than during the entire period. Therefore, during volatile 

period, algorithmic trading initiated by both investors help to lessen realized volatility; 

but have no effects on range-based volatility. 

 

3.5  Conclusion 

 

The benefits and the detriments of the algorithmic trading activity on volatility 

are widely debated and the empirical results are mixed. The rise in volatility increases 

risk in the market. Therefore, the effect of algorithmic trading on volatility is of interest 

to policymakers and investors. Using a SET100 transaction and order submission 

dataset, I analyzed the effect of algorithmic trading on return volatility. I used a 

normalized message traffic which is the negative ratio of trading volume to the total 

number of all message traffic. I exploited various estimation techniques to estimate and 

establish the relationship between algorithmic trading and volatility. It yields six 

important outcomes: 

First, algorithmic trading decreases volatility i.e. realized volatility and range-

based volatility. Using the correlation analysis, there is a positive relationship between 

all types of algorithmic trading proxies and realized volatility and a negative 

relationship between all types of algorithmic trading proxies and range-based volatility. 

However, conducting two-way fixed-effect regression analysis reveals that on average, 

algorithmic trading decreases realized volatility as much as 2.74 percent from its 

average while decreases range-based volatility by 4.43 percent from its mean. Delving 

further, I investigated the regression analysis for each stock and showed that most of 

the significant regression coefficients are positive, revealing that algorithmic trading 

increases volatility, but the magnitude of the negative regression coefficients is higher 

than that of the positive regression coefficients. Individually, algorithmic trading 

mostly increases volatility, but on aggregate, algorithmic trading lowers volatility. 

Second, there is a causal relationship between algorithmic trading proxy and 

volatility measures i.e. one-minute realized volatility, five-minute realized volatility 

and range-based volatility as verified by the 2SLS regression and Granger causality 

test. From 2SLS analysis, one standard deviation increase in the algorithmic trading 

proxy causes decreases in one-minute realized volatility, five-minute realized volatility 
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and range-based volatility by 47.83, 27.79 and 58.97 percent from their average values 

respectively.  

Third, algorithmic trading initiated by institutional and foreign investors and 

their interaction term lower realized volatility and range-based volatility. Using the 

two-way fixed-effect model, one standard deviation increase in algorithmic trading 

initiated by institutional investors reduces one-minute realized volatility by 3.69 

percent from its mean, five-minute realized volatility by 4.55 percent from its mean and 

range-based volatility by 3.69 percent from its mean. Similarly, one standard deviation 

increase in algorithmic trading initiated by foreign investors lowers one-minute and five 

minute realized volatility and range-based volatility by 2.90, 4.15 and 2.03 percent from 

their associated means respectively. Along the same line but with smaller magnitude, 

the interaction term also lowers one-minute and five-minute realized volatility by 1.30 

and 1.52 percent from their mean values respectively and decreases range-based 

volatility by 1.27 percent from its average value. Clearly, the magnitude of the effect 

associated with algorithmic trading initiated by institutional investors is higher than that 

of foreign investors. Furthermore, using separate OLS regression, the negative 

relationship between algorithmic trading and realized volatility is also established.  

Fourth, during the volatile period there is no relationship between algorithmic 

trading and realized volatility, however, algorithmic trading decreases range-based 

volatility by 5.70 percent from its mean value during that period. The effect of 

algorithmic trading on range-based volatility is higher during the volatile period than 

during the entire sample.  

Fifth, I found no evidence of the causal relationships between algorithmic 

trading and volatility measures during the volatile period. On the other word, 

algorithmic trading does not Granger cause volatility during the volatile period and 

volatility does not Granger cause algorithmic trading activities to change during the 

volatile period. 

Lastly, during the volatile period, algorithmic trading initiated by foreign 

investors plays more roles in lowering realized volatility than algorithmic trading 

initiated by institutional investors does. Furthermore, the effects of algorithmic trading 

initiated by both types of investors during the volatile period are stronger than the ones 

during the entire period. There is no evidence of the relationship between algorithmic 

trading initiated by institutional and foreign investors and range-based volatility.  
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All in all, algorithmic trading causes volatility to decrease. Our result is 

consistent with the results by Westerholm (2016), Hagströmer and Nordén (2013), 

Brogaard (2011), Chaboud, Chiquoine, Hjalmarsson, and Vega (2014). I showed that 

volatility causes algorithmic trading to change and in return, algorithmic trading causes 

volatility to decrease. This indicates that algorithmic traders monitor market and 

respond accordingly. This result is emphasized when I analyzed the effect of 

algorithmic trading separated by type of investors. This shows that algorithmic traders 

help to reduce volatility, indicating that algorithmic traders act like informed investors 

in lowering volatility. The use of technology in making trading decisions and 

submitting orders does not change the behavior of institutional and foreign investors as 

informed traders. 

Furthermore, during the entire period, algorithmic trading initiated by 

institutional investors contributes more in reducing volatility than algorithmic trading 

initiated by foreign investors do. This indicates that algorithms implemented by 

institutional investors help to dampen volatility. However, the role is switched during 

the volatile period. Algorithmic trading initiated by foreign investors helps to dampen 

realized volatility more than algorithmic trading initiated by institutional investors 

does. From this empirical study, I showed that algorithmic traders still act like informed 

investors and are beneficial for the market. Moreover, algorithmic traders are not 

responsible for an increase in volatility during the volatile period.  
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CHAPTER 4 

 

THE IMPACT OF ALGORITHMIC TRADING ON LIQUIDITY 

 

4.1  Introduction 

 

Investors invest their wealth into assets. When they want to access their wealth, 

liquid markets enable them to convert assets into wealth promptly and at a minimal 

cost. Therefore, liquidity helps to foster investment, enabling firms and economies to 

grow. Stock exchanges, thus, have a role in supplying liquidity to their market 

participants. Firms with liquid stocks perform better (Fang, Noe, & Tice, 2009). 

Brogaard, Li, and Xia (2017) found that liquid stocks reduce default risk. A decrease in 

liquidity poses liquidity risk to investors, reduces market efficiency and increases 

market fragility (Price Water-house Coopers: PwC, 2015). Market crashes occur due to 

a lack of liquidity supply when there is liquidity demand. Therefore, liquidity is an 

important determinant for market quality. O’ Hara (2003) claimed that liquidity and 

price discovery are the cornerstone for market efficiency. Liquidity is related to price 

efficiency because if the market is not liquid, a buy or sell order will push the price 

upward or downward respectively 

Liquid assets are the assets in which there are willing sellers and buyers, just 

below or just above the trading prices in order to trade assets continuously; and they 

allow large transactions to occur immediately, without affecting the underlying asset 

prices and the transaction costs. Alternatively, illiquid assets result in price deviation 

because sell or buy orders will force the prices to go up or down. In an extreme 

illiquidity, the gap between bid and ask spread is too costly to trade, resulting in market 

freezes. This is a typical scenario during a financial crisis. 

Algorithmic traders are both passive liquidity suppliers and active liquidity 

demanders and lead to drastic changes in market microstructure. Followings are the 

features of algorithmic trading which help to facilitate and deter stock liquidity. First, 

one of the types of algorithmic traders is market-making high frequency traders. Their 
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role is to provide liquidity to the market. Therefore, the participation of market-making 

high frequency traders increases competition in the market and therefore, reduces the 

costs to the intermediaries. When the immediacy supply increases, liquidity is 

improved. Second, though market-making high frequency traders supply liquidity to 

the market, their market participation is noncompulsory. Therefore, the liquidity can 

dry up when needed, worsening liquidity in the market. Third, for the agency 

algorithmic traders and other types of proprietary HFT, they consume liquidity by 

submitting market orders when they dissolve their positions or execute their trading 

strategies. 

Fourth, algorithmic traders are able to monitor the market very closely, reducing 

monitoring cost. The low cost of monitoring empowers algorithmic traders to search 

for arbitrage opportunities and detect price anomality more efficiently with the 

lightning speed. In addition, algorithmic traders can adjust their orders to get ahead of 

the competitors. While this mitigates the adverse selection risks for the algorithmic 

traders, this may be at the disadvantages of the high latency traders. The informational 

advantages of algorithmic traders may increase the adverse selection costs of the high 

latency traders. Therefore, it discourages slower traders from participation, causing 

overinvestment in algorithmic trading technologies and rising systematic risk. 

Therefore, this characteristic of algorithmic traders might reduce liquidity. Fifth, 

Menkveld (2013) investigated the behavior of high frequency market makers and 

showed that their positions at the end of the day often resulted in net zero. This should 

help to reduce their inventory holding costs and thus lessen adverse selection problem 

for the algorithmic traders which results in increased liquidity. 

Sixth, many researches showed that algorithmic trading is associated with 

fleeting order, which is the type of orders that gets cancelled within short period after 

submission. Therefore, liquidity provided by algorithmic traders might be illusionary. 

Lastly, high frequency traders, a subset of algorithmic traders, may have lower 

transaction costs due to their large trading volume.  

 Whether or not algorithmic trading advocates or deters liquidity depends on the 

aggregate effects of the interactions between algorithmic traders and other type of 

investors. As algorithmic trading strategies are mixed, their impacts on liquidity are 

varied depending on the strategies, and theories can only explain the impact on liquidity 
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based on certain assumptions and strategies. Therefore, empirical study is required to 

explore the aggregate impact of algorithmic trading on liquidity. 

In an emerging market, algorithmic trading has been gaining its importance. 

Hence, it is important to investigate the effect of algorithmic trading on liquidity – an 

important attribute of the market quality. As a result, our research questions become: 

RQ# 1: What is the effect of algorithmic trading on liquidity? 

RQ# 2: Is there a causal relationship between algorithmic trading and liquidity? 

RQ# 3: What is the effect of algorithmic trading initiated by institutional and 

foreign investors on liquidity? 

RQ# 4: What is the effect of algorithmic trading on liquidity during the volatile 

period? 

RQ# 5: What are the effects of algorithmic trading initiated by each type of 

investors on liquidity during the volatile period? 

 

4.2  Literature Review 

 

4.2.1  Liquidity 

Trading emerges due to the interaction between two types of investors: liquidity 

providers and liquidity demanders. Liquidity providers buy at a bid price or sell at an 

offer price whereas liquidity demanders buy at the offer price and sell at the bid price. 

Liquidity depends on the number of informed investors, their levels of risk aversions 

and the accuracy of their information (Subrahmanyan, 1991). Liquidity is an important 

issue as it represents the cost for liquidity demanders and the profit for liquidity 

providers. 

Moreover, liquidity and illiquidity affect stock returns and asset price. Various 

researchers study the effect of liquidity on asset prices. O’ Hara (1995) provided the 

theoretical framework while Hasbrouck (2007) provided the empirical works. Amihud 

and Mendelson (1986) demonstrated a positive relationship between the quoted bid-ask 

spreads and stock returns. There is a relationship between excess return or risk premium 

and illiquidity (Amihud & Mendelson, 1986). Furthermore, they found that there is a 

negative relationship between share turnover and illiquidity cost. Holden, Jacobsen, and 

Subrahmanyam (2014) found that liquidity is positively related to trading volume, 
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price, political stability and accounting standard, negatively related to volatility and 

firm size. It is also related to season, economic cycle and around macroeconomic 

announcement.  

Illiquidity is the impact of orders on prices (Kyle, 1985; Amihud, 2002). It 

happens when there is a large excess demand (Kraus & Stoll, 1972) and the market 

makers set the price in response of block trades which may be the result of informed 

trading (Easley & O’ Hara, 1987). Market imperfection causes illiquidity. Vayanos and 

Wang (2011) summarized that there are six imperfections, namely, participation costs, 

transaction costs, asymmetric information, imperfection competition, funding constraints 

and search. Participation costs is the costs of entering the trade. Demsetz (1968) 

proposed that the role of market makers is in providing liquidity and the compensation 

for market markets is the bid-ask spread. Huang, Wong, Zhang, Shu, and Lam (2009) 

developed an equilibrium model to show that the participation cost causes temporary 

order imbalances, creating the need for liquidity. Illiquidity leads asset prices to be 

inefficient. In the worst case, this may lead to market crashes.  

 Transaction costs are the costs of executing orders such as brokerage 

commission, exchange fees, price impact, transaction taxes and bid-ask spread. 

Transaction costs are important for designing optimal investment (Constantides, 1986). 

Jang, Keun Koo, Liu, and Loewenstein (2007) demonstrated that transaction costs have 

the effect on liquidity premia. Furthermore, Lo, Mamaysky, and Wang (2004) showed 

that the transaction costs affect the asset price.  

Asymmetric information arises because different traders have different sets of 

information. Those who receive private information demand liquidity. Grossman and 

Stiglitz (1980) provided the theoretical framework that is informed investors must be 

compensated for the cost of information gathering. When trading with better-informed 

investors, traders experience information asymmetry. Easley and O’ Hara (2004) 

provided the theoretical model that the risk premium is affected by information 

asymmetry. If information is symmetry among agents, the price will be equal to its 

expected future value. However, with the presence of information asymmetry, the risk 

premium is positive. Therefore, investors require higher stock return in order to 

compensate for their risks when trading against better-informed investors. Copeland 
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and Galai (1983) presented the theory that market makers set bid-ask spreads to 

compensate for the information asymmetry costs.  

In the perfect competition markets, all agents are equal, and no one can 

influence the prices. In actuality, some agents are larger than others in term of size or 

informational advantages. Therefore, their trades can have the effect on the prices. 

Vayanos and Wang (2011) showed that the expected return is lower when there is 

imperfect competition. Another important illiquidity source is the fund constraints. 

Brunnermeier and Pedersen (2008) showed that when liquidity suppliers have limited 

funds to take their positions, this decreases market liquidity. Lastly, search is when the 

counterparties need to find each other and negotiate in order for the trades to occur. 

Duffie (2010) showed that search delays affect asset prices and liquidity. 

 

4.2.2  Measurement of Liquidity 

Liquidity is a multi-dimensional concept. Liquid assets feature five 

characteristics: immediacy, depth, resilience, breadth and tightness (Dong, Kemph, & 

Yadav, 2007). Immediacy is the ability to execute the orders immediately at the desired 

price. Depth is the ability to execute the order without altering the prices. Market is 

deep when there are large numbers of orders on both bids and offers in a continuous 

basis. Market depth is related to high trading volume, low price impact of large orders 

and low volatility. Market resiliency is the speed for the prices to be resilient when there 

are random mispricing shocks. So that, the market prices reflect fundamental values 

and the trading processes do not affect the market prices (Hasbrouck, 2007). Breadth is 

when there are many market participants, and no one can cause significant price impact. 

Tightness is the transaction cost or the ability to sell and buy assets at approximately 

the same price when executed at the same time.  

Liquidity measurement can be characterized into four categories: transaction 

cost measures, volume-based measures, equilibrium price-based measures and market-

impact measures. There are two types of transaction costs: explicit costs, which are the 

direct costs associated with order processing, and implicit costs, which are the indirect 

costs. High transaction costs reduce the number of active market participants, affecting 

both breath and resiliency. Small number of participants prevent prices from correcting 

themselves to their fundamental levels. 
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Bid-ask spread is an important proxy for liquidity. Bid-ask spread is the 

difference between the highest quoted price that the buyers are willing to pay and the 

lowest quoted price that the sellers are willing to sell for a reference period. Bid-ask 

spread can also be calculated as percent spread. Effective spread is the midpoint of the 

bid and ask quotes minus the actual transaction price. Narrow effective spread indicates 

high liquidity. The pattern of bid-ask spread can be a good indicator of resiliency 

(Fleming & Sarkar, 1999).  

To calculate bid-ask spread using non-intraday data, there are two type of 

models: serial covariance properties of the transaction prices (Roll 1984, Stoll 1989, 

Huang & Stoll 1997) and trade initiation indicator variable (Glosten & Harris 1988). 

Roll (1984) found that spreads are negative serial dependence of the transaction prices. 

Thus, there is a relationship between bid-ask spread and transaction price. Besides order 

processing costs, bid-ask spread incorporates two other costs, namely, inventory cost 

(Ho & Stoll, 1981) and adverse selection costs (Copeland & Galai,1983; Glosten & 

Milgrom, 1985). On the other word, spread is composed of two components: gain to 

the liquidity providers (measured by realized spread) and loss to the liquidity consumers 

(measured by adverse selection). Inventory component is the cost associated with 

holding nonzero positions at the end of the day and adverse selection component is the 

cost associated with trading with informed investors. The inventory component and 

order-processing fee is the gross-profit component for market makers (Cohen, Maier, 

Schwartz, & Whitcomb, 1979; Amihud & Mendelson, 1986; Ho & Stoll, 1981; Glosten, 

1987) whereas bid-ask spread is the compensation for the information trade and the 

profit for the liquidity trade for liquidity providers.  

The adverse selection component is because the better-informed investors 

possess superior private information. When trading with better informed investors, 

investors or market makers face adverse selection risks, and thus, set the spread to 

compensate for this risk. This adverse selection component is correlated with the 

efficient price and the magnitude of the covariance is related to the size of asymmetric 

information (Glosten, 1987).  

According to Glosten (1987), the bid (𝐵) and ask (𝐴) prices can be expressed 

as: 
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𝐴 = 𝑎(𝐴) + 𝐶𝐴 = 𝑝 + 𝑍𝐴 + 𝐶𝐴 

𝐵 = 𝑏(𝐵) − 𝐶𝐵 = 𝑝 − 𝑍𝐵 − 𝐶𝐵 

where H is the public information, 𝑍𝐴 and 𝑍𝐵 are the adverse selection component of 

the bid-ask spread and 𝐶𝐴 and 𝐶𝐵 are the gross profit component of the bid-ask spread 

which includes transaction costs and inventory costs. 𝑝 is the transaction cost, which 

can be expressed as: 

𝑝 = 𝐸[𝑝∗|𝐻], 

𝑝∗ is the prices which fully incorporates all information and  𝑎(𝑥) is the expectation 

function of which the market maker sets to incorporate all public information when 

investor buys at x and 𝑏(𝑦) is the expectation function of which the market maker sets 

to incorporate all public information when investor sells at y which can be expressed 

as: 

𝑎(𝑥) = 𝐸[𝑝∗|𝐻, 𝑖𝑛𝑣𝑒𝑠𝑡𝑜𝑟 𝑏𝑢𝑦𝑠 𝑎𝑡 𝑥], 

𝑏(𝑦) = 𝐸[𝑝∗|𝐻, 𝑖𝑛𝑣𝑒𝑠𝑡𝑜𝑟 𝑏𝑢𝑦𝑠 𝑎𝑡 𝑦]. 

With this definition, the transaction price (�̂�𝑛) can be expressed as  

�̂�𝑛 = 𝑝𝑛 + 𝐶𝑛𝑄𝑛.  

The quoted spread is equal to 𝑍𝐴 + 𝑍𝐵 + 𝐶𝐴 + 𝐶𝐵.  

Volume-based measure uses volume traded to determine liquidity. Common 

indicators are trading volume, turnover rate, volatility of share turnover and Hui-Heubel 

ratio. Trading volume is the sum of the products of prices and quantities traded and 

share turnover is the ratio of trading volume to the outstanding stock volume. Hui-

Heubel ratio is the ratio of percentage change in the prices during five-day period to the 

ratio of volume traded to the outstanding volume. Volume-based measure is associated 

with breath dimension of liquidity. Furthermore, size or market value is associated with 

liquidity as larger stocks have lower price impact and lower bid-ask spread (Fama & 

French, 1992).  

Price impact can be measured by various methods: the illiquidity ratio (Amihud, 

2002), the Kyle (1985)’s price impact (𝜆) and the fixed-cost component of the bid-ask 

spread (𝜓), the probability of information-based trading (Easley, Kiefer, O’, Hara, & 

Paperman, 1996) and the transaction-by-transaction price response to signed order size 

(Brennan & Subrahmanyam, 1996). The probability of information-based trading 

represents the level of information asymmetry and the adverse selection cost. 
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Evaluating only transaction cost and volumes as measures for liquidity can be 

misleading. When there is new information, new equilibrium prices can be reached. 

Small volume can lead to large price changes. In liquid or resilient markets, prices are 

continuous. To understand security liquidity, one must be able to distinguish between 

short-term and long-term price changes. Therefore, there are ways to calculate short-

term price changes that are not caused by changes in fundamental values, such as 

market efficient coefficient (Hasbrouck & Schwartz, 1988), which calculates short-

term price changes from long-term price changes, price impact measures and 

econometric techniques such as vector autoregression lags of price adjustment, 

autoregressive moving average (ARMA) of volumes traded, autoregressive conditional 

heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity 

(GARCH) models.  

 

4.2.3  Theories of the Effect of Algorithmic Trading on Liquidity 

Algorithmic trading employs both liquidity-demanding and liquidity-supplying 

strategies. It possesses many features that elicits liquidity, namely, the participation 

costs, transaction costs, asymmetric information, more competitive markets and search. 

Algorithmic trading can use their automated information-retrieving system and high-

speed order submissions to closely watch the market information and modify their 

orders accordingly. Liquidity suppliers increase liquidity but may crowd out other 

traders. On the other hand, liquidity demanders reduce liquidity (Hasbrouck & Saar, 

2013) and increase adverse selection costs onto other traders (Hagströmer & Nordén, 

2013, Biais, Foucoult, & Moinas, 2015). In addition, algorithmic traders have no 

obligations in providing liquidity when required, thus, the liquidity provided by them 

can be evaporated when needed.  

The effect of AT on liquidity depends on the type of algorithm trading. 

Bongaerts and van Achter (2012) presented the model of the interaction between 

algorithmic trading and slower investors and showed that the probability for the orders 

submitted by slower investors to be matched is reduced when algorithmic traders are 

present. Guibaud and Pham (2013) constructed the model for the limit order book to 

determine the effect of market-making HFT on liquidity and showed that algorithmic 

traders can reduce the inventory risk. Foucault, Hombert and Roşu (2016) provided the 
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model mimicking the traders’ behaviors upon the arrival of news. They predicted that 

high-frequency trading improves liquidity. As high frequency traders engage in zero 

net positions at the end of the days, their inventory holding costs are reduced 

(Menkveld, 2013; Menkveld, 2014). Additionally, Roseman (2015) showed that 

fleeting orders have little impact on liquidity and represent noise to the market. 

Many theoretical framework studies the impact of algorithmic trading on 

liquidity. Biais et al. (2015) modelled the equilibrium of different latency traders to 

determine their effects on liquidity component, in particular, on the adverse selection 

costs. They showed that low-latency traders impose adverse selection costs onto other 

traders, increasing negative externalities. Jovanovic and Menkveld (2016) analyzed the 

effect of high frequency trading on adverse selection costs by modelling the role of high 

frequency traders on the limit order book and revealed that high frequency trading 

reduces adverse selection cost.  

 

4.2.4  Empirical Studies of the Effect of Algorithmic Trading on Liquidity 

  A number of theoretical models and empirical researches on the effect of 

algorithmic trading on liquidity were conducted. While the results of the theoretical 

models can only explain the impact of algorithmic trading on liquidity due to certain 

assumptions, the empirical findings are ambiguous. In some markets, researchers found 

that algorithmic trading advocates liquidity and in other markets, algorithmic trading 

deteriorates liquidity. This may be because algorithmic trading strategies are 

heterogeneous, and thus, their impacts of liquidity are mixed. Furthermore, most of the 

researches were conducted in developed and fragmented markets. Due to differences in 

market structures and trading volume, it is interesting to explore the impact of 

algorithmic trading on liquidity in an emerging market.   

  Multiple empirical studies investigated the relationship between algorithmic 

trading and liquidity using various types of studies and methodology. Types of studies 

include single market and multiple markets studies and the methodology used are panel 

data analysis, instrumental variables and event studies.  

  On the NASDAQ-OMX Stockholm index, Hagströmer and Nörden (2013) 

investigated the limit orders submitted by high frequency traders. In their sample, they 

found that 71.5% of the orders submitted are market-making. Furthermore, they showed 
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that market-making HFTs participate more in the stocks which have high trading 

volume and large bid-ask spread; and are large market-cap stocks and less volatile. 

Hendershott and Riordan (2013) exploited the data of the 30 Deutscher Aktien Index 

stocks on the Deutsche Boerse to study the effect of algorithmic traders on supplying 

and demanding liquidity. They found that algorithmic traders demanded liquidity when 

it was cheap and supplied it when it was expensive. Zhang and Riordan (2011) utilized 

the data from the stocks listed in NASDAQ with the identification of the transactions 

whether they were executed by high frequency traders. Correspondingly, they found a 

similar result which is most of high frequency traders are market makers who provide 

liquidity when the spread is tight and supply it when the spread is wide. In the same 

stock exchange, Carrion (2013) utilized the data set with the identification of twenty-

six high frequency trader accounts. He found similar result which was that high 

frequency traders provide liquidity when the spread is wide and consume it when the 

reverse is true. 

  Many researches confirm a positive relationship between algorithmic trading 

and liquidity. On the effect of algorithmic trading on bid-ask spread, Hasbrouck and 

Saar (2013) utilized the same dataset, but with different HFT identification approach. 

They found that high frequency trading lowers quoted and effective spread and 

augments order depth. Hendershott et al. (2011) introduced a new method, a normalized 

message traffic, to measure algorithmic trading activities. They used the introduction 

of autoquote as an instrument variable to provide the causal relationship between 

algorithmic trading and liquidity and showed that algorithmic trading causes an increase 

in liquidity and a decrease in adverse selection cost in the NYSE stocks especially for 

the large market capitalization stocks. Brogaard, Hagströmer, Nordén, and Riordan 

(2015) examined the event of the co-location update which reduced the execution 

speed. They showed that traders especially co-located traders use the faster speed to 

reduce their adverse selection costs. This thus helps to improve the bid-ask spread and 

the market depth. On the same note, Riordan and Storkenmaier (2012) used the 

reduction in market latency in the Deutsche Boerse exchange as an instrumental 

variable and showed that the quoted spread is reduced by 0.86 bps through lowering 

the adverse selection costs. Malinova, Park, and Riordan (2018) explored whether how 

the high frequency traders affect the retail traders. Using the change in the regulatory 
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fees in Canada, they discovered that the change in the fee reduces the high frequency 

traders’ activities and increases the spread. The reduction in the algorithmic trading 

activities has a negative impact on other traders. Jovanovic and Menkveld (2016) 

warned that the reduction in bid-ask spread as witnessed in many empirical studies 

caused by high frequency trading may be due to high frequency trading snipping, and 

thus, it does not represent an improvement in market quality. 

  In addition to the equity markets, Viljoen, Westerholm, and Zheng (2014) 

investigated the effect of algorithmic trading on liquidity in the SPI 200 futures and 

revealed that algorithmic trading reduces effective spread and increases realized 

spreads by lowering adverse selection cost. Chaboud et al.  (2014) examined the foreign 

exchange markets. They found that algorithmic trading fosters liquidity in the market 

by providing liquidity when there is a demand for it and consuming it when the arbitrage 

opportunity arises. Furthermore, they pass on adverse selection risks to high-latency 

traders.  

Other researchers conducted the studies using multiple market dataset. First was 

Menkveld (2013) who obtained the data from the Chi-X and the Euronext which were 

the Dutch index stocks. Menkveld (2013) found that high frequency trading increases 

the trading activities in Chi-X and facilitates liquidity in Chi-X such that it contributes 

to the success of the Chi-X index in the initial phase. On the international markets, 

Boehmer et al. (2015) showed that algorithmic trading ameliorates liquidity.  

  In some markets, algorithmic trading or high frequency trading leads to deterred 

liquidity.  Hendershott and Moulton (2011)  found that high frequency traders leads to 

larger quoted spreads as a result of increased adverse selection cost by using the latency 

reduction in the NYSE’ s Hybrid market as an instrumental variable.  van Ness, van 

Ness, and Watson (2015) used the dataset of the NASDAQ-listed and the NYSE-listed 

stocks and reported that an increase in the cancellation rate of the limit orders increases 

effective and realized spreads and price impact while decreases the depth and the size 

of the limit order book.  Furthermore, Upson and van Ness ( 2017)  presented that 

algorithmic trading reduces the National Best Bid and Offer ( NBBO)  depth for the 

NYSE stocks.  Additionally, Cartea, Payne, Penalva, and Tapia (2019)  exhibited that 

the ultra- fast activity is associated with enlarged quoted and effective spreads and 

reduced depth on NASDAQ.  Similarly, Manahov ( 2016)  conducted an experimental 
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research and found that HFT imposes adverse selection cost onto informed investors 

and they, therefore, incorporate that risk by requiring higher bid-ask spreads.  

  Furthermore, in some markets, there is no relationship between algorithmic 

trading and liquidity. Ye, Yao, and Gai (2013) documented no relationship between 

liquidity and speed of trading in the NASDAQ stock as a result of tick size reduction. 

Brogaard et al. (2012) also found no relationship between AT and liquidity in the 

FTSE250 index.   

During the market distress, Hasbrouck and Saar (2013) studied the event of 

economic turmoil in 2008 and showed that algorithmic trading increases liquidity by 

decreasing spread and improving depth. Nawn and Banerjee (2018) utilized the data 

from the National Stock Exchange of India and revealed that algorithmic traders 

increase their limit order book supply and improve liquidity in market during the period 

of high volatility.  

 

4.3  Sample and Methodology 

 

4.3.1  Algorithmic Trading Measurement 

  As the data obtained from the Stock Exchange of Thailand database does not 

identify algorithmic traders, following Hendershott et al. (2011), I used a normalized 

message traffic as a proxy of algorithmic trading. Thereby, the daily algorithmic trading 

proxy is measured by:  

𝐴𝑇𝑖𝑡 =  
−𝑉𝑖𝑡

𝑀𝑇𝑖𝑡
 

(4.1) 

where 𝐴𝑇𝑖𝑡 is algorithmic trading associated with stock i on day t, 𝑉𝑖𝑡 is the trading 

volume of stock i on day t and 𝑀𝑇𝑖𝑡 is the message traffic of stock i on day t. Message 

traffic is defined as all order submissions (buy, sell and revision), cancellations and 

trade reports.  

  Furthermore, the monthly algorithmic trading proxy is measured by:  

𝐴𝑇𝑖𝑚 =  
−𝑉𝑖𝑚

𝑀𝑇𝑖𝑚
 

(4.2) 

where 𝐴𝑇𝑖𝑚 is algorithmic trading associated with stock i on month m, 𝑉𝑖𝑚 is the trading 

volume of stock i on month m and 𝑀𝑇𝑖𝑚 is the message traffic of stock i on month m.  
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4.3.2  Liquidity Measurement 

The data from the Stock Exchange of Thailand does not record the price 

revisions, thus limit order book cannot be constructed properly. Therefore, in order to 

measure liquidity, I found an alternative measurement by inferring liquidity measures 

from transaction prices.  

4.3.2.1  Effective Bid-ask Spread (𝐸𝑆𝑃𝑅𝐸𝐴𝐷)  

I measured an effective bid-ask spread using the Roll’s spread estimator. 

It can be measured by: 

𝑠 = 2√−𝐶𝑜𝑣(∆𝑝𝑡 , ∆𝑝𝑡+1) (4.3) 

where 𝑠 is the effective half bid-ask spread and p is the transaction price. (See the 

derivation of this equation in Appendix B-1). The higher the effective bid-ask spread, 

the lower the liquidity of the stock.  

4.3.2.2  Share Turnover (𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅)  

Besides the bid-ask spread, I employed volume-based measures to 

explore other dimension of liquidity. This method has been used widely in many 

research papers (Brennan & Subrahmanyam, 1996; Marshall & Young, 2003; 

Korajczyk & Sadka, 2008). In our case, I used the share turnover which is the ratio of 

the volume of the shares traded to the outstanding stocks.  

𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 =
𝑉𝑂𝐿𝑖𝑡

𝑁𝑖𝑡
 (4.4) 

where 𝑉𝑂𝐿𝑖𝑡 is the trading volume in baht and 𝑁𝑖𝑡 is the outstanding stocks for stock 𝑖 

on time 𝑡. Share turnover is the proxy for stock liquidity. High share turnover implies 

that there are large number of stocks available to trade. Low share turnover implies that 

the asset is less liquid and there is a small number of stocks available to trade, causing 

difficulties to the investors to liquidate their assets. Therefore, the level of share 

turnover is positively related to the level of stock liquidity. In addition, Chae (2005) 

associated the trading volume with the level of information asymmetry. Therefore, the 

level of share turnover represents the level of information asymmetry in the market 

(Copeland & Galai, 1983; Bartov & Bodnar, 1996). 

4.3.2.3  The Amihud Estimate (𝐼𝐿𝐿𝐼𝑄)  

Amihud (2002) proposed the illiquidity measure as the average of the 

daily ratio of the absolute value of the stock return to the trading volume.  
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𝐼𝐿𝐿𝐼𝑄𝑖𝑚 =
1

𝐷𝑖𝑚
∑

|𝑅𝑖𝑚𝑑|

𝑉𝑂𝐿𝑖𝑚𝑑

𝐷𝑖𝑚

𝑡=1

 (4.5) 

where 𝑅𝑖𝑚𝑑 is the stock return, 𝑉𝑂𝐿𝑖𝑚𝑑 is the trading volume in baht for stock 𝑖 on day 

𝑑 of month 𝑚 and 𝐷𝑖𝑚 is the number of trading day for stock 𝑖 on month 𝑚. It is a 

rough estimate of price impact as it represents the change in price in response to one 

unit change in trading volume.  

4.3.2.4  Liquidity Ratio (𝐿𝑅)  

Amivest liquidity ratio measures liquidity by determining the tolerance 

level in which large trading volume can be traded without changing the price level. 

Therefore, liquidity ratio is defined as: 

𝐿𝑅𝑖𝑚 =
∑ 𝑉𝑂𝐿𝑖𝑚𝑑

𝐷𝑖𝑚
𝑡=1

∑ |𝑅𝑖𝑚𝑑|𝐷𝑖𝑚
𝑡=1

 (4.6) 

where 𝑅𝑖𝑚𝑑  is the stock return, 𝑉𝑂𝐿𝑖𝑚𝑑 is the trading volume in baht for stock i on day 

d of month m and 𝐷𝑖𝑚 is the number of trading day for stock i on month m. Amihud, 

Mendelson, and Lauterbach (1997) showed that liquidity ratio is associated with the 

market depth. The higher the liquidity ratio is, the more liquidity or depth the stock is 

because liquid stock can execute large amount of trading volume without prices being 

changed. This is also associated with the information asymmetry level. 

 

4.3.3  Control Variables 

To isolate the effect of algorithmic trading on liquidity, I included control 

variables, which are the variables that affect liquidity. They are the realized volatility, 

the natural logarithmic value of the market capitalization, the inverse of average price 

and the share turnover. As volatility is associated with liquidity due to its effect on 

inventory risk, volatility is included in the control variable (Chordia, Roll, & 

Subrahmanyam, 2001). Zhang et al. (2008) and Wang and Yau (2000) found a positive 

relationship between bid-ask spread and volatility. Realized volatility can be computed 

by the following formula: 
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𝑅𝑉𝑖𝑡 =  √
∑ (𝑅𝑖𝑡 − �̅�)2𝑑

𝑡=1

𝑑 − 1
 (4.7) 

where 𝑅𝑉𝑖𝑡 is the realized volatility (the frequency of data sampling is five minutes), 

𝑅𝑖𝑡 is the stock return sampling every five minute, �̅� is the mean stock return and 𝑑 is 

the number of periods during the measured time. 

Audretsch and Elston (2002) suggested that firm size has the effect on liquidity. 

However, the research conducted by Brockman and Chung (2002) did not find the 

relationship between firm size and liquidity. Roll (1984) suggested that as firm size is 

related to volume and volume is negatively related to spread, firm size is negatively 

associated with spread. Furthermore, studies showed that higher trading volume is 

associated with better liquidity (Kim & Verrecchia, 1994). Furthermore, I used the 

inverse of price as a proxy for transaction cost and tick size. Tick size has a negative 

effect on liquidity; or the smaller the tick size, the more liquid the stocks (Ahn, Cai, 

Chan, & Hamao, 2007). Similarly, MacKinnon and Nemiroff (2014) investigated the 

decimalization of the Toronto Stock Exchange and disclosed that the bid-ask spread is 

reduced upon the decimalization while there is no effect on price impact. 

 

4.3.4  Model Specification 

4.3.4.1  Linear Regression Model 

I established the model for the relationship between algorithmic trading 

and liquidity. The algorithmic trading proxy is an independent variable and the control 

variables are included in the models in order to avoid confounding effects. Therefore, 

the daily liquidity models become: 

𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝜀𝑖𝑡    

(4.8) 

𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡    

(4.9) 

The monthly liquidity models can then be expressed as: 

         𝐼𝐿𝐿𝐼𝑄𝑖𝑚 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑚 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜀𝑖𝑚    

(4.10) 
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         𝐿𝑅𝑖𝑚 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑚 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜀𝑖𝑚    

(4.11) 

The description of dependent and independent variables is listed on Table 4.1.  

 

Table 4.1  Description of the Variables 

 

Variables Description 

Dependent  

ESPREAD Effective spread, estimated by Roll’s estimation 

ILLIQ The Amihud illiquidity estimate, measuring illiquidity 

LR Liquidity ratio 

Independent  

AT Algorithmic trading. The negative ratio of the volume 

traded to the traffic messages 

VOLATILITY Daily realized volatility with the sampling frequency 

of 5 minute 

PRICE The daily average price traded 

MARKET CAP Market capitalization is the total market value of the 

company’s outstanding shares 

Dependent and 

Independent 

 

TURNOVER Share turnover is the total number of shares traded by 

the average number of shares outstanding over a period 

 

The multiple regression analysis is used to test the following null 

hypothesis which states that there is no relationship between algorithmic trading and 

liquidity: 

H0: 𝛽1 = 0 

H1: 𝛽1 is not equal to 0. 
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Multicollinearity problem may cause the estimated regression coefficient 

𝛽1 to be unreliable because it has large standard errors. This happens when the predictor 

variables are highly correlated. I employed the variance inflation factor (VIF) to detect 

it. If each score is more than five, that variable suffers from multicollinearity problem.  

Literature review yields mixed results for the effect of algorithmic trading 

on liquidity; in other words, it may increase or decrease liquidity. The automated 

trading by algorithmic traders can provide liquidity by decreasing monitoring cost. At 

the same time, the rise of robotic or algorithmic trading worries high-latency traders. 

Trading with fast and informed investors may increase information asymmetry and 

thus, increase adverse selection cost. As adverse selection cost is a component in 

liquidity, this, thus decreases liquidity. Furthermore, as the majority of the trading 

activities in the Stock Exchange of Thailand is still primarily submitted by humans and 

algorithmic trading in Thailand is growing and often executed by informed investors, 

its role in providing liquidity may be inadequate, comparing to its influence on other 

traders. Therefore, I hypothesized that there is a negative relationship between 

algorithmic trading and liquidity. 

The ordinary least squares model assumes that there is no heterogeneity 

in the variables. To assess whether there is heterogeneity in the data, I plotted the mean 

across individual and the mean across time. To alleviate the heterogeneity in the panel 

data, I estimated six alternative estimation techniques which were pooled ordinary least 

square, individual fixed effects, time fixed effects, two-way fixed effects, individual 

random effects and time random effects models. The daily liquidity within-group fixed-

effects models are shown below: 

𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝛽1𝐴𝑇𝑖𝑡

̅̅ ̅̅ ̅ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝜀𝑖𝑡 

(4.12) 

𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡

̅̅ ̅̅ ̅ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +  𝜀𝑖𝑡 

(4.13) 

where 𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐴𝑇𝑖𝑡
̅̅ ̅̅ ̅, 𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,  (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 and  

𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the mean-corrected values for the effective spread, the share 
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turnover, the algorithmic trading proxy, volatility, the inverse of average price and the 

natural logarithmic of market capitalization for stock 𝑖 on day 𝑡. Additionally, the model 

for monthly variables are:  

𝐼𝐿𝐿𝐼𝑄𝑖𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝛼 + 𝛽1𝐴𝑇𝑖𝑚

̅̅ ̅̅ ̅̅ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +  𝜀𝑖𝑚 

(4.14) 

𝐿𝑅𝑖𝑚
̅̅ ̅̅ ̅̅ ̅ = 𝛼 + 𝛽1𝐴𝑇𝑖𝑚

̅̅ ̅̅ ̅̅ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜀𝑖𝑚 

(4.15) 

where 𝐼𝐿𝐿𝐼𝑄𝑖𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐿𝑅𝑖𝑚

̅̅ ̅̅ ̅̅ ̅, 𝐴𝑇𝑖𝑚
̅̅ ̅̅ ̅̅ , 𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,  (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, 𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 

𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the mean-corrected values for the Amihud illiquidity estimate, the 

liquidity ratio, the algorithmic trading proxy, the volatility, the inverse of average price, 

the natural logarithmic of market capitalization and the share turnover for stock 𝑖 on 

month 𝑚. I conducted the individual, time and two-way fixed-effects model. 

 The random effects models can be expressed as: 

         𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝑤𝑖𝑡    

(4.16) 

         𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 +

𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝑤𝑖𝑡    

(4.17) 

         𝐼𝐿𝐿𝐼𝑄𝑖𝑚 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑚 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝑤𝑖𝑚    

(4.18) 

         𝐿𝑅𝑖𝑚 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑚 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝑤𝑖𝑚    

(4.19) 

where 

𝑤𝑖𝑡 = 𝜀𝑖 + 𝑢𝑖𝑡 

𝑤𝑖𝑚 = 𝜀𝑖 + 𝑢𝑖𝑚    

(4.20) 

(4.21) 

𝑤𝑖𝑡 and 𝑤𝑖𝑚 are the composite error terms, composing of two components: the 

individual-specific error component (𝜀𝑖) and the idiosyncratic term (𝑢𝑖𝑡 𝑜𝑟 𝑢𝑖𝑚) which 

combine both individual and time error components.  
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The restricted F-test and the Hausman test are used to determine the 

estimation technique. The restricted F-test allows us to choose between the pooled OLS 

models and the fixed-effects models whereas the Hausman test is used to choose 

between the fixed-effects and the random effects models. The models for the restricted 

F-tests are shown below: 

         𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 = 𝛼1 + 𝛼2𝐷2𝑖 + ⋯ + 𝛼𝑛𝐷𝑛𝑖 + 𝛽1𝐴𝑇𝑖𝑡 +

𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +

𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝜀𝑖𝑡    

(4.22) 

         𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 = 𝛼1 + 𝛼2𝐷2𝑖 + ⋯ + 𝛼𝑛𝐷𝑛𝑖 + 𝛽1𝐴𝑇𝑖𝑡 +

𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡    

(4.23) 

                  𝐼𝐿𝐿𝐼𝑄𝑖𝑚 = 𝛼1 + 𝛼2𝐷2𝑖 + ⋯ + 𝛼𝑛𝐷𝑛𝑖 + 𝛽1𝐴𝑇𝑖𝑚 +

𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 +

𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜀𝑖𝑚    

(4.24) 

                  𝐿𝑅𝑖𝑚 = 𝛼1 + 𝛼2𝐷2𝑖 + ⋯ + 𝛼𝑛𝐷𝑛𝑖 + 𝛽1𝐴𝑇𝑖𝑚 +

𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 +

𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜀𝑖𝑚    

(4.25) 

where 𝐷2𝑖 = 1 for stock 2 and zero otherwise and 𝐷𝑛𝑖 = 1 for stock n and zero 

otherwise. The null hypothesis for these models is that the differential intercepts are 

equal to zero. 

H0: 𝛼𝑖 = 0 for ∀ 𝑖 = 2, … , 𝑛 

Ha: At least one 𝛼𝑖 is not equal to 0. 

4.3.4.2  Two-stage Least Squares Estimation 

Hendershott and Riordan (2013) revealed that algorithmic trading and 

liquidity are endogenous variables. They showed that algorithmic traders closely watch 

the market. They supply liquidity when the spread is narrow and demand it when the 

spread is large. In addition, algorithmic traders may adjust their positions according to 

stock liquidity. Therefore, liquidity measures are endogenous variables. 

To ascertain whether algorithmic trading has a causal effect on liquidity 

and to decipher possible endogeneity, the two-stage least squares estimation method is 

applied. This estimation method requires a proper instrumental variable (𝐼𝑉𝑖𝑡). I 
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instrumented the event in October 2016 when there is an evidence of algorithmic 

traders’ participation and the market experienced a flash crash. Therefore, a dummy 

variable is introduced which is equal to 1 after October 2016.  

The first stage regression can be expressed as:  

𝐴𝑇𝑖𝑡
̂ = 𝛼 + 𝛽1𝐼𝑉𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝜇𝑖𝑡.    

(4.26) 

𝐴𝑇𝑖�̂� = 𝛼 + 𝛽1𝐼𝑉𝑖𝑚 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 + 𝜇𝑖𝑚.    

(4.27) 

 

 

In the second stage regression, the effect of algorithmic trading on liquidity model can 

be estimated using the following equation: 

         𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡
̂ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝜇𝑖𝑡    

(4.28) 

         𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡
̂ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜇𝑖𝑡    

(4.29) 

         𝐼𝐿𝐿𝐼𝑄𝑖𝑚 = 𝛼 + 𝛽1𝐴𝑇𝑖�̂� + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜇𝑖𝑚    

(4.30) 

         𝐿𝑅𝑖𝑚 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡
̂ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜇𝑖𝑚    

(4.31) 

 

4.3.4.3  The Volatile Market 

To examine how does the algorithmic traders provide or consume 

liquidity during the volatile market, I conducted the regression analysis during the 

volatile market. Table 4.2 illustrates the monthly SET index volatility. From the table, 

October 2016 is obviously the most volatile period.  
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Table 4.2  Monthly SET Index Volatility 

 

Month SET Index Volatility 

March 2016 0.8039% 

April 2016 0.8723% 

May 2016 0.6041% 

June 2016 0.7320% 

July 2016 0.4541% 

August 2016 0.5886% 

September 2016 1.1805% 

October 2016 1.4559% 

November 2016 0.6617% 

December 2016 0.4423% 

 

Therefore, to evaluate whether algorithmic trading increases or decreases 

liquidity during the volatile period, I applied the following models to test the null 

hypothesis.  

         𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝜀𝑖𝑡    

(4.32) 

         𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡    

(4.33) 

The models are to test the null hypothesis which is there is no relationship 

between algorithmic trading and liquidity: 

H0: 𝛽1 = 0 

Ha: 𝛽1 is not equal to 0. 

Similar to the earlier methods, I used the pooled OLS model, the fixed 

effects models and the random effects models to test the null hypothesis for all liquidity 

models. Then, the restricted F-test and the Hausman test are used to select the proper 

models. Furthermore, the Granger causality test is conducted to determine the causal 

relationship between algorithmic trading and liquidity during the volatile period. 
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4.3.5  Model Extension 

 In order to solve the third and the fifth research questions, I introduced the 

algorithmic trading initiated by institutional and foreign investors proxies. The daily 

algorithmic trading initiated by institutional investors proxy is calculated as: 

𝐴𝑇𝑖𝑡
𝐼 =

−𝑉𝑖𝑡
𝐼

𝑀𝑇𝑖𝑡
𝐼  

(4.34) 

And, the daily algorithmic trading initiated by foreign investors proxy is 

measured as: 

𝐴𝑇𝑖𝑡
𝐹 =

−𝑉𝑖𝑡
𝐹

𝑀𝑇𝑖𝑡
𝐹   

(4.35) 

where 𝐴𝑇𝑖𝑡
𝐼  and 𝐴𝑇𝑖𝑡

𝐹 are the proxies for the algorithmic trading initiated by institutional 

and foreign investors respectively. 𝑉𝑖𝑡
𝐼  and 𝑉𝑖𝑡

𝐹 are the trading volumes in Thai Baht 

initiated by institutional and foreign investors respectively. 𝑀𝑇𝑖𝑡
𝐼  and 𝑀𝑇𝑖𝑡

𝐹 are the 

message traffic for stock 𝑖 on day 𝑡 initiated by institutional and foreign investors 

respectively. 

 The monthly proxies of the algorithmic trading initiated by institutional 

investors and the algorithmic trading initiated by foreign investors are defined as 

following: 

𝐴𝑇𝑖𝑚
𝐼 =

−𝑉𝑖𝑚
𝐼

𝑀𝑇𝑖𝑚
𝐼   

(4.36) 

𝐴𝑇𝑖𝑚
𝐹 =

−𝑉𝑖𝑚
𝐹

𝑀𝑇𝑖𝑚
𝐹   

(4.37) 

where 𝐴𝑇𝑖𝑚
𝐼  and 𝐴𝑇𝑖𝑚

𝐹  are the monthly proxies of algorithmic trading initiated by 

institutional and foreign investors respectively. 𝑉𝑖𝑚
𝐼  and 𝑉𝑖𝑚

𝐹  are the trading volumes 

initiated by institutional and foreign investors respectively in Thai Baht for stock 𝑖 

during the month m. 𝑀𝑇𝑖𝑚
𝐼  and 𝑀𝑇𝑖𝑚

𝐹  are the message traffic initiated by institutional 

and foreign investors respectively for stock 𝑖 on month 𝑚. 

 As algorithmic trading initiated by institutional and foreign investors occur 

during the same period, I incorporated the algorithmic trading initiated by institutional 

investors proxy, the algorithmic trading initiated by foreign investors and their 

interaction term in the Equation 4.8 to 4.11. I included the interaction term in the model 

because it represents the effect of the trading between algorithmic trading initiated by 

two types of investors. Hence, the multivariate regression models can be written as: 
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         𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 = 𝛼 + 𝛽
1

𝐴𝑇𝑖𝑡
𝐼 + 𝛽

2
𝐴𝑇𝑖𝑡

𝐹 + 𝛽
3

𝐴𝑇𝑖𝑡
𝐼 𝑥𝐴𝑇𝑖𝑡

𝐹 +

𝛽4𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽5 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +

𝛽7𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝜀𝑖𝑡    

(4.38) 

         𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 = 𝛼 + 𝛽
1

𝐴𝑇𝑖𝑡
𝐼 + 𝛽

2
𝐴𝑇𝑖𝑡

𝐹 + 𝛽
3

𝐴𝑇𝑖𝑡
𝐼 𝑥𝐴𝑇𝑖𝑡

𝐹 +

𝛽4𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽5 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡    

(4.39) 

         𝐼𝐿𝐿𝐼𝑄𝑖𝑚 = 𝛼 + 𝛽
1

𝐴𝑇𝑖𝑚
𝐼 + 𝛽

2
𝐴𝑇𝑖𝑚

𝐹 + 𝛽
3

𝐴𝑇𝑖𝑚
𝐼 𝑥𝐴𝑇𝑖𝑚

𝐹 +

𝛽4𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽5 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+ 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 +

𝛽7𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜀𝑖𝑚    

(4.40) 

         𝐿𝑅𝑖𝑚 = 𝛼 + 𝛽
1

𝐴𝑇𝑖𝑚
𝐼 + 𝛽

2
𝐴𝑇𝑖𝑚

𝐹 + 𝛽
3

𝐴𝑇𝑖𝑚
𝐼 𝑥𝐴𝑇𝑖𝑚

𝐹 +

𝛽4𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽5 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+ 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 +

𝛽7𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑚 +  𝜀𝑖𝑚    

(4.41) 

I used the same estimation analysis as the Section 4.3.4 to test the following null 

hypothesis.  

H0: 𝛽1 = 0 

Ha: 𝛽1 is not equal to 0. 

 These regressions may be subjected to heterogeneity. The panel data analysis is 

used to eliminate heterogeneity problem. Therefore, I estimated these regression 

models using the pooled OLS, the fixed-effect model and the random-effects models. 

The restricted F-test and the Hausman test are used to determine the proper estimation 

method. 

 

4.3.6  Descriptive Statistics 

I eliminated all the stocks with incomplete data and eliminated the 2.5% outliers. 

The descriptive statistics is shown in Table 4.3. I separated the variables into three 

groups: daily, monthly and stock-specific. For the daily variables, they are effective 

half spread, daily share turnover, daily algorithmic trading proxy, daily algorithmic 

trading initiated by institutional investors proxy, daily algorithmic trading initiated by 

foreign investors proxy, and daily realized volatility computed using five-minute 

returns. The effective half spread has the average of 0.2759 percent and the daily share 
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turnover has the average of 0.0044 or 0.44 percent of the total shares. The intraday 

realized volatility averages at 0.4087 percent. The algorithmic trading activity proxy 

averages at -38.7619 with the standard deviation of 28.7851. Clearly, the average 

algorithmic trading initiated by institutional investors proxy is lower than the average 

algorithmic trading initiated by foreign investors proxy. The mean value of the 

algorithmic trading proxy initiated by institutional investors proxy is -92.0656 with the 

standard deviation of 81.5097 whereas the mean value of the algorithmic trading 

initiated by foreign investors proxy is -36.6396 with the standard deviation of 38.7142. 

The monthly variables consist of the Amihud’s illiquidity estimate, the liquidity 

ratio, the monthly share turnover, the monthly algorithmic trading proxy, the monthly 

algorithmic trading initiated by institutional investors proxy, the monthly algorithmic 

trading initiated by foreign investors proxy and the monthly realized volatility 

computed using five-minute returns. The mean values of the Amihud’s illiquidity 

estimate, the liquidity ratio and the monthly share turnover are 0.0192, 280.48 and 

0.3979 or 39.79 percent respectively. The monthly realized volatility averages at 

1.93%. The monthly algorithmic trading proxy has the average of -42.9421 with the 

standard deviation of 32.6008. Similar to the daily variables, the average value of the 

monthly algorithmic trading originated by institutional investors proxy is less than the 

average value of the monthly algorithmic trading originated by foreign investors proxy. 

The average value of the AT initiated by institutional investors proxy is -92.0656 with 

the standard deviation of 81.5097; and the average value of the AT initiated by foreign 

investors proxy is -36.6396 with the standard deviation of 38.7142.  

The market capitalizations for SET100 stocks range from 6.81 to 959.55 billion 

baht. The daily return has the average of 0.03% and the daily trading volume has the 

average of 358.8 million baht with the peak at 11.2 billion baht. 
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Table 4.3  Descriptive Statistics 

  

Variables Mean Median Std. 

Dev. 

Min. Max. 

Daily Variables      

Effective half spread 

(%) 

0.2759 0.2520 0.1285 0.0000 1.1958 

Share turnover 0.0044 0.0026 0.0057 0.0001 0.1246 

Algorithmic trading 

proxy (all) 

-38.7619 -30.3100 28.7851 -

144.2637 

-1.9105 

Algorithmic trading 

proxy (institutional 

investors) 

-92.0656 -68.1706 81.5097 -

762.6927 

-0.0047 

Algorithmic trading 

proxy  

(foreign investors) 

-36.6396 -23.0723 38.7142 -

405.3131 

-0.0071 

Realized volatility (%) 0.4087 0.3909 0.1475 0.0000 3.1380 

Monthly Variables      

Amihud’s illiquidity 

estimate  

0.0192 0.0101 0.0397 0.0004 0.8656 

Liquidity ratio 280.4793 111.5262 394.6456 1.7731 2693.34 

Share turnover 0.3979 0.0635 8.3270 0.0037 258.4999 

Algorithmic trading 

proxy (all) 

-42.9421 -33.3656 32.6008 -

234.4509 

-4.8512 

Algorithmic trading 

proxy (institutional 

investors) 

-

101.3831 

-79.0505 79.6619 -

406.4480 

-1.0932 

Algorithmic trading 

proxy  

(foreign investors) 

-38.9102 -25.7074 39.1597 -

270.8551 

-0.7577 

Realized volatility (%) 1.9288 1.7901 0.8583 0.2876 11.6012 
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Table 4.3  (Continued) 

 

Variables Mean Median Std. 

Dev. 

Min. Max. 

Stock Characteristics      

Market capitalization 

(billion Baht) 

50.56 43.56 151.45 6.81 959.55 

The inverse of share 

price (1/Baht) 

0.1053 0.0464 0.1374 0.0019 0.6824 

Daily return (%) 0.03 0.00 2.13 -59.32 33.91 

Daily trading volume 

(million Baht) 

358.81 136.55 611.41 0.20 11,282.35 

 

In order to comprehend the role of algorithmic traders on liquidity during the 

volatile market, I examined the effect of algorithmic trading on liquidity during the 

volatile market, which is defined as during October 2016. The summary statistics shows 

the mean, the median, the standard deviation, the minimum and the maximum values 

of major variables during that period. The effective half spread averages at 0.2674 

percent while the share turnover has the mean value of 0.0048. The average algorithmic 

trading proxy during the volatile period is lower than the average during the entire 

sample. The algorithmic trading proxy has the mean value at -40.1379 and the standard 

deviation at 29.0123. Similar to the previous result, the algorithmic trading initiated by 

foreign investors proxy is higher than the one initiated by institutional investors. The 

algorithmic trading by institutional investors proxy averages at -93.6519 with the 

standard deviation of 81.8384. The algorithmic trading initiated by foreign investors 

proxy averages at -36.5425 with the standard deviation of 36.4103. 

For the monthly variables, the average values for Amihud’s illiquidity estimate 

and liquidity ratio are 0.0184 and 281.56 respectively. The Amihud’s illiquidity 

estimate for the volatile period is lower than the one for the entire period while the 

liquidity ratio is higher during the volatile period than during the entire period. 

Therefore, on average, the monthly liquidity is higher during the volatile period than 

during the entire period. The algorithmic trading proxy averages at -45.7550 with the 
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standard deviation of 35.1765 which is lower than the one during the entire period. This 

suggests that algorithmic traders are less likely to participate in the market when the 

market becomes volatile. The algorithmic trading initiated by institutional investors 

proxy has the mean of -108.7213 with the standard deviation of 88.2576. On the other 

hand, the algorithmic trading initiated by foreign investors proxy has the average of -

39.7478 and the standard deviation of 38.9824. The average of the algorithmic trading 

initiated by foreign investors proxy is higher than the average of the algorithmic trading 

initiated by institutional investors proxy, suggesting that foreign investors are more 

likely to utilize algorithmic strategies to trade. 

 

Table 4.4  Descriptive Statistics for the Volatile Period 

 

Variables Mean Median Std. 

Dev. 

Min. Max. 

Daily Variables      

Effective half spread 

(%) 

0.2674 0.2431 0.1226 0.0684 0.7455 

Share turnover 0.0048 0.0030 0.0059 6.76x10-5 0.0598 

Algorithmic trading 

proxy (all) 

-40.1379 -32.4577 29.0123 -

143.7478 

-2.1917 

Algorithmic trading 

proxy (institutional 

investors) 

-93.6519 -63.2992 81.8384 -

472.4223 

-0.0246 

Algorithmic trading 

proxy  

(foreign investors) 

-36.5425 -23.5708 36.4103 -

266.9184 

-0.0421 

Monthly Variables      

Amihud’s illiquidity 

estimate  

0.0184 0.0112 0.0219 0.0005 0.1074 

Liquidity ratio 281.56 99.13 432.54 10.55 2317.78 

Share turnover 0.1577 0.0724 0.4906 0.0151 4.7682 
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Table 4.4  (Continued) 

 

Variables Mean Median Std. 

Dev. 

Min. Max. 

Algorithmic trading 

proxy (all) 

-45.7750 -36.9929 35.1765 -

174.4360 

-8.6505 

Algorithmic trading 

proxy (institutional 

investors) 

-

108.7213 

-83.8841 88.2576 -

398.8738 

-9.5412 

Algorithmic trading 

proxy  

(foreign investors) 

-39.7478 -25.7979 38.9824 -

186.0657 

-2.4508 

Realized volatility (%) 2.5990 2.4934 1.1540 0.8747 5.2344 

Stock Characteristics      

Ln (market 

capitalization) 

14.2509 14.1140 1.0454 12.2580 17.2062 

The inverse of share 

price (1/Baht) 

0.1076 0.0481 0.1398 0.0019 0.6785 

Monthly return (%) 0.4535 0.4102 0.2348 0.1334 3.1380 

 

4.4  Results and Discussion 

 

4.4.1  Correlation Analysis 

4.4.1.1  Entire Period 

1) Daily Variable 

The results of the Pearson correlation for the daily variables as 

depicted in Table 4.5 indicate that the correlations between all the liquidity measures 

and all the algorithmic trading proxies are significant. Effective half spread is 

significantly and positively correlated with the algorithmic trading proxy (r(17391) = 

0.319 and p < 0.01). Share turnover exhibits a significantly negative correlation with 

the algorithmic trading proxy (r(17391) = -0.323 and p < 0.01). The magnitude of the 

correlation between algorithmic trading initiated by institutional investors and liquidity 
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measures is lower than the one between algorithmic trading initiated by foreign 

investors and liquidity measures. The correlation between algorithmic trading initiated 

by institutional investors and effective half spread is positive (r(17391) = 0.210 and p 

< 0.01) whereas the correlation between algorithmic trading initiated by institutional 

investors and share turnover is negative (r(17391) = -0.275 and p < 0.01). Algorithmic 

trading which is originated from the foreign investors is positively correlated with 

effective half spread (r(17391) = 0.240 and p < 0.01) and is negatively correlated with 

share turnover (r(17391) = -0.281 and p < 0.01).  

Correspondingly, the signs of the correlations of the control 

variables agree with the literature review. Realized volatility are positively related to 

effective half spread (r(17391) = 0.530 and p < 0.01) and share turnover (r(17391) = 

0.328 and p < 0.01). The inverse of average price exhibits positive correlations with 

effective half spread (r(17391) = 0.212 and p < 0.01) and share turnover (r(17391) = 

0.048 and p < 0.01). Furthermore, the market capitalization displays a negative 

correlation with effective half spread (r(17391) = -0.204 and p < 0.01). As firm size 

becomes larger, there is more liquidity, thus decreasing effective half spread. The 

correlation coefficient between the natural logarithm of market capitalization and the 

share turnover is -0.125 with the significance level of more than 99.9%, showing that 

when the firm size is bigger, there are more stocks available; thus, share turnover is 

lower. In addition, there is a strongly negative correlation between the algorithmic 

trading proxy and the logarithmic of market capitalization.  

 

 

 

 

 

 

 

 

 

 



Table 4.5  Correlation Matrix for Daily Variables. *, ** and *** Denote Significance at the 10%, 5% and 1% Level 

 

 1 2 3 4 5 6 7 8 

1.  Effective half spread 1        

2.  Share turnover -0.104*** 1       

3.  Algorithmic trading (all) 0.319*** -0.323*** 1      

4.  Algorithmic trading initiated 

by institutional investors 

0.210*** -0.275*** 0.832*** 1     

5.  Algorithmic trading initiated 

by foreign investors 

0.240*** -0.281*** 0.817*** 0.637*** 1    

6.  Volatility 0.530*** 0.328*** 0.118*** 0.078*** 0.114*** 1   

7.  Inverse of average price 0.212*** 0.048*** 0.311*** 0.231*** 0.199*** 0.163*** 1  

8.  Natural logarithm of market 

capitalization 

-0.204*** -0.125*** -0.683*** -0.623*** -0.609*** -0.283*** -0.328*** 1 

9
4
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2) Monthly Variable 

Table 4.6 illustrates the Pearson’s correlation matrix for the 

monthly variables. I found that the Amihud’s illiquidity estimate is positively correlated 

with algorithmic trading (r(963) = 0.319 and p < 0.01) whereas liquidity ratio is 

negatively correlated with algorithmic trading (r(963) = -0.876 and p < 0.01). There are 

positive correlations between the Amihud’s illiquidity estimate and the algorithmic 

trading initiated by institutional investors proxy, 𝑟 = 0.554, 𝑝 < 0.01; and between the 

Amihud’s illiquidity estimate and the algorithmic trading initiated by foreign investors 

proxy, 𝑟 = 0.490, 𝑝 < 0.01. There are negative correlations between the liquidity ratio 

and the algorithmic trading initiated by institutional investors proxy, 𝑟 = -0.890, 𝑝 < 

0.01 and between the liquidity ratio and the algorithmic trading initiated by foreign 

investors proxy, 𝑟 = -0.915, 𝑝 < 0.01.  Lastly, there is no correlation between share 

turnover and monthly liquidity measures; therefore, I deducted this variable from the 

model.  
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Table 4.6  Correlation Matrix for Monthly Variables. *, ** and *** Denote Significance at the 10%, 5% and 1% Level 

 

 1 2 3 4 5 6 7 8 9 

1.  Amihud’s illiquidity 

estimate 

1         

2.  Liquidity ratio -0.270*** 1        

3.  Algorithmic trading (all) 0.319*** -0.876*** 1       

4.  Algorithmic trading 

initiated by institutional 

investors 

0.554*** -0.890*** 0.949*** 1      

5.  Algorithmic trading 

initiated by foreign investors 

0.490*** -0.915*** 0.926*** 0.914*** 1     

6.  Volatility 0.023 -0.174*** -0.010 0.273*** 0.255*** 1    

7.  Inverse of average price 0.053* -0.219*** 0.332*** 0.308*** 0.237** 0.019 1   

8.  Logarithmic of market 

capitalization 

-0.392*** 0.764*** -0.764*** -0.795*** -0.774*** -0.187*** -0.351*** 1  

9. Share turnover -0.006 -0.012 0.021 -0.096 -0.200** 0.033 0.040 -0.056* 1 

9
6
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4.4.1.2  Volatile Period 

1)  Daily Variable 

Table 4.7 reports the correlation matrix for the daily variables 

during the volatile period. Effective half spread is positively correlated with algorithmic 

trading (r(1700) = 0.291 and p < 0.01) while share turnover is negatively correlated 

with algorithmic trading (r(1700) = 0.291 and p < 0.01). The magnitude of the 

correlation between effective half spread and algorithmic trading is lower during the 

volatile period than during the entire period. On the contrary, the magnitude of the 

correlation between share turnover and algorithmic trading is higher during the volatile 

period than during the entire period.  

There are positive correlations between the effective half spread 

and the algorithmic trading initiated by institutional investors proxy, 𝑟 = 0.213, 𝑝 < 0.01; and 

between the effective half spread and the algorithmic trading initiated by foreign 

investors proxy, 𝑟 = 0.168, 𝑝 < 0.01. There are negative correlations between the share 

turnover and the algorithmic trading initiated by institutional investors proxy, 𝑟 = -0.329,      

𝑝 < 0.01 and between the share turnover and the algorithmic trading initiated by foreign 

investors proxy, 𝑟 = -0.284, 𝑝 < 0.01.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

   
 

Table 4.7  Correlation Matrix for Daily Variables during the Volatile Period. *, ** and *** Denote Significance at the 10%, 5% and 1% Level 

 

 1 2 3 4 5 6 7 8 

1.  Effective half spread 1        

2.  Share turnover -0.092*** 1       

3.  Algorithmic trading (all) 0.291*** -0.393*** 1      

4.  Algorithmic trading initiated by 

institutional investors 

0.213*** -0.329*** 0.866*** 1     

5.  Algorithmic trading initiated by 

foreign investors 

0.168*** -0.284*** 0.800*** 0.657*** 1    

6.  Volatility 0.371*** 0.366*** 0.042* 0.038 0.046* 1   

7.  Inverse of average price 0.214*** 0.070*** 0.314*** 0.248*** 0.187*** 0.126*** 1  

8.  Natural logarithm of market 

capitalization 

-0.140*** -0.101*** -0.670*** -0.646*** -0.628*** -0.214*** -0.332*** 1 

9
8
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2) Monthly Variable 

Table 4.8 reports the correlation matrix for the monthly variables 

during the volatile period. Amihud’s illiquidity estimate is positively correlated with 

algorithmic trading (r(94) = 0.542 and p < 0.01) while liquidity ratio is negatively 

correlated with algorithmic trading (r(94) = -0.910 and p < 0.01). The magnitude of the 

correlation between Amihud’s illiquidity estimate and algorithmic trading and between 

liquidity ratio and algorithmic trading is higher during the volatile period than during 

the entire period.  

There are positive correlations between the Amihud’s illiquidity 

estimate and the algorithmic trading initiated by institutional investors proxy, 𝑟 =0.554, 

𝑝 < 0.01; and between the Amihud’s illiquidity estimate and the algorithmic trading 

initiated by foreign investors proxy, 𝑟 = 0.490, 𝑝 < 0.01. There are negative correlations 

between the liquidity ratio and the algorithmic trading initiated by institutional 

investors proxy, 𝑟 = -0.890, 𝑝 < 0.01 and between the liquidity ratio and the algorithmic 

trading initiated by foreign investors proxy, 𝑟 = -0.915, 𝑝 < 0.01.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

   
 

Table 4.8  Correlation Matrix for Monthly Variables during the Volatile Period. *, ** and *** Denote Significance at the 10%, 5% and 1% Level 

 

 1 2 3 4 5 6 7 8 9 

1.  Amihud’s illiquidity estimate 1         

2.  Liquidity ratio -0.437*** 1        

3.  Algorithmic trading (all) 0.542*** -0.910*** 1       

4.  Algorithmic trading initiated 

by institutional investors 

0.554*** -0.890*** 0.944*** 1      

5.  Algorithmic trading initiated 

by foreign investors 

0.490*** -0.915*** 0.926*** 0.914*** 1     

6.  Volatility 0.358*** -0.337*** 0.226** 0.273*** 0.255** 1    

7.  Inverse of average price 0.105 -0.239** 0.328*** 0.308*** 0.237** 0.198* 1   

8.  Logarithmic of market 

capitalization 

-0.642*** 0.789*** -0.789*** -0.795*** -0.774*** -0.526*** -0.375*** 1  

9.  Share turnover -0.121 0.081 -0.071 -0.096 -0.200* 0.151 0.080 0.002 1 

1
0
0
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4.4.2  The Effect of Algorithmic Trading on Liquidity 

To test the null hypothesis whether the algorithmic trading has a relationship 

with liquidity or not, I estimated the following multivariable regression using various 

estimation techniques.  

         𝐸𝑆𝑃𝑅𝐸𝐴𝐷𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝜀𝑖𝑡    

         𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +  𝜀𝑖𝑡    

For the monthly variables, in the previous section, I found that there is no 

correlation between share turnover and liquidity measures i.e. the Amihud’s illiquidity 

estimate and the liquidity ratio. Therefore, I rewrote Equation 4.10 and 4.11 as: 

         𝐿𝑅𝑖𝑚 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑚 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 +  𝜀𝑖𝑚    

(4.41) 

         𝐼𝐿𝐿𝐼𝑄𝑖𝑚 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑚 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑚 + 𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑚
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑚 +  𝜀𝑖𝑚    

(4.42) 

Initially, the independent variables need to be tested whether there is 

multicollinearity. The variance inflation factor outcomes for the daily and the monthly 

variables show that there is no multicollinearity (See Appendix B-2). 

Assuming no heterogeneity, the pooled ordinary least square linear regression 

is carried out to investigate the effect of algorithmic trading on liquidity. Table 4.9 lists 

the regression coefficients of the independent variables (the algorithmic trading proxy, 

the share turnover, realized volatility, the inverse of the average price and the natural 

logarithm of market capitalization) on dependent variables (the effective half spread, 

the share turnover, the Amihud’s illiquidity estimate and the liquidity ratio). Simple 

linear regression shows that there are significant relationships between the algorithmic 

trading proxy and the daily liquidity measures i.e. effective half spread and share 

turnover.  

First, the coefficient of algorithmic trading on effective half spread is 0.0011 

with the confidence level of more than 99.9%. When algorithmic trading changes by 

one standard deviation, which is 28.7851, effective half spread is changed by 28.7851 
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x 0.0011 = 0.0317%. As the average effective half spread is 0.2759, 0.0317% change 

in effective half spread is equivalent to 11.4765% change in effective half spread from 

its mean value. Therefore, an increase in algorithmic trading activity is related to wider 

effective half spread. The adjusted R-square is 0.4056 or 40.56% of the variation on the 

effective half spread can be explained by this model. 

Second, the coefficient of algorithmic trading on share turnover is -1.4718x10-

4 (p < 0.01). This implies that algorithmic trading has a negative relationship with share 

turnover. One standard deviation change in algorithmic trading leads to -0.0042 change 

in share turnover or -96.2862% from its average value. This is in accordance with the 

earlier research by Hendershott et al (2011) which showed that algorithmic trading and 

share turnover have negative relationships. The adjusted R-square is 0.39 or 39% of the 

variation on share turnover can be explained by this model. 

Third, there is a strong statistical relationship between the liquidity ratio and the 

algorithmic trading proxy. It is found that lower liquidity ratio is associated with higher 

algorithmic trading proxy (𝛽1̂  =  −9.3662 𝑎𝑛𝑑 𝑝 <  0.01). One standard deviation 

expansion in algorithmic trading leads to 305.3456 decrease in liquidity ratio, which is 

equivalent to 108.9 percent decline from the average value of liquidity ratio. The r-

square is quite high, which is 81.84 percent, indicating that the model explains 81.84 

percent of the variability of the response data around its mean. Finally, the algorithmic 

trading proxy has an insignificant regression weight with the Amihud’s illiquidity 

estimate. 
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Table 4.9  Pooled OLS Regression Coefficients of Algorithmic Trading Proxy and 

Control Variables on Liquidity Measures. *, ** and *** Denote Significance 

at the 10%, 5% and 1% Level.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share 

Turnover 

(t-statistics) 

Model 3  

Liquidity 

Ratio 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Intercept  -0.1200*** 

(-7.693) 

0.0359*** 

(55.002) 

-913.6321*** 

(-8.371) 

0.2298*** 

(9.737) 

Algorithmic 

trading 

0.0011*** 

(25.478) 

-1.4718x10-

4*** 

(-90.369) 

-9.3662*** 

(-35.114) 

5.3456x10-5 

(0.927) 

Volatility 0.5158*** 

(92.717) 

0.0098*** 

(40.881) 

-68.9867*** 

(-10.415) 

-0.0023 

(-1.605) 

The inverse of 

price  

0.0871*** 

(14.959) 

0.0025*** 

(9.644) 

293.5146*** 

(7.019) 

-0.0291*** 

(-3.215) 

Natural log of 

market cap 

0.0168*** 

(14.932) 

-0.0029*** 

(-63.577) 

62.8190*** 

(7.988) 

-0.0141*** 

(-8.297) 

Share turnover -4.5978*** 

(-27.696) 

   

Adjusted R2 40.56% 39.00% 81.84% 16.18% 

 

One of the issues with using panel data is individual and time heterogeneity. 

Appendix B-3 shows that there are individual and time heterogeneity. The restricted F-

test and the chi-square statistics are used to select the proper model and the results are 

shown in Appendix B-4 to B-5. As all the test statistics are significant, the fixed effects 

models are better choices. Therefore, I implemented the regression analysis using the 

two-ways fixed-effects for model 1, 2 and 4 as depicted in Table 4.10; whereas, for 

model 3, I conducted the regression analysis using the individual fixed-effects as shown 

in Table 4.11. Appendix B-6 demonstrates all regression coefficients estimated by other 

methods. 
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  For the daily variables, all the coefficient estimates of the algorithmic trading 

proxy are significant. The regression results provide four important outcomes. First, 

algorithmic trading increases effective half spread (𝛽1̂ = 0.0011 and 𝑝 < 0.01). 

Therefore, an increase in one unit of algorithmic trading proxy (1,000 baht of trading 

volume per traffic message) increases effective half spread by 0.0011% on average. 

One standard deviation increase in algorithmic trading which is equal to 28.7851 results 

in an increase in effective half spread by 0.0011 x 28.7851 = 0.0317%. As the average 

of effective half spread is 0.2759, this is equivalent to 11.49% increase from its mean 

value. This result is similar to the results yielded by Hendershott and Moulton (2011), 

van Ness et al. (2015) and Cartea et al. (2019), but is different from the result obtained 

by Hendershott et al. (2011) which is algorithmic trading narrows bid-ask spread. 

  Second, algorithmic trading decreases share turnover. For every additional unit 

change in the algorithmic trading proxy (1,000 baht of trading volume per traffic 

message), share turnover, on average, changes by -0.000158 unit. One standard 

deviation increase in algorithmic trading decreases share turnover by -0.000158 x 

28.7851 = 0.00455 unit or 103% from the mean value of the share turnover. The 

magnitude of the effect of algorithmic trading on share turnover is significant. 

Moreover, the direction of the estimated share turnover coefficient is in line with the 

result found by Hendershott et al. (2011).  

 

Table 4.10  Fixed-effect (Two-way) Regression Coefficients of Algorithmic Trading 

Proxy and Control Variables on Liquidity Measures. *, ** and *** Denote 

Significance at the 10%, 5% and 1% Level.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share Turnover 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Algorithmic 

trading 

0.0011*** 

(23.659) 

-1.5808x10-4*** 

(-88.642) 

2.2068x10-4*** 

(3.249) 
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Table 4.10  (Continued) 

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share Turnover 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Volatility 0.4681*** 

(75.147) 

0.0078*** 

(28.422) 

3.3650x10-5 

(0.029) 

The inverse of 

price  

0.0607 

(1.512) 

-0.0134*** 

(-7.466) 

0.1992*** 

(4.344) 

Natural log of 

market cap 

  -0.0004 

(-0.052) 

Share turnover -3.5726*** 

(-21.167) 

  

Adjusted R2 26.55% 36.85% -0.09% 

 

  Third, for the monthly variables, algorithmic trading enhances Amihud’s 

illiquidity estimate, 𝛽1̂ = 2.2068x10-4, t(853) = 3.249 and 𝑝 < 0.01. Therefore, when the 

algorithmic trading proxy increases by one standard deviation, which is 32.6008, 

Amihud’s illiquidity estimate, on average, increases by 2.2068x10-4 x 32.6008 = 

0.0072. Subsequently, as the mean value of the Amihud’s illiquidity estimate is 0.0192, 

the Amihud’s illiquidity estimate increases by 37.5 percent. 

  Finally, the individual-effect fixed-effect model indicates that algorithmic 

trading is significantly associated with negative liquidity ratio, 𝛽1̂ = -8.1847, t(853) = -

22.7535 and 𝑝 < 0.01. Therefore, when the algorithmic trading proxy increases by one 

standard deviation, liquidity ratio, on average, decreases by -8.1847x32.6008 = 266.828 

where 32.6008 is the standard deviation of the algorithmic trading proxy. Subsequently, 

the liquidity ratio is decreased by 95.13 percent, indicating that in the longer run, 

algorithmic trading deters liquidity.  
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Table 4.11  Fixed-effect (Individual) Regression Coefficients of Algorithmic Trading 

Proxy and Control Variables on Liquidity Measures. *, ** and *** Denote 

Significance at the 10%, 5% and 1% Level.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share 

Turnover 

(t-statistics) 

Model 3  

Liquidity 

Ratio 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Algorithmic 

trading 

0.0012*** 

(23.682) 

-1.4718x10-

4*** 

(-90.369) 

-8.1847*** 

(-22.754) 

2.7440x10-4*** 

(4.153) 

Volatility 0.3704*** 

(64.139) 

0.0099*** 

(37.441) 

-59.5203*** 

(-10.246) 

0.0014 

(1.276) 

The inverse of 

price  

-0.1180*** 

(-2.846) 

0.0025*** 

(9.631) 

509.7520** 

(2.045) 

0.2248*** 

(4.910) 

Natural log of 

market cap 

 -0.0029*** 

(-61.703) 

1.5815 

(0.042) 

-0.0007 

(-0.098) 

Share turnover -3.6977*** 

(-21.011) 

   

Adjusted R2 22.47% 35.95% 31.72% -0.06% 

 

4.4.3 The Causal Relationship between Algorithmic Trading Proxy on 

Liquidity 

I analyzed the relationship between the algorithmic trading proxy and the 

liquidity measures using the two-stage least square estimation technique. This method 

ensures the causal relationship and solves for the endogeneity effect. The result of the 

two-stage least squares estimation is presented in Table 4.12. In the first stage 

regression, I estimated the algorithmic trading proxy as a function of an instrumental 

variable (IV). The result indicates that there is a positive and significant relationship 

between the algorithmic trading proxy and the instrumental variable after controlling 

for other variables (𝑝 < 0.01). Moreover, I calculated the correlation between the 

instrumental variable and liquidity to check for endogeneity and Table 4.13 reported 
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the correlations. The results show that there is no correlation between the instrumental 

variable and effective half spread (r(17391) = -0.0083 and p = 0.2713), confirming the 

validity of the instrumental variable. However, the instrumental variable is correlated 

with the share turnover (r(17391) = -0.0083 and p = 0.2713). Therefore, the 2SLS 

analysis may not be a good estimation technique for share turnover as an increase in 

algorithmic trading may alter the level of share turnover.  

 

Table 4.12  2SLS Analysis for the Impact of Algorithmic Trading Proxy on Liquidity 

Measures. *, ** and *** Denote Significance at the 10%, 5% and 1%. 

 

 

 

Variable 

First Stage 

Algorithmic 

Trading 

Second Stage 

Effective Half 

Spread 

Second Stage 

Share Turnover 

Intercept 214.0539*** 

(90.665) 

-0.4929** 

(-2.182) 

0.0794*** 

(5.316) 

Instrumental 

Variable 

1.3736*** 

(4.036) 

  

Algorithmic 

trading 

 0.0032*** 

(3.020) 

-3.3222x10-4*** 

(-4.777) 

Volatility -7.3319*** 

(-4.980) 

0.8472*** 

(83.925) 

0.0115*** 

(17.203) 

The inverse of 

price  

21.6274*** 

(17.641) 

-0.0398* 

(-1.701) 

0.0055*** 

(3.530) 

Natural log of 

market cap 

-17.7628*** 

(-113.133) 

0.0453** 

(2.424) 

-0.0064*** 

(-5.211) 

Adjusted R-

squared 

47.64% 52.64% -3.59% 
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Table 4.13  Pearson’s Correlation Analysis. *, ** and *** Denote Significance at the 

10%, 5% and 1% Level. 

 

 Effective Half Spread Share Turnover 

Instrumental Variable -0.0083 

(-1.100) 

-0.0459*** 

(-6.108) 

 

  From Table 4.12, the second-stage regressions affirm that there exist a 

significantly positive relationship between algorithmic trading and effective half spread 

(𝛽1̂ = 0.0032 and 𝑝 < 0.01) and a significantly negative relationship between 

algorithmic trading and share turnover (𝛽1̂ = -0.0003 and 𝑝 < 0.01). The directions of 

the effect of algorithmic on liquidity measures are consistent with the results obtained 

from the correlation analysis, the pooled OLS regression and the fixed-effects models. 

The extents in which algorithmic trading affects liquidity measures estimated by the 

two-stage least square regression are larger than the ones estimated by other methods.  

  When algorithmic trading augments by one standard deviation, the effective 

half spread is increased by 0.0032 x 28.7851 = 0.0921 percent on average. This is 

associated with a 33.38% increase in effective half spread from its associated mean 

value. On the contrary, share turnover is contracted by 0.00033 for every additional unit 

change in the algorithmic trading proxy. This implies that one standard deviation 

change in the algorithmic trading proxy reduces share turnover, on average, by 0.0095 

unit or 215.89% from the mean share turnover. Thus, an increase in algorithmic trading 

deteriorates liquidity by widening effective half spread and diminishing share turnover.  

 

4.4.4  The Effect of Algorithmic Trading Initiated by Institutional and 

Foreign Investors Proxy on Liquidity 

  The proxies for algorithmic trading initiated by institutional and foreign 

investors are calculated. In this section, I investigated the role of algorithmic trading 

initiated by institutional and foreign investors on ameliorating or deteriorating liquidity. 

From the section 4.4.2, I found that the two-way fixed-effect model is the most 

appropriate model in estimating the relationship between algorithmic trading and 

liquidity measures. In the similar fashion, I employed this method to estimate the 
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regression coefficients of the algorithmic trading initiated by each type of investors 

proxies. 

  From the two-way fixed-effects model, the algorithmic trading initiated by 

institutional and foreign investors proxies as well as the interaction between these two 

proxies exhibit significant relationships as displayed in Table 4.14. The OLS regression 

possesses the same effect as the fixed-effect regression (See appendix B-7). 

Algorithmic trading initiated by institutional investors proxy, algorithmic trading 

initiated by foreign investors proxy and the interaction term between these two proxies 

increase effective half spread (𝛽1̂ = 2.7425x 10-4,  𝛽2̂ = 7.7773x10-4 and 𝛽3̂ = 2.7933x10-

6 and 𝑝 < 0.01). One standard deviation increase in algorithmic trading initiated by 

institutional investors is associated with 2.7425x10-4 x 81.5097 = 0.0224% increase in 

effective half spread. This is equivalent to 8.12% increase from the mean effective half 

spread. Correspondingly, effective half spread is also increased, on average, by 

7.7773x10-4 x 38.7142 = 0.0301% or 10.91% from the mean value due to one standard 

deviation increase in algorithmic trading initiated by foreign investors. Obviously, the 

effect of algorithmic trading initiated by foreign investors on effective half spread is 

more profound than the effect of algorithmic trading initiated by institutional investors. 

In addition, the interaction between algorithmic trading initiated by institutional and 

foreign investors further widens effective half spread by 0.0088% or 3.19% from the 

mean value.  

  On the other hand, algorithmic trading initiated by institutional investors proxy, 

algorithmic trading initiated by foreign investors proxy and the interaction term 

between these two proxies shrink share turnover (𝛽1̂ = -2.8491x10-5,  𝛽2̂ = -6.8955x10-

5 and 𝛽3̂ = -6.6613x10-8 and 𝑝 < 0.01). An increase in one standard deviation of 

algorithmic initiated by institutional and foreign investors decreases share turnover by 

0.0023 and 0.0027 respectively which are equal to 52.27% and 61.36% from the mean 

share turnover respectively. Consistently, the interaction between two types of 

algorithmic trading proxies leads to a lower share turnover by 0.0022 unit or 4.78% 

from its mean value.  
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Table 4.14  Fixed-effects Two-Way Regression Coefficients of Algorithmic Trading 

Initiated by Institutional and Foreign Investors Proxies and Control 

Variables on Liquidity Measures. *, ** and *** Denote Significance at the 

10%, 5% and 1% Level.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share 

Turnover 

(t-statistics) 

Model 3  

Liquidity 

Ratio 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

AT initiated 

by 

institutional 

investors 

2.7425x10-4*** 

(16.124) 

-2.8491x10-

5*** 

(-37.082) 

-0.2398 

(-1.508) 

1.0859x10-4*** 

(3.897) 

AT initiated 

by foreign 

investors 

7.7773x10-4*** 

(18.785) 

-6.8955x10-

5*** 

(-36.854) 

0.2409 

(0.522) 

1.4219x10-4* 

(1.758) 

AT initiated 

by 

institutional x 

foreign 

investors 

2.7933x10-6*** 

(14.131) 

-6.6613x10-

8*** 

(-7.188) 

0.0142*** 

(8.367) 

8.9419x10-7*** 

(3.006) 

Volatility 0.4663*** 

(73.648) 

0.0087*** 

(30.160) 

-32.1850*** 

(-4.912) 

-9.4136x10-5 

(-0.082) 

The inverse of 

price  

0.0671 

(1.633) 

-0.0227*** 

(-11.806) 

-436.9838* 

(-1.657) 

0.1899*** 

(4.111) 

Natural log of 

market cap 

  -19.8853 

(-0.505) 

-3.7609x10-4 

(-0.055) 

Share turnover -4.3205*** 

(-26.524) 

   

Adjusted R2 25.83% 31.72% 19.17% -0.08% 
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  The result shows that AT initiated by foreign investors has more profound effect 

on undermining liquidity in term of daily effective half spread and daily share turnover 

whereas AT initiated by institutional investors plays a larger role in distorting liquidity 

in term of Amihud’s illiquidity estimate in the long run. The interaction between 

algorithmic trading initiated by each type of investors also augments the effect. 

  For the monthly liquidity measures, I found that the Amihud’s illiquidity 

estimate is increased by 1.0859x10-4 x 88.2576 = 0.0096 or 49.92 percent from the 

mean due to one standard deviation increase in algorithmic trading initiated by 

institutional investors. Furthermore, an increase in algorithmic trading initiated by 

foreign investors by one standard deviation increases the Amihud’s illiquidity estimate 

by 0.0055 or 30.12 percent from the mean value. The same effect is also valid for the 

interaction term. An increase in one standard deviation of the interaction term increases 

the Amihud’s illiquidity estimate by 0.0031 or 16.02 percent from the mean value. 

 

4.4.5 The Effect of Algorithmic Trading on Liquidity during the Volatile 

Period 

I derived an empirical testing to examine the effect of algorithmic trading on 

liquidity when the market becomes highly volatile. Table 4.15 illustrates the regression 

coefficients when employed the pooled OLS method. From the table, there is a positive 

relationship between the algorithmic trading proxy and effective half spread, indicating 

that liquidity is worsened when algorithmic trading increases. The regression results of 

the Model 2 and 3 reveal that when algorithmic trading increases, share turnover and 

liquidity ratio will be decreased, inferring distorted liquidity. Lastly, there is no 

significant relationship between algorithmic trading and Amihud’s illiquidity estimate. 

These relationships during the volatile period are consistent with the relationships 

during the overall periods.  

 As pooled OLS estimation method assumes that there are no multicollinearity 

and heterogeneity, I tested for the presence of these issues. Therefore, I examined all 

models for the presence of multicollinearity using the variance inflation factor (See 

appendix B-8). I found that there is no multicollinearity in both daily and monthly 

models. Therefore, all of the independent variables can be included in the models. For 

the presence of heterogeneity, I examined the daily liquidity models by plotting the 
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mean value of the dependent variables across individual and time. From the plots, there 

are heterogeneity across both individuals and time effects (See appendix B-9). The 

restricted F-test shows that the fixed-effect model is an appropriate estimation tool (See 

appendix B-10). 

Therefore, the two-way fixed-effects models are estimated for the daily 

variables. The results are depicted in Table 4.16. Consistent with the pooled OLS 

technique, the two-way fixed-effects model points out that algorithmic trading widens 

the effective half spread while diminishes share turnover. 

 

Table 4.15  Pooled OLS Regression Coefficients of Algorithmic Trading Proxy and 

Control Variables on Liquidity Measures during the Volatile Period. *, ** 

and *** Denote Significance at the 10%, 5% and 1% Level.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share 

Turnover 

(t-statistics) 

Model 3  

Liquidity 

Ratio 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Intercept  -0.1151** 

(-2.175) 

0.0387*** 

(20.031) 

-719.2748 

(-1.645) 

0.1718*** 

(3.932) 

Algorithmic 

trading 

0.0014*** 

(8.811) 

-1.6392x10-

4*** 

(-33.604) 

-10.1328*** 

(-11.860) 

8.8158x10-5 

(1.033) 

Volatility 0.2210*** 

(18.544) 

0.0068*** 

(14.913) 

-47.8539** 

(-2.156) 

0.0015 

(0.665) 

The inverse of 

price  

0.1177*** 

(5.982) 

0.0045*** 

(5.719) 

289.794** 

(2.254) 

-0.0248* 

(-1.930) 

Natural log of 

market cap 

0.0235*** 

(6.062) 

-0.0031*** 

(-22.301) 

44.262 

(1.469) 

-0.0106*** 

(-3.513) 

Share turnover -2.2654*** 

(-3.813) 

   

Adjusted R2 25.94% 47.62% 85.00% 41.62% 
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Table 4.16  Two-way Within-Group Regression Coefficients of Algorithmic Trading 

Proxy and Control Variables on Liquidity Measures during the Volatile 

Period. *, ** and *** Denote Significance at the 10%, 5% and 1% Level.  

 

 

 

Variable 

Model 1  

Effective Half Spread 

(t-statistics) 

Model 2  

Share Turnover 

(t-statistics) 

Algorithmic trading 0.0012*** 

(7.705) 

-1.3854x10-4*** 

(-24.787) 

Volatility 0.1990*** 

(15.331) 

0.0037*** 

(6.823) 

The inverse of price  -0.0675 

(-0.2214) 

0.0079 

(0.607) 

Share turnover -1.0146* 

(-1.751) 

 

Adjusted R2 10.93% 25.25% 

  

  Our test results suggest that there is a positive relationship between algorithmic 

trading and effective half spread. When algorithmic trading increases by one standard 

deviation, effective half spread widens by 0.0348 percent on average which increases 

from its mean value by 13.02 percent. Furthermore, share turnover exhibits a negative 

relationship with algorithmic trading. In particular, the share turnover decreases by 

0.0040 on average per each standard deviation increase in algorithmic trading. This 

means that share turnover is changed by 83.74 percent from its average value, which is 

quite significant. For the monthly liquidity models, the ordinary least square method is 

used to estimate the slope coefficient as the data is the cross-sectional data. From Table 

4.15, the coefficient of the algorithmic trading proxy on the liquidity ratio is -10.1328 

with t-value of -11.860. This predicts that for every additional increment of algorithmic 

trading proxy by one standard deviation, the liquidity ratio will be decreased by 

344.0859 or 122.21 percent from the average value of the liquidity ratio. The last 

column presents the coefficient of algorithmic trading on the Amihud’s (2002)  

illiquidity estimate which affirms that there is no significant relationship. 



114 

   
 

  Overall, the results show that during the volatile market, algorithmic trading 

increases effective half spread, lowers share turnover, reduces liquidity ratio and exerts 

no impact on Amihud’s illiquidity estimate. The magnitude of the effect of algorithmic 

trading on effective half spread and liquidity ratio is higher during the volatile period 

than during the overall periods whereas the magnitude of the effect of algorithmic 

trading on share turnover during the volatile period is lower than the one during the 

overall periods.  

 

4.4.6 The Effect of Algorithmic Trading Initiated by Institutional and 

Foreign Investors on Liquidity during the Volatile Period 

To delve further, I examined the role of algorithmic trading initiated by 

institutional and foreign investors on liquidity during the volatile period. Table 4.17 

reports the regression coefficients, estimated by the pooled OLS estimation technique. 

The dataset used for Model 1 and 2 is a panel data; therefore, it might be subjected to 

heterogeneity. There is two-way heterogeneity for a panel data as shown in previous 

section. Therefore, the two-way fixed-effect models are used to estimate the 

relationship between algorithmic trading and liquidity for Model 1 and 2 as shown in 

Table 4.18. As Model 3 and 4 are the monthly liquidity model, the dataset is the cross-

sectional data. Therefore, the ordinary least square estimation method can be used. The 

regression analyses yield the following results. 
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Table 4.17  Pooled OLS Regression Coefficients of Algorithmic Trading Initiated by 

Institutional and Foreign Investors Proxies and Control Variables on 

Liquidity Measures during the Volatile Period. *, ** and *** Denote 

Significance at the 10%, 5% and 1% Level.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share 

Turnover 

(t-statistics) 

Model 3  

Liquidity 

Ratio 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Intercept  0.0283 

(0.481) 

0.0442*** 

(20.043) 

-1046.56*** 

(-3.303) 

0.1575*** 

(4.033) 

AT initiated 

by 

institutional 

investors 

2.3397x10-4*** 

(3.304) 

-4.6153x10-

5*** 

(-16.868) 

-0.0528 

(-0.134) 

1.9456x10-4*** 

(3.993) 

AT initiated 

by foreign 

investors 

2.3550x10-4 

(1.472) 

-7.9522x10-

5*** 

(-12.436) 

1.1750 

(1.014) 

3.5096x10-4** 

(2.456) 

AT initiated 

by 

institutional x 

foreign 

investors 

7.9518x10-7 

(0.992) 

-1.7281x10-

7*** 

(-5.202) 

0.0276*** 

(8.961) 

1.9662x10-6*** 

(5.173) 

Volatility 0.2282*** 

(18.791) 

0.0066*** 

(13.631) 

-15.6762 

(-1.016) 

0.0020 

(1.039) 

The inverse of 

price  

0.1466*** 

(7.398) 

0.0016* 

(1.885) 

131.7357 

(1.429) 

-0.0257** 

(-2.263) 

Natural log of 

market cap 

0.0116*** 

(2.717) 

-0.0034*** 

(-21.601) 

83.6122*** 

(3.782) 

-0.0085*** 

(-3.119) 

Share turnover -4.12894*** 

(-7.096) 

   

Adjusted R2 23.43% 43.05% 92.49% 55.51% 
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Table 4.18  Two-way Within-group Regression Coefficients of Algorithmic Trading 

Initiated by Institutional and Foreign Investors Proxies and Control 

Variables on Liquidity Measures during the Volatile Period. *, ** and *** 

Denote Significance at the 10%, 5% and 1% Level.  

 

 

 

Variable 

Model 1  

Effective Half Spread 

(t-statistics) 

Model 2  

Share Turnover 

(t-statistics) 

AT initiated by 

institutional investors 
 

3.1541x10-4*** 

(5.640) 

-2.2101x10-5*** 

(-8.755) 

AT initiated by foreign 

investors 

8.9652x10-4*** 

(7.052) 

-5.6847x10-5*** 

(-9.973) 

AT initiated by 

institutional x foreign 

investors 

2.8748x10-6*** 

(4.542) 

-6.2205x10-8** 

(-2.129) 

Volatility 0.2045*** 

(15.747) 

0.0038*** 

(6.355) 

The inverse of price  -0.0725 

(-0.236) 

0.0065 

(0.461) 

Share turnover -1.5922*** 

(-2.933) 

 

Adjusted R2 11.32% 15.31% 

 

First, there are positive relationships between all the algorithmic trading 

initiated by institutional and foreign investors proxies as well as their interaction term 

and effective half spread. In particular, an increase in one standard deviation of the 

algorithmic trading initiated by institutional and foreign investors proxies increases 

effective half spread by 3.1541x10-4 x 81.8384 = 0.0258 percent and 8.9652x10-4 x 

36.4103 = 0.0326 percent respectively. They contribute to 9.65 percent and 12.19 

percent increase in effective half spread from its mean value respectively. Furthermore, 

the interaction between two types of algorithmic trading proxies also leads to an 
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increase in effective half spread by 0.0085 percent which represents 3.20 percent of its 

mean value.  

Second, the slope coefficients of the algorithmic trading initiated by institutional 

and foreign investors proxies and their interaction term on share turnover are -

2.2101x10-5, -5.6847x10-5 and -6.2205x10-8 respectively. Hence, share turnover 

decreases by 0.0018, 0.0021 and 0.0002 respectively, which are equivalent to 37.68, 

43.12 and 3.86 percent decline from the average share turnover. 

Inconsistent with the previous result, the interaction between algorithmic 

trading initiated by institutional and foreign investors increases liquidity ratio by 

94.9576 or 33.73 percent from the mean value. Moreover, the algorithmic trading 

initiated by institutional and foreign investors and their interaction term exhibit 

significant positive relationships with Amihud’s illiquidity estimate. Specifically, an 

increase in algorithmic trading initiated by institutional and foreign investors escalates 

the Amihud’s illiquidity estimate by 0.0172 and 0.0137 which are equal to 93.32 and 

74.35 percent from its average value respectively. Consistently, the interaction term 

also raises the Amihud’s illiquidity estimate by 0.0068 which is equal to 36.76 percent 

from the average value. Overall, the effect of AT initiated by foreign investors on 

reducing liquidity is more profound than the effect of AT initiated by institutional 

investors for short run. On the contrary, for the long run, the effect of AT initiated by 

institutional investors on reducing liquidity is more profound than the effect of AT 

initiated by foreign investors. 

 

4.5  Conclusion 

 

 Algorithmic trading has gained importance in the stock market in an emerging 

market. Yet, the empirical study on this topic is still few. This chapter investigates the 

impact of algorithmic trading on liquidity in the Stock Exchange of Thailand. This 

study of this topic is useful for the regulators to ensure liquid market. I used the dataset 

of SET100 stocks from March 2016 to December 2016. Due to the nature of panel data, 

I exploited various estimation techniques in order to assure accurate results by 

employing the variance inflation factor test, various panel data estimation techniques 

and the 2SLS analysis.  
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 All in all, the results reveal that an increase in algorithmic trading in the Stock 

Exchange of Thailand widens effective half spread by 11.49 percent from its mean, 

lessens share turnover by 103 percent from its mean and lowers liquidity ratio by 37.50 

percent from its mean. There is no evidence that algorithmic trading is associated with 

Amihud’s illiquidity estimate. Therefore, algorithmic trading deteriorates liquidity, 

which contradicts to the result by Hendershott et al., but concurs with the results by 

Hendershott and Moulton (2011), van Ness et al. (2015), Upson and van Ness (2017), 

Cartea et al. (2019) and Manahov (2016).  

To establish a causal relationship, the 2SLS regression is analyzed. The 

presence of the behavior of algorithmic traders exhibited in the market is used as an 

instrumental variable. The 2SLS results reinforced that algorithmic trading causes 

effective half spread to increase and share turnover to decrease. One standard deviation 

increase in algorithmic trading increases effective half spread by 33.38 percent and 

share turnover by 215.89 from their mean values. 

There are two hypotheses to explain these results. The first hypothesis is that 

when information quality is high, the informed investors will submit and cancel limit 

orders in the limit order. The order submissions and cancellations elevate volatility. 

Therefore, when volatility is high, liquidity providers withdraw from the market 

(Goettler, Parlour, & Rajan, 2009). This hypothesis is called the informed limit order 

book hypothesis. An increase in message traffic signals information asymmetry and 

leads to lower liquidity. Another hypothesis is the AT adverse selection risk hypothesis. 

An increase in algorithmic trading increases adverse selection risks, lowering liquidity.  

 Additionally, as share turnover represents the level of information asymmetry, 

a decline in share turnover may represent increasing information asymmetry in the 

market. As the result indicates that algorithmic trading is associated with lower share 

turnover, an increase in algorithmic trading is therefore, related to an increase in 

information asymmetry.  

Many researches show that informed investors possess private information and 

therefore, impose adverse selection risks onto other traders (Chaboud et al., 2014). As 

bid-ask spread incorporates adverse selection into it, a wider bid-ask spread may be due 

to an enlarge in adverse selection component in the bid-ask spread. High latency traders 

are reluctant to participate and thus require higher compensation in term of bid-ask 
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spread when trading with better-informed traders. In this case, better-informed traders 

are algorithmic traders. Furthermore, as liquidity ratio is related to depth, the reverse 

relationship between algorithmic trading and liquidity ratio contends that algorithmic 

trading reduces order depth. Therefore, there are less orders available at certain price 

levels inferring declining participation rate. In addition, this result is corresponded with 

the result from the previous section, which indicates that algorithmic traders are 

informed traders.  

 Furthermore, the analysis of algorithmic trading initiated by institutional and 

foreign investors are conducted to study the effect associated with each type of 

investors. Algorithmic trading initiated by institutional and foreign investors and their 

interaction term all deteriorate liquidity. One standard deviation increase in algorithmic 

trading initiated by institutional investors increases effective half spread by 8.12 percent 

from its mean, decreases share turnover by 52.27 percent from its mean and increases 

Amihud’s illiquidity estimate by 49.92 percent from its mean. One standard deviation 

increase in algorithmic trading initiated by foreign investors increases effective half 

spread by 10.91 percent from its mean, decreases share turnover by 61.36 percent from 

its mean and increases Amihud’s illiquidity estimate by 30.12 percent from its mean. 

One standard deviation increase in the interaction term increases effective half spread 

by 3.19 percent from its mean, decreases share turnover by 4.78 percent from its mean 

and increases Amihud’s illiquidity estimate by 16.02 percent from its mean. 

Clearly, algorithmic trading initiated by foreign investors has more profound 

effects in decreasing liquidity in the short run in term of share turnover and effective 

half spread than algorithmic trading initiated by institutional investors has. Many 

researches (Kim & Yi (2015) and Seashole (2004)) showed that foreign investors 

possess information advantages and are better-informed investors, compared to other 

types of investors. Therefore, as foreign investors are better-informed, trading with 

algorithmic initiated by foreign investors exacerbates information asymmetry.  

 In the longer run, the interaction between algorithmic trading initiated by both 

investors increases liquidity ratio while algorithmic trading initiated by both types of 

investors and its interaction term augment the illiquidity estimate, inferring that even in 

the long run, liquidity is distorted due to algorithmic traders. In contrary, algorithmic 

trading initiated by institutional investors has more effect in distorting liquidity in term 
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of increasing Amihud’s illiquidity estimate than algorithmic trading initiated by foreign 

investors has. 

 In addition, I investigated the effect of algorithmic trading on liquidity during 

the volatile period. Similar results prevail during the volatile period and furthermore, 

the effect is larger during the volatile period than during the entire period. In particular, 

algorithmic traders increase effective half spread by 13.02 percent from the mean, 

which is more than during the entire period (11.49 percent from the mean). Algorithmic 

trading decreases share turnover by 83.74 percent from the mean during the volatile 

period which is less than during the entire period (103 percent from the mean). 

Therefore, algorithmic traders contribute in distorting liquidity during the volatile 

period, worsening the market quality. However, it should be noted that the effect of 

algorithmic trading on share turnover is lower during the volatile period than during the 

entire period. Therefore, it shows that algorithmic traders do not withdraw from the 

market but require larger spread during the volatile period. This also corresponds with 

the larger average value of the algorithmic trading proxy during the volatile period. 

During the volatile period, algorithmic trading initiated by foreign investors also plays 

more role in distorting liquidity in term of enlarged effective spread and share turnover.  

 All in all, all types of algorithmic trading proxy exhibit negative relationship 

with liquidity. The understanding on the role of algorithmic trading on liquidity is 

essential to ensure healthy market quality for all types of investors.   
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CHAPTER 5 

 

THE IMPACT OF ALGORITHMIC TRADING ON PRICE 

EFFICIENCY 

 

5.1  Introduction 

 

The role of financial markets is to ensure that prices are efficient. Therefore, 

price efficiency is an essential concept for market quality. Price efficiency allows 

efficient capital allocation and risk management. This eventually contributes to 

economic growth. Price efficiency reflects the degree in which the asset prices 

incorporate all available information in term of both speed and accuracy (Chordia & 

Swaminathan, 2000). It also identifies the level of mispricing in the securities. To 

capture the market quality, one needs to understand price efficiency as well because 

liquidity measures do not capture the information component of the market quality. For 

example, narrow bid-ask spread without the participation of informed traders does not 

contain information. O’ Hara (2003) argued that liquidity represents the transaction cost 

and price discovery represents the risk. Liquidity and price discovery are, therefore, 

associated with asset pricing. Traditional asset pricing models assume symmetric 

information. 

However, information is diverse among agents. Furthermore, stock prices do 

evolve and respond to information. Price formation is the process in which new 

information incorporates into prices, or how “latent demands are translated into realized 

prices and volumes,” (Madhavan, 2002). Grossman and Stiglitz (1980) theorized that 

the prices set by informed investors convey information to the noise or uninformed 

investors. Therefore, the cause of price inefficiency is market imperfection such as 

information asymmetry.   

The increase in algorithmic trading activities raise questions about their impact 

on price efficiency. Algorithmic trading (AT) has many features which may affect price 
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efficiency. First, algorithmic traders obtain and route orders in a very rapid manner. 

The reduction in latency enables algorithmic trades not only to respond rapidly to the 

fundamental information, but also to gather high-frequency information such as order 

books. Algorithmic traders monitor the market closely and detect when the stock prices 

deviate from the efficient prices and take the position to profit from their trades. They 

can also access the market easily and thus, can adjust their portfolio more promptly 

upon the arrival of new fundamental information. Therefore, algorithmic trading 

enhances price efficiency by increasing price discovery.  

Second, their holding periods are very short and typically result in zero net 

position at the end of the trading day. Classical finance would suggest that as long as 

the traders are rational, the holding periods are independent of the prices. Hasbrouck 

(1988) found that the relationship between trades and quote revision convey 

information. However, Froot, Scharfstein, and Stein (1992) showed that a market with 

many short-horizon traders is less efficient because traders trade on the information 

which is not related to fundamentals. 

Third, they utilize different venues and co-locations in order to reduce latency. 

This should help to facilitate price efficiency. Fourth, their orders are typically small-

sized. Numerous researches establish a positive relationship between trade size and 

price discovery. Easley and O’ Hara (1987) and Glosten (1989) found that the larger 

the trade is, the bigger the information it contains. Hasbrouck (1988) also presented a 

strong evidence that the larger the volume the trade is, the more information it contains. 

Fifth, algorithmic trading impairs price efficiency by increasing the noise in the market 

as algorithmic traders are associated with higher adverse selection cost and extreme 

volatility.  

Therefore, our research questions become: 

RQ# 1: What is the effect of algorithmic trading on price efficiency?  

RQ# 2: Is there a causal relationship between algorithmic trading and price 

efficiency? 

RQ# 3: What are the effects of algorithmic trading initiated by each type of 

investors on price efficiency? 

RQ# 4: What is the effect of algorithmic trading on price efficiency during the 

volatile period?  
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RQ# 4: What are the effect of algorithmic trading initiated by institutional and 

foreign investors on price efficiency during the volatile period?  

These questions are important for the regulators to ensure that the algorithmic 

traders do not hinder the price efficiency process.  

 

5.2  Literature Review 

 

In a continuous-time and no-arbitrage market, price changes are due to return 

innovation. There are two dimensions regarding the price efficiency. One is the process 

in which market participants incorporate existing information into securities prices. 

Another is the process in which the market participants acquire new information about 

securities and then use that information to incorporate into prices. While traders 

incorporate existing information into prices, price efficiency may be diminishing due 

to reducing information acquisition (Fama, 1970). Admati and Pfleiderer (1988) stated 

that given informed investors with homogeneous information set, an increase in number 

of informed traders benefits liquidity traders. On the contrary, the informed investors 

with heterogenous information set increase adverse selection costs.  

  Several models are developed to explain the relationship between algorithmic 

traders and price discovery. Jovanovic and Menkveld (2016) modelled two 

characteristics of high frequency traders, which are 1) high frequency traders as market 

makers who provide liquidity and 2) high frequency traders who acquire and process 

information in a very rapid manner. They found that high frequency traders can avoid 

adverse selection costs, the major costs faced by traditional market makers, by 

increasing their participation during high information periods. By doing so, they impose 

adverse selections to other types of investors, which eventually lower trades.  

Researchers found that algorithmic trading is associated with price 

informativeness. Biais et al. (2015) revealed that high frequency traders accelerate the 

incorporation of information into prices because of their superior signal processing 

abilities. Zhang (2018) provided the evidence that high frequency traders incorporate 

hard information into prices at higher speed and are more likely to trade. Therefore, 

they contribute to more efficient information. Hendershott and Moulton (2011) found 

that HFT is associated with a decrease in the noise component of the prices.  
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Empirical papers find that algorithmic trading contributes to enhanced price 

efficiency. Brogaard et al. (2014) confirmed the result previously modelled by 

Jovanovic and Menkveld (2016). High frequency traders gather public information and 

then, pass on adverse selection costs onto other market participants through their 

liquidity supplying high frequency trading. On the other hand, the liquidity demanding 

high frequency traders trade in the same direction as the efficient price and in different 

direction from the transitory pricing error. Hence, this increases price efficiency, but 

lessens market efficiency. Brogaard et al. (2014) showed that high frequency traders 

enhance price efficiency by trading in the same direction with information. Hendershott 

and Riordan (2009) utilized the data with an identification of the trades with fee rebates 

which are designated for algorithmic trading. They presented the evidence that 

algorithmic traders closely monitor the market-liquidity and short-run price 

predictivity. Therefore, as liquidity demanders, algorithmic traders can determine 

whether prices deviate from the fundamental values. And, in response, they adjust their 

orders according to the arrival of new information. This, as a result, moves the prices 

towards the efficient prices. Their trades resulted in a 20% increase in permanent price 

impact and a 40% increase in information. In the foreign exchange, algorithmic trading 

also improves price efficiency (Chaboud et al., 2014) 

Besides increasing price efficiency, algorithmic trading is also linked to price 

discovery. Hendershott et al.  (2011) implemented a vector autoregression to investigate 

the relationship between algorithmic trading and price discovery. They found that an 

increase in algorithmic trading increases quote informativeness because algorithmic 

traders monitor the order flow and price information closely and update their orders 

quickly. Therefore, their limit orders always reflect all the available data. As a result, 

their adverse selection cost is reduced as evident in Hendershott et al.’ findings. Riordan 

and Storkenmaier (2012) investigated the effect of algorithmic trading on price 

discovery upon the reduction of system latency of the exchange. Using the Hasbrouck 

(1991a)’s cumulative impulse response function and the variance decomposition, they 

found that price discovery was improved from 43% to 90% which is the result of more 

informative quotes posted by the liquidity suppliers. Algorithmic traders search the 

market for price deviation and place the orders to gain profits. In the meantime, this 

helps to increase the market efficiency.  
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On the contrary, Zhang (2010) found a negative relationship between HFT and 

price discovery. Upon the arrival of fundamental news, stock prices are overshot when 

HFT activities are high. This is because HFT only focuses on the order flow, but not 

the real fundamental information. Along the same line, Weller (2017) presented the 

evidence that algorithmic trading reduces the price informativeness. Gider, Schnickler, 

and Westheide (2016) reported decreased market efficiency in association with high 

frequency trading using the method proposed by Bai, Philippon, and Savov (2016). 

They measure the amount in which the current stock prices predict future earnings. This 

affirms that HFT can only predict the order flows and thus, they do not have the 

motivation to seek fundamental information. 

 

5.3  Sample and Methodology 

 

5.3.1  Algorithmic Trading Measurement 

  I measured the algorithmic trading activities by implementing the method 

proposed by Hendershott et al. (2011). They proposed a normalized message traffic as 

a proxy for AT activities because AT is associated with increasing the number of orders 

submitted to the market while the ratio of order executed to the order submissions 

reduces. Therefore, the normalized message traffic or AT proxy can be computed by: 

𝐴𝑇𝑖𝑡 =  −
𝑉𝑖𝑡

𝑀𝑇𝑖𝑡
 

(5.1) 

where 𝐴𝑇𝑖𝑡 is the algorithmic trading proxies for stock 𝑖 for day 𝑡, 𝑉𝑖𝑡 is the trading 

volume for stock 𝑖 for day 𝑡 and 𝑀𝑇𝑖𝑡 is the message traffic, which include all order 

submissions and transaction for stock 𝑖 for day 𝑡. 

 

5.3.2  Price Efficiency Measurement 

  I used the standard deviation of the pricing error as the measurement of price 

efficiency. Hasbrouck (1993) introduced a method to measure the standard deviation of 

pricing error (See appendix C-1 for the derivation). The return and the signed trade 

variables can be constituted as the functions of the current and lagged innovative 

disturbances. Therefore, the vector moving average models become: 
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𝑟𝑡 =  ∑ 𝑎𝑖
∗𝑣1,𝑡−𝑖

10

𝑖=0

+ ∑ 𝑏𝑖
∗𝑣2,𝑡−𝑖

10

𝑖=0

, 
(5.2) 

𝑥𝑡 =  ∑ 𝑐𝑖
∗𝑣1,𝑡−𝑖

10

𝑖=0

+ ∑ 𝑑𝑖
∗𝑣2,𝑡−𝑖

10

𝑖=0

, 
(5.3) 

where 𝑟𝑡 is the return (𝑝𝑡 − 𝑝𝑡−1) and for the purpose of this framework, 𝑥𝑡 is the signed 

of the volume of trade variable. As the pricing error is defined as the function of 

information-correlated and information-uncorrelated terms, the pricing error variance 

is: 

𝜎𝑠
2 =  𝛼2𝜎𝑠

2 + 𝜎𝜂
2, (5.4) 

  For the ease of computation, by imposing the Beveridge and Nelson (1981) 

restriction, I used the standard of pricing error as the measure of pricing efficiency. 

Hasbrouck (1993) established the lower bound for the variance of pricing error (𝜎𝑠
2) 

as: 

𝑉𝐴𝑅(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟) = 𝜎𝑠
2 =

∑ [− ∑ 𝑎𝑘
∗∞

𝑘=𝑗+1 − ∑ 𝑏𝑘
∗∞

𝑘=𝑗+1 ]∞
𝑗=0 𝐶𝑜𝑣(𝑣) [

− ∑ 𝑎𝑘
∗∞

𝑘=𝑗+1

− ∑ 𝑏𝑘
∗′∞

𝑘=𝑗+1

]. 

(5.5) 

 

 

 

5.3.3  Model Specification 

5.3.3.1  Linear Regression Model 

To analyze the relationship between algorithmic trading and price 

efficiency, a panel data analysis is performed by using the pooled ordinary least square. 

Thus, the model specification is: 

        𝑆𝐷(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟)𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 +

𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝜀𝑖𝑡    

(5.6) 

The description of dependent and independent variables is listed on Table 5.1.  
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Table 5.1  Description of the Variables 

 

Variables Description 

Dependent  

SD(PRICING ERROR) The standard deviation of pricing error which is the 

price efficiency measure 

Independent  

AT Algorithmic trading. The negative ratio of the volume 

traded to the traffic messages 

VOLATILITY Daily realized volatility with the sampling frequency 

of five minutes 

PRICE The daily average price traded 

MARKET CAP Market capitalization is the total market value of the 

company’s outstanding shares 

TURNOVER Share turnover is the total number of shares traded by 

the average number of shares outstanding over a period 

 

Following Hendershott et al. (2011), the control variables are volatility, 

the natural logarithmic of market capitalization, the inverse of price and share turnover. 

Control variables are the variables that might affect price efficiency. I included these 

variables in the model in order to isolate the effect of algorithmic trading on price 

efficiency. For volatility, I used the realized volatility whereas for the inverse of price, 

I used the inverse of average price. Daily realized volatility is computed by: 

𝑅𝑉𝑖𝑡 =  √
∑ (𝑅𝑖𝑡 − �̅�)2𝑑

𝑡=1

𝑑 − 1
, 

(5.7) 

where 𝑅𝑉𝑖𝑡 is the realized volatility, �̅� is the mean stock return and 𝑑 is the number of 

periods during the measured time. Furthermore, the variance inflation factor (VIF) is 

computed to assure that there is no multicollinearity. 

The multiple regression analysis is used to investigate whether there is 

no relationship between algorithmic trading and price efficiency. So, the null 

hypothesis becomes: 
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H0: 𝛽1 = 0 

Ha: 𝛽1 is not equal to 0. 

The pooled OLS regression analysis assumes that there is no 

heterogeneity. As the panel data is subjected to heterogeneity, I applied two measures 

to examine this problem. First is the plot of the mean across individual effect and time 

effect. Second, I employed the restricted F-test to assess whether there is heterogeneity. 

To alleviate the heterogeneity, I implemented the fixed-effects and the random-effects 

models. Therefore, the fixed-effects model becomes: 

         𝑆𝐷(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝛽1𝐴𝑇𝑖𝑡

̅̅ ̅̅ ̅ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝜀𝑖𝑡,   

(5.8) 

where 𝑆𝐷(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟)𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean-corrected value for the standard deviation of 

the pricing error for stock i on day t and 𝐴𝑇𝑖𝑡
̅̅ ̅̅ ̅ is the mean-corrected value for the 

algorithmic trading proxy for stock I on day t. For control variables, 𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,

(
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
, 𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the mean-corrected values for 

the realized volatility, the inverse of average price, the natural logarithm of market 

capitalization and the share turnover.  

The random-effects model is specified as: 

        𝑆𝐷(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟)𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 +

𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝑤𝑖𝑡    

(5.9) 

where  

𝑤𝑖𝑡 =  𝜀𝑖 + 𝑢𝑖𝑡    (5.10) 

where 𝑤𝑖𝑡 is the composite error.  

As a result, the fixed-effects and the random-effects for the individual-

effect, the time-effect and the twoways-effect are conducted. The restricted F-test and 

the Hausman test are used to determine the appropriate estimation techniques.   

Literature review conveys that mostly, algorithmic trading is associated 

with higher price efficiency. Therefore, I hypothesized that algorithmic trading has a 

positive effect on price efficiency.  
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5.3.3.2  Two-stage Least Squares Estimation 

Various researchers found that algorithmic trading causes an 

improvement in price efficiency; while Han, Tang, and Yang (2016) suggested that 

information attracts more traders. Therefore, algorithmic trading and price efficiency 

may be endogenous variables. To establish the causal relationship between algorithmic 

trading and price efficiency and to eliminate the effect of endogeneity, the two-stage 

least squares regression is estimated. As the previous section, the occurrence of the 

market behavior of the algorithmic trading is used as an instrumental variable. 

Therefore, the instrumental variable is equal to 1 after October 2016 and 0 otherwise.  

The first stage regression can be expressed as:  

         𝐴𝑇𝑖𝑡
̂ = 𝛼 + 𝛽1𝐼𝑉𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽3 (

1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+

𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝜇𝑖𝑡.    

(5.11) 

 

In the second stage, the effect of algorithmic trading on price efficiency 

model can be estimated using the following equation: 

         𝑆𝐷(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟)𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡
̂ + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 +

𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝜇𝑖𝑡    

(5.12) 

5.3.3.3  The Volatile Market 

To understand how the algorithmic traders help to incorporate 

information into prices with accuracy and speed when the market is volatile. Therefore, 

during the volatile period, which is in October 2016, I investigated the effect of 

algorithmic trading and price efficiency. The multivariate regression model is defined 

as: 

        𝑆𝐷(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟)𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 +

𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝛽5𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝜀𝑖𝑡    

(5.13) 

The model is to test the null hypothesis which is there is no relationship 

between algorithmic trading and price efficiency: 

H0: All 𝛽1 = 0 

Ha: 𝛽1 is not equal to 0. 
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Similar to the earlier methods, I used the pooled ordinary least square, 

the fixed effects model and the random effects model to test the null hypothesis for both 

models. Then, the restricted F-test and the Hausman test are used to select the proper 

model.  

 

5.3.4  Model Extension 

 Similar to the previous section, I extended the algorithmic trading proxy to 

compute the algorithmic trading initiated by the institutional and foreign investors. I 

reckoned that most of algorithmic trading traffic are generated by institutional and 

foreign investors due to their access to the direct market access (DMA) and their 

technological investment. Therefore, algorithmic trading initiated by institutional 

investors is calculated by: 

𝐴𝑇𝑖𝑡
𝐼 =

−𝑉𝑖𝑡
𝐼

𝑀𝑇𝑖𝑡
𝐼  

(5.14) 

And, the daily algorithmic trading initiated by foreign investors is measured as: 

𝐴𝑇𝑖𝑡
𝐹 =

−𝑉𝑖𝑡
𝐹

𝑀𝑇𝑖𝑡
𝐹  

(5.15) 

where 𝐴𝑇𝑖𝑡
𝐼  and 𝐴𝑇𝑖𝑡

𝐹 are the proxies for the algorithmic trading initiated by institutional 

and foreign investors respectively. 𝑉𝑖𝑡
𝐼  and 𝑉𝑖𝑡

𝐹 are the trading volumes in Thai Baht 

initiated by institutional and foreign investors respectively. 𝑀𝑇𝑖𝑡
𝐼  and 𝑀𝑇𝑖𝑡

𝐹 are the 

message traffic for stock 𝑖 on day 𝑡 by institutional and foreign investors respectively. 

 As algorithmic trading initiated by institutional and foreign investors take place 

synchronously, I included the interaction term into the model as well. Consequently, 

the multivariate regression models can be written as: 

        𝑆𝐷(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟)𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡
𝐼 + 𝛽2𝐴𝑇𝑖𝑡

𝐹 + 𝛽3𝐴𝑇𝑖𝑡
𝐼 𝐴𝑇𝑖𝑡

𝐹  +

𝛽4𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 + 𝛽5 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽6𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 +

𝛽7𝑇𝑈𝑅𝑁𝑂𝑉𝐸𝑅𝑖𝑡 +  𝜀𝑖𝑡    

(5.25) 

This specification is used to test the following null hypothesis.  

H0: 𝛽1 =𝛽2 = 𝛽3 = 0  

Ha: 𝛽1, 𝛽2, 𝛽3 are not equal to 0.  
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5.3.5  Descriptive Statistics 

  I eliminated all the stocks with incomplete data and eliminated the 2.5% 

outliers. The descriptive statistics is shown in Table 5.2. On average, the standard 

deviation of the pricing error is 0.0147. The mean algorithmic trading proxy is -37.4513 

and the standard deviation of 28.2685. Furthermore, the mean algorithmic trading 

initiated by institutional investors is -89.1487 with the standard deviation of 80.1204. 

Additionally, the average value of the algorithmic trading initiated by foreign investors 

proxy is -35.1460 and its standard deviation is equal to 37.8699. 

 

Table 5.2  Descriptive Statistics  

 

Variables Mean Median Std. Dev. Min. Max. 

Standard deviation of pricing 

error 

0.0147 0.0105 0.0147 0.0002 0.2236 

Algorithmic trading proxy 

(all) 

-37.4513 -29.1201 28.2685 -141.7540 -1.0417 

Algorithmic trading proxy 

(institutional investors) 

-89.1487 -65.6454 80.1204 -762.6927 -0.0037 

Algorithmic trading proxy  

(foreign investors) 

-35.1460 -21.8087 37.8699 -405.3131 -0.0021 

Control Variables      

Natural logarithm of market 

capitalization 

14.1114 14.0692 1.2268 8.2669 17.2062 

Realized volatility (%) 0.4103 0.3932 0.1526 0 3.1380 

Share turnover 0.0047 0.0026 0.0079 2.3600x10-5 0.3259 

The inverse of share price 

(1/Baht) 

0.1092 0.0517 0.1398 0.0019 0.9302 

 

 To provide the linkage of the effect of algorithmic trading on price efficiency 

during the volatile period, the dataset during October 2016 is employed. The descriptive 

statistics during that period is summarized in Table 5.3. The standard deviation of 

pricing error averages at 0.0148. The algorithmic trading proxy has the average of -

38.7764 with the standard deviation of 28.2461. The algorithmic trading initiated by 
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institutional and foreign investors proxies have the mean value of -90.2951 and -

34.9389 with the standard deviation of 79.6655 and 356989 respectively. 

 

Table 5.3  Descriptive Statistics for the Volatile Period 

 

Variables Mean Median Std. Dev. Min. Max. 

Standard deviation of 

pricing error 

0.0148 0.0109 0.0136 0.0007 0.1544 

Algorithmic trading proxy 

(all) 

-38.7764 -31.2157 28.2461 -141.7540 -2.1917 

Algorithmic trading proxy 

(institutional investors) 

-90.2951 -67.2761 79.6655 -472.4223 -0.0246 

Algorithmic trading proxy  

(foreign investors) 

-34.9389 -21.8977 35.6989 -266.9184 -0.0393 

Control Variables      

Natural logarithm of 

market capitalization 

14.0997 14.0020 1.2225 8.2669 17.2062 

Realized volatility (%) 0.4621 0.4166 0.2506 0.1334 3.1380 

Share turnover 00054 0.0031 0.0074 6.76x10-5 0.0681 

The inverse of share price 

(1/Baht) 

0.1135 0.0529 0.1463 0.0019 0.8249 

 

5.4  Results and Discussion 

 

5.4.1  Correlation Analysis 

Table 5.4 displays the correlation analysis. Algorithmic trading is positively 

correlated with the standard deviation of the pricing error (r(19295) = 0.278 and p < 

0.01). Correspondingly, algorithmic trading initiated by institutional and foreign 

investors have the positive correlation with the standard deviation of the pricing error 

with the coefficient of 0.187 and 0.175 respectively. The control variables are positively 

correlated with realized volatility and the inverse of price and negatively correlated with 

the natural logarithm of the market capitalization and the share turnover. 
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Table 5.4  Correlation Matrix. *, ** and *** Denote Significance at the 10%, 5% and 1% Level 

 

 1 2 3 4 5 6 7 8 

1.  SD of pricing error 1        

2.  Algorithmic trading (all) 0.278*** 1       

3.  Algorithmic trading initiated by 

institutional investors 

0.187*** 0.830*** 1      

4.  Algorithmic trading initiated by 

foreign investors 

0.175*** 0.812*** 0.630*** 1     

5.  Volatility 0.284*** 0.062*** 0.035*** 0.083*** 1    

6.  Inverse of average price 0.510*** 0.307*** 0.226*** 0.193*** 0.141*** 1   

7.  Natural logarithm of market 

capitalization 

-0.238*** -0.620*** -0.552*** -0.549*** -0.197*** -0.310*** 1  

8.  Share turnover -0.053*** -0.263*** -0.225*** -0.243*** 0.319*** 0.094*** -0.112*** 1 

1
3
3
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Table 5.5 displays the correlation analysis during the volatile period. First, the 

correlation between algorithmic trading and the standard deviation of the pricing error 

is 0.259 with the confidence level of 99%. Second, the standard deviation of the pricing 

error are positively correlated with algorithmic trading initiated by institutional 

(r(1906) = 0.199 and p < 0.01) and foreign investors (r(1906) = 0.146 and p < 0.01) 

respectively. Third, the control variables exhibit the appropriate correlation signs with 

the standard deviation of the pricing error. The standard deviation of the pricing error 

is positively correlated with realized volatility and the inverse of the average price. The 

natural logarithm of market capitalization has a negative correlation with the standard 

deviation of the pricing error. Furthermore, there is no correlation between share 

turnover and the natural logarithm of market capitalization.  
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Table 5.5  Correlation Matrix during the Volatile Period. *, ** and *** Denote Significance at the 10%, 5% and 1% Level 

 

 1 2 3 4 5 6 7 8 

1.  SD of pricing error 1        

2.  Algorithmic trading (all) 0.259*** 1       

3.  Algorithmic trading initiated by 

institutional investors 

0.199*** 0.865*** 1      

4.  Algorithmic trading initiated by 

foreign investors 

0.146*** 0.794*** 0.653*** 1     

5.  Volatility 0.347*** 0.018 0.022 0.042* 1    

6.  Inverse of average price 0.504*** 0.304*** 0.241*** 0.165*** 0.120*** 1   

7.  Natural logarithm of market 

capitalization 

-0.238*** -0.616*** -0.581*** -0.560*** -0.173*** -0.332*** 1  

8.  Share turnover 0.0203 -0.263*** -0.239*** -0.213*** 0.352*** 0.235*** -0.185*** 1 

1
3
5
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5.4.2  The Effect and The Causal Relationship of Algorithmic Trading 

Proxy on Price Efficiency 

The regression coefficients are estimated using various estimation techniques 

as depicted in Table 5.6 (I included all variables as there is no multicollinearity problem 

– See appendix C-2 for the test). The result from Table 5.6 reveals that in some 

estimation models, the coefficients of the algorithmic trading proxy on the standard 

deviation of pricing error are significant whereas in other estimation models, the 

coefficients are insignificant. The plot of the mean, the restricted F-test and the 

Hausman test are used to determine the proper model (See appendix C-3 to C-5). 

Therefore, these two tests demonstrate that the two-way fixed-effect model is the best-

fitted model. The regression analysis connotes that there is no relationship between the 

algorithmic trading proxy and price efficiency.  

 

Table 5.6  Regression Coefficients of Algorithmic Trading Proxy and Control 

Variables on Standard Deviation of Pricing Error using the Pooled OLS, 

Individual Fixed-effects, Time Fixed-effects, Twoways Fixed-effects, 

Individual Random-effects and Time Random-effects Estimation 

Techniques. *, ** and *** Denote Significance at the 10%, 5% and 1% Level.  

 

 Pooled OLS Individual 

Fixed-Effects 

Time 

Fixed-Effects 

Twoways 

Fixed-Effects 

Intercept  0.0058*** 

(4.299) 

   

Algorithmic 

trading 

3.2165x10-5*** 

(7.284) 

9.2525x10-6 

(1.620) 

2.9079x10-5*** 

(6.564) 

7.1396x10-6 

(1.227) 

Volatility 0.0261*** 

(42.663) 

0.0169*** 

(24.520) 

0.0302*** 

(45.336) 

0.0205*** 

(26.002) 

The inverse of 

price  

0.0498*** 

(74.489) 

0.0726*** 

(14.697) 

0.0497*** 

(74.984) 

0.0803*** 

(15.986) 

Natural log of 

market cap 

-0.0003*** 

(-3.046) 

 -0.0003*** 

(-2.739) 

 



137 

   
 

Table 5.6  (Continued) 

 

 Pooled OLS Individual 

Fixed-Effects 

Time 

Fixed-Effects 

Twoways 

Fixed-Effects 

Share turnover -0.3178 

(-24.745) 

-0.2834*** 

(-18.974) 

-0.3219*** 

(-25.127) 

-0.2821*** 

(-18.830) 

Adjusted R2 34.15% 4.88% 34.56% 4.88% 

 Individual 

Random 

Effects 

Time  

Random 

Effects 

Intercept  0.0127** 

(2.450) 

0.0051*** 

(3.752) 

Algorithmic 

trading 

1.4437x10-5*** 

(2.594) 

3.1132x10-5*** 

(7.054) 

Volatility 0.0174*** 

(25.555) 

0.0274*** 

(43.649) 

The inverse of 

price  

0.0560*** 

(20.365) 

0.0498*** 

(74.818) 

Natural log of 

market cap 

-0.0006* 

(-1.743) 

-0.0003*** 

(-2.951) 

Share turnover -0.2843*** 

(-19.325) 

-0.3191*** 

(-24.909) 

Adjusted R2 6.98% 34.53% 

     

 An alternative method to assure the validity of our result is the two-stage least 

square analysis. Using the instrumental variable, the 2SLS result is presented in Table 

5.7. The first regression demonstrates that there is a relationship between algorithmic 

trading and instrumental variable. The second-stage regression furnishes identical 

outcome which is that there is no relationship between algorithmic trading and price 

efficiency.  
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Table 5.7  2SLS Analysis for the Impact of Algorithmic Trading Proxy on Price 

Efficiency. *, ** and *** Denote Significance at the 10%, 5% and 1%. 

 

 

Variable 

First Stage 

Algorithmic Trading 

Second Stage 

Standard deviation of 

pricing error 

Intercept 157.6557*** 

(76.673) 

0.00390 

(1.011) 

Instrumental Variable 0.8621** 

(2.563) 

 

Algorithmic trading  -1.8131x10-4 

(-0.742) 

Volatility -13.5453*** 

(-13.043) 

0.0181*** 

(5.368) 

The inverse of price  26.9689*** 

(23.063) 

0.0549*** 

(8.273) 

Natural log of market cap -13.6597*** 

(-101.555) 

-0.0031 

(-0.938) 

Adjusted R-squared 40.39% 17.83% 

 

5.4.3  The Effect of Algorithmic Trading Initiated by Institutional and 

Foreign Investors on Price Efficiency 

 As the algorithmic trading proxy may incorporate the message traffic from retail 

investors who also involve in submitting small-sized orders, I segregated the result by 

investigating the effect of algorithmic trading initiated by institutional and foreign 

investors on price efficiency. Table 5.8 illustrates the regression coefficients assessed 

by various methods. The pooled OLS slope coefficient of algorithmic trading initiated 

by foreign investors and the interaction term between algorithmic trading initiated by 

institutional and foreign investors are significantly negative.  

I selected the two-way fixed-effect estimation method to compute the 

relationship between algorithmic trading initiated by institutional and foreign investors 

and price efficiency (See appendix C-6 to C-8 for the selection tests). From the Table 
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5.8, the two-way fixed-effect model indicates that there are negative relationships 

between the algorithmic trading proxies and the standard deviation of pricing error. The 

slope coefficient of algorithmic trading initiated by institutional investors on the 

standard deviation of pricing error is -3.6473x10-6 with the t-value of -1.713. Therefore, 

when algorithmic trading initiated by institutional investors increases by one standard 

deviation, the pricing error decreases by 0.00029 standard deviation or 1.99 percent 

from the mean of the standard deviation of the pricing error. In addition, the standard 

deviation of the pricing error diminishes by 0.00059 or 4.01 percent from the average 

of the standard deviation of the pricing error due to an increase in algorithmic trading 

initiated by foreign investors by one standard deviation. The interaction between 

algorithmic trading initiated by institutional and foreign investors also declines by 

0.00014 or 0.95 percent from the average of the standard deviation of the pricing error 

due to the increase in the interaction term by one standard deviation. Therefore, 

increases in the algorithmic trading initiated by institutional and foreign investors 

proxies and their interaction term reduce the standard deviation of the pricing error and 

therefore, increase price efficiency.  

 

Table 5.8  Regression Coefficients of Algorithmic Trading Initiated by Institutional 

and Foreign Investors Proxy and Control Variables on Standard Deviation 

of Pricing Error Using the Pooled OLS, Individual Fixed-effects, Time 

Fixed-effects, Twoways Fixed-effects, Individual Random-effects And 

Time Random-effects Estimation Techniques. *, ** and *** Denote 

Significance at the 10%, 5% and 1% Level.  

 

 Pooled OLS Individual 

Fixed-Effects 

Time 

Fixed-Effects 

Twoways 

Fixed-Effects 

Intercept  0.0091*** 

(6.742) 

   

AT initiated 

by 

institutional 

investors 

-7.5794x10-7 

(-0.378) 

-5.2287x10-6** 

(-2.491) 

1.1904x10-6 

(0.590) 

-3.6473x10-6* 

(-1.713) 
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Table 5.8  (Continued) 

 

 Pooled OLS Individual 

Fixed-Effects 

Time 

Fixed-Effects 

Twoways 

Fixed-Effects 

AT initiated 

by foreign 

investors 

-1.6536x10-

5*** 

(-3.319) 

-1.8677x10-

5*** 

(-3.659) 

-1.3428x10-

5*** 

(-2.662) 

-1.5592x10-

5*** 

(-2.992) 

Interaction 

term 

-4.3083x10-8* 

(-1.732) 

-6.0099x10-8** 

(-2.355) 

-2.1068x10-8 

(-0.847) 

-4.5822x10-8* 

(-1.789) 

Volatility 0.0270*** 

(45.225) 

0.0169*** 

(25.102) 

0.0313*** 

(48.098) 

0.0206*** 

(26.664) 

The inverse of 

price  

0.0524*** 

(79.738) 

0.0781*** 

(15.505) 

0.0521*** 

(79.917) 

0.0849*** 

(16.613) 

Natural log of 

market cap 

-0.0007*** 

(-7.180) 

 -0.0006*** 

(-5.977) 

 

Share turnover -0.3555*** 

(-28.704) 

-0.3086*** 

(-21.530) 

-0.3540*** 

(-28.639) 

-0.3015*** 

(-20.923) 

Adjusted R2 35.98% 5.20% 36.46% 4.52% 

 Individual 

Random-

Effects 

Time 

Random-

Effects 

Intercept  0.0150*** 

(3.153) 

0.0082*** 

(6.068) 

AT initiated 

by 

institutional 

investors 

-3.7220x10-6* 

(-1.795) 

-1.8488x10-7 

(-0.092) 

AT initiated 

by foreign 

investors 

-1.5365x10-5*** 

(-3.040) 

-1.5629x10-5*** 

(-3.130) 
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Table 5.8  (Continued) 

 

 Individual 

Random-

Effects 

Time 

Random-

Effects 

Interaction 

Term 

-4.8324x10-8* 

(-1.908) 

-3.6754x10-8 

(-1.479) 

Volatility 0.0176*** 

(26.381) 

0.0282*** 

(46.098) 

The inverse 

of price  

0.0570*** 

(22.032) 

0.0523*** 

(79.929) 

Natural log 

of market 

cap 

-0.0009*** 

(-2.695) 

-0.0007*** 

(-6.847) 

Share 

turnover 

-0.3121*** 

(-22.136) 

-0.3549*** 

(-28.713) 

Adjusted R2 7.71% 36.31% 

 

5.4.4 The Effect of Algorithmic Trading on Price Efficiency during the 

Volatile Period 

I developed the empirical test using the multiple regression analysis in order to 

explore the relationship between algorithmic trading and price efficiency during the 

volatile period. Therefore, I implemented equation 5.13:  

        𝑆𝐷(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟)𝑖𝑡 = 𝛼 + 𝛽1𝐴𝑇𝑖𝑡 + 𝛽2𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐼𝑇𝑌𝑖𝑡 +

𝛽3 (
1

𝑃𝑅𝐼𝐶𝐸
)

𝑖𝑡
+ 𝛽4𝐿𝑁(𝑀𝐴𝑅𝐾𝐸𝑇 𝐶𝐴𝑃)𝑖𝑡 + 𝜀𝑖𝑡    

(5.13) 

Clearly, there is a relationship between algorithmic trading and price efficiency 

during the volatile period, as demonstrated in Table 5.9. All of the coefficients divulge 

a positive relationship between the standard deviation of the pricing error and the 

algorithmic trading proxy with the coefficient between 4.3653x10-5 and 7.4401x10-5. 

Consequently, three tests are conducted to identify the proper model to use and found 
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that the two-way fixed-effect model is the most appropriate model (See appendix C-9 

to C-11).  

The coefficient of algorithmic trading on the standard deviation of the pricing 

error during the volatile period is 5.1465x10-5. Thusly, one standard deviation increase 

in algorithmic trading implies an increase in the standard deviation of the pricing error 

by 0.0015 or 9.82 percent from the mean value of the standard deviation of the pricing 

error during the volatile period. Thus, algorithmic trading decreases price efficiency 

during the volatile period. 

 

Table 5.9  Regression Coefficients of Algorithmic Trading Proxy and Control 

Variables on Standard Deviation of Pricing Error Using the Pooled OLS, 

Individual Fixed-effects, Time Fixed-effects, Twoways Fixed-effects, 

Individual Random-effects And Time Random-effects Estimation 

Techniques during the Volatile Period. *, ** and *** Denote Significance at 

the 10%, 5% and 1% Level.  

 

 Pooled OLS Individual 

Fixed-Effects 

Time 

Fixed-Effects 

Twoways 

Fixed-Effects 

Intercept  -0.0032 

(-0.865) 

   

Algorithmic 

Trading 

7.4401x10-5*** 

(6.550) 

4.5270x10-5*** 

(2.809) 

7.3719x10-5*** 

(6.436) 

5.1465x10-5*** 

(3.002) 

Volatility 0.0163*** 

(16.078) 

0.0121*** 

(11.429) 

0.0215*** 

(15.351) 

0.0133*** 

(8.849) 

The inverse of 

price  

0.0409*** 

(22.420) 

-0.0011 

(-0.042) 

0.0406*** 

(22.474) 

0.0035 

(0.122) 

Natural log of 

market cap 

0.0006** 

(2.303) 

 0.0008*** 

(2.809) 

 

Adjusted R2 35.17% 2.30% 34.59% -1.85% 
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Table 5.9 (Continued) 

 

 Individual 

Random-

Effects 

Time 

Random-

Effects 

Intercept  0.0037 

(0.541) 

-0.0042 

(-1.140) 

Algorithmic 

Trading 

5.5353x10-5*** 

(3.906) 

7.4798x10-5*** 

(6.573) 

Volatility 0.0126*** 

(12.858) 

0.0175*** 

(15.736) 

The inverse 

of price  

0.0408*** 

(10.740) 

0.0408*** 

(22.471) 

Natural log 

of market 

cap 

0.0002 

(0.397) 

0.0007** 

(2.445) 

Adjusted R2 15.01% 35.10% 

 

5.4.5 The Effect of Algorithmic Trading Initiated by Institutional and 

Foreign Investors on Price Efficiency during the Volatile Period 

To delve further, I explored the effect of algorithmic trading initiated by 

institutional and foreign investors on price efficiency during the volatile period. 

Therefore, I employed various estimation techniques and listed the regression 

coefficients in Table 5.10. Like the previous section, I used the result from the two-

ways fixed-effect model and found that there is no relationship between all algorithmic 

trading proxies and the standard deviation of pricing error during the volatile period. 

This is important as it shows that a decrease in price efficiency is not due to algorithmic 

trading initiated by institutional and foreign investors. 
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Table 5.10  Regression Coefficients of Algorithmic Trading Initiated by Institutional 

and Foreign Investors Proxy and Control Variables on Standard Deviation 

of Pricing Error Using the Pooled OLS, Individual Fixed-effects, Time 

Fixed-effects, Twoways Fixed-effects, Individual Random-effects And 

Time Random-effects Estimation Techniques during the Volatile Period. 

*, ** and *** Denote Significance at the 10%, 5% and 1% Level.  

 

 Pooled OLS Individual 

Fixed-Effects 

Time 

Fixed-Effects 

Twoways 

Fixed-Effects 

Intercept  -0.0022 

(-0.565) 

   

AT initiated 

by 

institutional 

investors 

1.5467x10-5** 

(2.490) 

2.3227x10-7 

(0.034) 

1.8534x10-5*** 

(2.970) 

2.9779x10-6 

(0.419) 

AT initiated 

by foreign 

investors 

7.4231x10-6 

(0.509) 

-1.8813x10-5 

(-1.223) 

2.0599x10-5 

(1.394) 

-9.1544x10-6 

(-0.578) 

Interaction 

Term 

-3.7537x10-10 

(-0.005) 

-1.5494x10-7* 

(-1.868) 

6.7452x10-8 

(0.849) 

-1.1776x10-7 

(-1.402) 

Volatility 0.0016*** 

(15.865) 

0.0122*** 

(11.459) 

0.0217*** 

(15.352) 

0.0134*** 

(8.909) 

The inverse of 

price  

0.0439*** 

(23.585) 

-0.0193 

(-0.644) 

0.0436*** 

(23.624) 

-0.0140 

(-0.429) 

Natural log of 

market cap 

0.0004 

(1.552) 

 0.0007** 

(2.325) 

 

Adjusted R2 35.32% 2.59% 34.75% -1.91% 
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Table 5.10  (Continued) 

 

 Individual 

Random-

Effects 

Time 

Random-

Effects 

Intercept  0.0058 

(0.849) 

-0.0027 

(-0.698) 

AT initiated 

by 

institutional 

investors 

3.7853x10-6 

(0.575) 

1.5870x10-5** 

(2.554) 

AT initiated 

by foreign 

investors 

-1.1997x10-5 

(-0.810) 

9.0971x10-6 

(0.622) 

Interaction 

term 

-1.1981x10-7 

(-1.495) 

7.5568x10-9 

(0.096) 

Volatility 0.0124*** 

(12.769) 

0.0167*** 

(15.722) 

The inverse of 

price  

0.0042*** 

(11.206) 

0.0438*** 

(23.610) 

Natural log of 

market cap 

-7.8338x10-5 

(1.665) 

0.0005 

(1.161) 

Adjusted R2 15.51% 35.27% 

 

5.5  Conclusion 

 

 This chapter examines the impact of algorithmic trading on price efficiency in 

the Stock Exchange of Thailand. I implemented the multiple regression analysis. Two 

concerns arise including the multicollinearity and the heterogeneity issues. To eliminate 

heterogeneity, I implemented two-way fixed-effect regression analysis techniques. 

Furthermore, I conducted the two-stage least squares in order to establish the causality. 

It is interesting to understand the role of algorithmic trading on price efficiency during 
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the volatile period. Therefore, I conducted the empirical testing during the volatile 

period. Furthermore, I introduced the algorithmic trading initiated by institutional and 

foreign investors proxies to establish the relationship with price efficiency. 

 The empirical testing indicates that there is no relationship between algorithmic 

trading and price efficiency. I found negative relationships between the algorithmic 

trading initiated by institutional and foreign investors proxies and the standard 

deviation of pricing error-algorithmic trading initiated by institutional and foreign 

investors decrease pricing error. This is similar to the results by Brogaard et al. (2014) 

and Hendershott and Riordan (2009). Therefore, algorithmic trading initiated by 

institutional and foreign investors behave like informed investors, helping to improve 

price efficiency. Furthermore, the effect of algorithmic trading initiated by foreign 

investors on price efficiency is higher than the effect of algorithmic trading initiated by 

institutional investors on price efficiency. Overall, algorithmic trading has a beneficial 

role in improving price efficiency in term of achieving smaller pricing error. However, 

during the volatile period, the role of algorithmic trading on price efficiency is switched. 

It hinders price efficiency when the market is volatile; however, this is not because of 

algorithmic trading initiated by institutional and foreign investors. Algorithmic trading 

by institutional and foreign investors improve market quality by increasing price 

efficiency; however, when the market is volatile, their effects evaporate. 
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CHAPTER 6 

 

CONCLUSION 

 

 Chapter 3, 4 and 5 examine the effect of three algorithmic trading proxies on 

market quality i.e. volatility, liquidity and price efficiency. The models establish the 

causal relationship between algorithmic trading and volatility and liquidity, but not 

price efficiency. Algorithmic trading causes realized volatility and range-based 

volatility to decrease. When investigating the effect of algorithmic trading on volatility 

for each stock, in seventy-five percent of the stocks, algorithmic trading is associated 

with positive volatility and in the stocks where the regression coefficients are negative, 

the magnitude of coefficients are higher. Though algorithmic trading aggregately 

decreases volatility, it leads a larger portion of stocks to have higher volatility. 

Furthermore, algorithmic trading causes liquidity to be lower by widening effective 

spread and lowering share turnover. In the long run, algorithmic trading also deters 

liquidity by reducing liquidity ratio. Aggregately, there is no relationship between 

algorithmic trading and price efficiency.  

I further showed that the introduction of two additional algorithmic trading 

proxies could improve the comprehension of the effect of algorithmic trading on market 

quality. They are the algorithmic trading initiated by institutional investors proxy and 

the algorithmic trading initiated by foreign investors proxy. It is found that the average 

algorithmic trading initiated by foreign investors proxy is higher than the average 

algorithmic trading initiated by institutional investors proxy.  

Algorithmic trading initiated by institutional and foreign investors and their 

interaction reduce volatility. However, they increase effective spread and Amihud’s 

illiquidity estimate and reduce share turnover. Contradicting to the effect of aggregate 

algorithmic traders on price efficiency, algorithmic trading initiated by institutional and 

foreign investors and their interaction decrease pricing error, causing an improve in 

price efficiency. I also found that algorithmic trading initiated by institutional investors 

has higher effects in reducing volatility and long-term liquidity than algorithmic trading 
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initiated by foreign investors has. On the other hand, algorithmic trading initiated by 

foreign investors has higher effects in distorting short-term liquidity and increasing 

price efficiency than algorithmic trading initiated by institutional investors has, 

confirming the research by Kim and Yi (2015) and Seashole (2004) that foreign 

investors possess superior information. 

This may assert that algorithmic trading initiated by each type of investors is a 

better proxy to measure the effect of algorithmic trading on market quality as retail 

investors may exhibit the behaviors that are similar to algorithmic traders because their 

orders are small, but not fast. However, retail investors are often noise traders and their 

trade carry less information. 

In addition, I found that the effect of algorithmic trading on some parameters of 

the market quality changes when the market volatility changes. During the high-

volatility period, algorithmic trading also reduces range-based volatility. However, I do 

not find any evidence that algorithmic trading affects realized volatility during the high-

volatility period. Furthermore, algorithmic trading increases effective half spread, 

lowers share turnover and reduces liquidity ratio and exerts no impact on the Amihud’s 

illiquidity estimate. The magnitude of the effect of algorithmic trading on range-based 

volatility and liquidity is higher during the volatile period than during all periods. On 

the contrary, the effect of algorithmic trading on price efficiency is reverse when the 

market volatility is high. Algorithmic trading decreases price efficiency during the 

volatile period.  

During the volatile period, algorithmic trading initiated by foreign investors 

plays more roles in lowering realized volatility than algorithmic trading initiated by 

institutional investors does. Likewise, during the volatile period, algorithmic trading 

initiated by foreign investors plays more role in distorting liquidity in term of enlarged 

effective spread and share turnover. 

In conclusion, the results reveal that algorithmic traders are informed investors. 

On the other words, even when the informed investors such as institutional and foreign 

investors use technology to execute their order, their informational advantages do not 

change. They help to lower volatility and improve price efficiency. However, their 

participation increases information asymmetry and imposes adverse selection risks onto 

other traders. In response of higher risks, slower traders cease to participate in the stock, 



149 

   
 

resulting in lower share turnover. The presence of algorithmic traders conveys more 

information in prices, reducing pricing error and volatility.  

This study has some limitations due to the unavailability of the data. One is that 

as algorithmic trading activity is a proprietary data and is not directly observable, I used 

the proxy to estimate the amount of algorithmic trading instead. Second, the use of the 

normalized traffic message proxy reports only the aggregate data on the algorithmic 

trading activities. This, therefore, include all types of algorithmic trading strategies. As 

a result, the impact of algorithmic trading on the market quality might be dominant by 

certain type of algorithmic trading strategy (Biais & Foucault, 2014). Furthermore, as I 

utilized the normalized traffic message or the order-to-trade ratio as the measurement 

of algorithmic trading activities, this measurement might be biased as it focuses on 

certain attributes of algorithmic trading strategies. As the proprietary high frequency 

traders who consume liquidity tend to have a lower AT proxy than the market-making 

frequency traders who supply liquidity (Hagströmer & Nordén, 2013), the effect of 

algorithmic trading on market quality using the normalized traffic messages may 

provide more positive effect than actuality.  

Fourth, is that the study is conducted on the SET100 only and during the period 

of March to December 2016. Finally, due to the unavailability of the data, this study 

does not report the brokerage data. This research shed the light on the effect of 

algorithmic trading on market quality, which is particularly useful for regulators and 

investors. Future studies may be conducted to link the effect of algorithmic trading on 

asset pricing.  
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APPENDIX A 

 

THE IMPACT OF ALGORITHMIC TRADING ON VOLATILITY 

 

Appendix A-1   Multicollinearity Problem 

The variance inflation factor (VIF)  is computed to detect the multicollinearity. 

As all the scores of the VIF is lower than five, there is no evidence that there is 

multicollinearity in the variables. 

 

Algorithmic 

Trading 

Price-to-

book Ratio 

Share 

Turnover 

Inverse of 

Price 

Effective 

Half Spread 

Natural Log 

of Market 

Cap 

2.5400 1.0154 1.3097 1.1855 1.1403 2.3621 

 

Appendix A-2   Heterogeneity in the Volatility Data 

The mean plot of the one-minute realized volatility across individual  
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The mean plot of the five-minute realized volatility across individual 

 

The mean plot of the range-based volatility across individual 

 

The mean plot of the one-minute realized volatility across time  
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The mean plot of the five-minute realized volatility across time 

 

The mean plot of the range-based volatility across time 

 

 

Appendix A-3   Restricted F-Tests 

The restricted F-test for individual, time and two-way effects are displayed 

below, confirming that the two-way fixed-effect model is a better choice than the 

pooled OLS model. 

 

Restricted F-test for Individual Effects 

 Model 1 Model 2 Model 3 

F-statistics 53.056 33.501 32.343 

p-value < 0.01 < 0.01 < 0.01 
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Restricted F-test for Time Effects 

 Model 1 Model 2 Model 3 

F-statistics 54.473 37.869 34.152 

p-value < 0.01 < 0.01 < 0.01 

 

Restricted F-test for Individual and Time Effects 

 Model 1 Model 2 Model 3 

F-statistics 32.258 40.123 38.165 

p-value < 0.01 < 0.01 < 0.01 

 

Appendix A-4   Chi-square Statistics for Individual and Time Effects 

  

 Model 1 Model 2 Model 3 

Individual 

F-statistics 126.890 162.050 163.100 

p-value < 0.01 < 0.01 < 0.01 

Time 

F-statistics 570.600 69.020 64.217 

p-value < 0.01 < 0.01 < 0.01 

Two ways (Individual and Time) 

F-statistics 1185.600 2309.800 133.000 

p-value < 0.01 < 0.01 < 0.01 
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Appendix A-5   Regression Coefficients 

Within-group (Individual) Fixed-effect Regression Coefficients of Algorithmic 

Trading Proxy and Control Variables on Volatility Measures.  

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

𝐴𝑇𝑖𝑡 -1.8263 x 10-4*** 

(-7.571) 

-3.5488 x 10-4*** 

(-8.378) 

-3.8392 x 10-5*** 

(-7.321) 

Price-to-book ratio 0.0050*** 

(8.464) 

0.0034*** 

(3.313) 

0.0003** 

(2.528) 

Share turnover 5.0074*** 

(47.868) 

8.4570*** 

(46.042) 

1.5827*** 

(69.599) 

The inverse of 

price  

0.1168*** 

(3.874) 

0.4444*** 

(8.399) 

0.0658*** 

(10.047) 

Effective half 

spread  

0.5351*** 

(118.642) 

0.5007*** 

(63.228) 

-0.0054*** 

(-5.500) 

Natural log of 

market cap 

   

Adjusted R2 47.04% 26.07% 29.57% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 
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Within-group (Time) Fixed-effect Regression Coefficients of Algorithmic 

Trading Proxy and Control Variables on Volatility Measures.  

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

𝐴𝑇𝑖𝑡 8.9937x10-5*** 

(4.582) 

-9.9744x10-5*** 

(-3.249) 

-5.8968x10-6 

(-1.565) 

Price-to-book ratio 0.0020*** 

(15.526) 

0.0039*** 

(19.860) 

0.0007*** 

(27.303) 

Share turnover 6.2164*** 

(69.082) 

7.9812*** 

(56.694) 

1.2971*** 

(75.064) 

The inverse of 

price  

0.0513*** 

(14.335) 

-0.0064 

(-1.144) 

-0.0057*** 

(-8.332) 

Effective half 

spread  

0.6479*** 

(171.027) 

0.6392*** 

(107.844) 

-0.0006 

(0.374) 

Natural log of 

market cap 

0.0081*** 

(12.980) 

-0.0216*** 

(-21.970) 

-0.0018*** 

(-15.174) 

Adjusted R2 67.02% 51.18% 32.02% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 
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Random- effect ( Individual)  Regression Coefficients of Algorithmic Trading 

Proxy and Control Variables on Volatility Measures.  

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

Intercept  0.1013*** 

(3.031) 

0.5417*** 

(10.045) 

0.0389*** 

(5.642) 

𝐴𝑇𝑖𝑡 -1.7261x10-4*** 

(-7.243) 

-3.2215x10-4*** 

(-7.724) 

-3.3571x10-5*** 

(-6.489) 

Price-to-book ratio 0.0036*** 

(8.279) 

0.0024*** 

(3.249) 

0.0003*** 

(2.875) 

Share turnover 5.1020*** 

(49.219) 

8.3988*** 

(46.263) 

1.5577*** 

(69.195) 

The inverse of 

price  

0.0817*** 

(5.160) 

0.1237*** 

(4.763) 

0.0141*** 

(4.261) 

Effective half 

spread  

0.5416*** 

(121.030) 

0.5092*** 

(64.972) 

-0.0051*** 

(-5.278) 

Natural log of 

market cap 

-0.0005 

(-0.208) 

-0.0242*** 

(-6.534) 

-0.0015*** 

(-3.201) 

Adjusted R2 48.22% 27.33% 29.54% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 
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Random-effect (Time) Regression Coefficients of Algorithmic Trading Proxy 

and Control Variables on Volatility Measures.   

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

Intercept  -0.0360*** 

(-4.061) 

0.4876*** 

(34.844) 

0.0450*** 

(26.205) 

𝐴𝑇𝑖𝑡 8.4132x10-5*** 

(4.265) 

-1.0148x10-4*** 

(-3.285) 

-6.2025x10-6 

(-1.633) 

Price-to-book ratio 0.0020*** 

(15.342) 

0.0039*** 

(19.648) 

0.0007*** 

(26.957) 

Share turnover 6.3262*** 

(69.949) 

8.0712*** 

(56.982) 

1.3100*** 

(75.209) 

The inverse of 

price  

0.0518*** 

(14.346) 

-0.0059 

(-1.043) 

-0.0057*** 

(-8.161) 

Effective half 

spread  

0.6473*** 

(169.922) 

0.6382*** 

(107.005) 

-0.0007 

(-0.953) 

Natural log of 

market cap 

0.0081*** 

(12.796) 

-0.0216*** 

(-21.804) 

-0.0018*** 

(-15.018) 

Adjusted R2 66.93% 51.17% 32.57% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 
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Random-effect (Two-ways) Regression Coefficients of Algorithmic Trading 

Proxy and Control Variables on Volatility Measures.   

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

Intercept  0.1272*** 

(3.784) 

0.6078*** 

(11.318) 

0.0473*** 

(6.891) 

𝐴𝑇𝑖𝑡 -1.4174x10-4*** 

(-6.257) 

-2.9936x10-4*** 

(-8.126) 

-3.0324x10-5*** 

(-6.627) 

Price-to-book ratio 0.0049*** 

(11.622) 

0.0053*** 

(7.866) 

0.0007*** 

(7.782) 

Share turnover 4.3657*** 

(44.512) 

6.8812*** 

(43.152) 

1.3730*** 

(69.327) 

The inverse of 

price  

0.0463*** 

(2.957) 

0.0388 

(1.546) 

0.0035 

(1.100) 

Effective half 

spread  

0.5400*** 

(127.385) 

0.5167*** 

(74.963) 

-0.0048*** 

(-5.598) 

Natural log of 

market cap 

-0.0020 

(-0.867) 

-0.0285*** 

(74.936) 

-0.0021*** 

(-4.382) 

Adjusted R2 49.93% 30.25% 29.55% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 
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Appendix A-6   Regression Coefficients of Algorithmic Trading Proxy for Each  

                          Stock Using Ordinary Least Square Estimation Method 

 

 

 

Stock 

Model 1 

1-min realized volatility 

Model 2  

5-min realized volatility 

AAV 2.7931x10-5 

(0.091) 

-0.0002 

(-0.391) 

ADVANC 1.2248x10-5 

(0.135) 

5.5545x10-5 

(0.214) 

AMATA 0.0036*** 

(4.935) 

0.0022* 

(1.947) 

ANAN 0.0006 

(1.096) 

0.0007 

(0.571) 

AOT -8.0441x10-6 

(-0.135) 

5.9424x10-5 

(0.493) 

AP 0.0013** 

(2.177) 

0.0011 

(0.581) 

BA -5.4315x10-5 

(-0.212) 

-2.9969x10-5 

(-0.064) 

BANPU -0.0006*** 

(-3.222) 

-0.0009** 

(-2.231) 

BBL 0.0002*** 

(3.365) 

0.0004*** 

(3.322) 

BCP 0.0006 

(1.273) 

0.0001 

(0.169) 

BDMS 2.7863x10-5 

(0.292) 

0.0003** 

(2.065) 

BEAUTY 0.0011** 

(2.300) 

0.0011 

(1.249) 

BEC 0.0041*** 

(2.858) 

0.0062** 

(2.235) 
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Appendix A-6   (Continued) 

 

 

 

Stock 

Model 1 

1-min realized volatility 

Model 2  

5-min realized volatility 

BEM 1.2636x10-5 

(0.039) 

0.0015** 

(2.527) 

BH 0.0004** 

(2.052) 

0.0009** 

(1.979) 

BJCHI 0.0008 

(0.493) 

-0.0037 

(-1.063) 

BLA 0.0014*** 

(2.950) 

0.0015* 

(1.826) 

BLAND -0.0016*** 

(-3.688) 

-0.0022*** 

(-3.468) 

BTS 0.0006 

(1.123) 

0.0013 

(1.304) 

CBG 0.0003* 

(1.697) 

0.0010*** 

(3.075) 

CENTEL 0.0012** 

(2.538) 

0.0007 

(0.724) 

CHG -0.0004 

(-0.481) 

-0.0009 

(-0.763) 

CK -0.0008** 

(-2.296) 

-0.0003 

(-0.425) 

CKP -0.0002 

(-0.352) 

-0.0031*** 

(-2.664) 

CPALL 0.0003*** 

(3.684) 

0.0005*** 

(3.455) 

CPF -0.0003 

(-0.838) 

-0.0005 

(-1.040) 
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Appendix A-6   (Continued) 

 

 

 

Stock 

Model 1 

1-min realized volatility 

Model 2  

5-min realized volatility 

CPN 0.0009*** 

(7.288) 

0.0014*** 

(5.470) 

DELTA 0.0011*** 

(3.366) 

0.0018** 

(2.196) 

DTAC 0.0001 

(0.279) 

-0.0003 

(-0.990) 

EGCO 0.0004** 

(2.466) 

0.0011** 

(2.318) 

EPG -0.0006 

(-1.414) 

-0.0009 

(-1.085) 

GL -0.0007*** 

(-2.702) 

-0.0009 

(-1.474) 

GLOW 0.0014*** 

(5.210) 

0.0029*** 

(4.140) 

GPSC 2.4093x10-5 

(0.089) 

-0.0004 

(-0.927) 

GUNKUL 0.0010** 

(2.359) 

0.0013* 

(1.751) 

HANA 0.0046*** 

(5.647) 

0.0065*** 

(4.899) 

HMPRO 9.4516 x10-5 

(0.110) 

0.0001 

(0.080) 

ICHI -0.0027** 

(-2.135) 

-0.0050*** 

(-2.907) 

INTUCH 0.0004*** 

(3.128) 

0.0010*** 

(4.292) 
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Appendix A-6   (Continued) 

 

 

 

Stock 

Model 1 

1-min realized volatility 

Model 2  

5-min realized volatility 

IRPC -0.0011*** 

(-2.618) 

-0.0006 

(-0.966) 

ITD -0.0001 

(-0.179) 

0.0003 

(0.181) 

KBANK 0.0001** 

(2.496) 

0.0001 

(1.395) 

KCE 0.0012*** 

(4.361) 

0.0021*** 

(3.068) 

KKP 0.0005** 

(2.096) 

0.0013*** 

(2.721) 

KTB 0.0003 

(1.264) 

0.0002 

(0.537) 

KTC 0.0017*** 

(4.245) 

0.0035*** 

(3.791) 

LH 0.0012*** 

(2.844) 

0.0030*** 

(3.689) 

LHBANK 6.1090x10-5 

(0.155) 

-0.0011** 

(-2.068) 

LPN 0.0016* 

(1.756) 

0.0004 

(0.267) 

MAJOR 0.0029*** 

(8.891) 

0.0030*** 

(5.827) 

MINT 0.0011*** 

(3.798) 

0.0014** 

(2.465) 

PLANB -0.0003 

(-0.660) 

-0.0017* 

(-1.893) 



182 

   
 

Appendix A-6   (Continued) 

 

 

 

Stock 

Model 1 

1-min realized volatility 

Model 2  

5-min realized volatility 

PS -0.0003 

(-0.435) 

-0.0024** 

(-2.132) 

PTG 0.0011*** 

(2.740) 

0.0029*** 

(3.431) 

PTT 0.0001 

(3.640) 

0.0003*** 

(2.776) 

PTTEP -3.6627x10-5 

(-0.407) 

0.0003 

(1.292) 

PTTGC 0.0002 

(1.836) 

0.0004 

(1.333) 

QH -0.0004 

(-0.425) 

-0.0016 

(-1.308) 

ROBINS 0.0012*** 

(3.994) 

0.0019** 

(2.559) 

RS 0.0003 

(0.312) 

0.0003 

(0.145) 

S -0.0004 

(-0.609) 

-0.0022 

(-1.469) 

SAMART -0.0005 

(-0.616) 

-0.0015 

(-1.118) 

SAWAD 0.0004 

(1.126) 

0.0004 

(0.512) 

SCB 0.0003*** 

(4.358) 

0.0004*** 

(2.817) 

SCC 0.0003*** 

(6.134) 

0.0006*** 

(4.688) 
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Appendix A-6   (Continued) 

 

 

 

Stock 

Model 1 

1-min realized volatility 

Model 2  

5-min realized volatility 

SGP -0.0001 

(-0.179) 

-0.0001 

(-0.127) 

SIRI -0.0027** 

(-2.311) 

-0.0012 

(-0.659) 

SPALI 0.0009*** 

(3.102) 

0.0012** 

(2.527) 

SPCG 0.0008 

(0.781) 

0.0021 

(1.429) 

STEC -0.0010*** 

(-3.623) 

-0.0012** 

(-2.475) 

STPI -0.0024*** 

(-3.906) 

-0.0055*** 

(-3.304) 

SVI 0.0015* 

(1.675) 

0.0006 

(0.363) 

TASCO -0.0006 

(-1.203) 

-0.0005 

(-0.528) 

TCAP 0.0008** 

(2.504) 

0.0008* 

(1.699) 

THAI -0.0008*** 

(-3.089) 

-0.0008 

(-1.361) 

THCOM -0.0021*** 

(-4.294) 

-0.0028** 

(-2.293) 

TISCO 0.0012*** 

(4.082) 

0.0021*** 

(3.994) 

TMB -0.0004 

(-0.872) 

0.0004 

(0.599) 



184 

   
 

Appendix A-6   (Continued) 

 

 

 

Stock 

Model 1 

1-min realized volatility 

Model 2  

5-min realized volatility 

TOP 0.0003** 

(2.171) 

0.0007* 

(1.943) 

TPIPL -2.8097x10-5 

(-0.080) 

-0.0012** 

(-2.055) 

TRUE -5.4497x10-5 

(-0.326) 

-0.0001 

(-0.346) 

TTCL -0.0016*** 

(-3.553) 

-0.0034*** 

(-3.665) 

TTW 0.0044*** 

(3.264) 

0.0018 

(1.028) 

TU 0.0003 

(1.338) 

0.0012*** 

(2.990) 

UNIQ 0.0005 

(1.339) 

0.0005 

(0.586) 

VGI -0.0005 

(-0.253) 

-0.0020 

(-1.069) 

VNG -0.0002 

(-0.336) 

6.8724x10-5 

(0.073) 

WHA -0.0003 

(-0.560) 

-0.0002 

(-0.179) 

WORK -0.0004 

(-1.345) 

-0.0004 

(-0.667) 

 

Appendix A-7   Choi (2001)’s z Statistics for Panel Unit Roots 

 

1-minute realized 

volatility 

5-minute realized 

volatility 

Range-based 

volatility 

Algorithmic 

trading  

-1.8919** -2.0354** -7.8771*** -3.917*** 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1%. 
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Appendix A-8 Regression Coefficients of Algorithmic Trading Initiated by 

Institutional and Foreign Proxies for Each Stock Using Ordinary 

Least Square Estimation Method 

 

Stock AT_I  AT_F AT_I x AT_F AT_I  AT_F AT_I x AT_F 

AAV -0.0002* 

(-1.893) 

-0.0001 

(-0.599) 

-2.2x10-6 

(-1.566) 

-0.0006** 

(-2.282) 

-0.0011** 

(-2.229) 

-7.0x10-6** 

(-2.287) 

ADVANC -0.0001** 

(-2.374) 

-0.0003*** 

(-2.755) 

-9.5x10-7*** 

(-2.870) 

-0.0004*** 

(-2.886) 

-0.0010*** 

(-3.556) 

-3.5x10-6*** 

(-3.709) 

AMATA 0.0005** 

(2.441) 

0.0012 

(1.508) 

1.5x10-5 

(1.186) 

0.0003 

(0.857) 

0.0001 

(0.120) 

6.3x10-6 

(0.334) 

ANAN 0.0001 

(0.747) 

0.0005 

(1.515) 

1.6 x10-5** 

(2.135) 

8.3 x10-5 

(0.247) 

0.0008 

(1.221) 

3.3 x10-5** 

(2.052) 

AOT -2.4x10-5 

(-0.691) 

-7.1x10-6 

(-0.109) 

-9.4x10-8 

(-0.438) 

-4.1x10-5 

(-0.587) 

-0.0002 

(-1.174) 

-5.7x10-7 

(-1.313) 

AP -8.4x10-6 

(-0.052) 

-0.0005 

(-0.905) 

-6.8x10-6 

(-1.283) 

-0.0002 

(-0.496) 

-0.0003 

(-0.152) 

2.2x10-6 

(0.137) 

BA -0.0001 

(-1.410) 

-0.0003* 

(-1.745) 

-9.6x10-7 

(-0.959) 

-9.7x10-5 

(-0.710) 

-0.0004 

(-1.449) 

-3.8x10-6 

(-2.056) 

BANPU -5.7x10-5 

(-1.027) 

-0.0003** 

(-2.377) 

-1.0x10-6** 

(-2.259) 

6.7x10-5 

(0.580) 

5.2x10-6 

(0.019) 

-9.9x10-7 

(-1.076) 

BBL -3.1x10-5 

(-0.939) 

-2.7x10-5 

(-0.592) 

-6.1x10-7** 

(-2.588) 

1.7x10-5 

(0.233) 

-2.9x10-5 

(-0.295)) 

-7.7x10-7 

(-1.474) 

BCP -0.0001 

(-0.901) 

-0.0005 

(-1.271) 

-6.2x10-6** 

(-2.577) 

-0.0003* 

(-1.718) 

-0.0015*** 

(-2.792) 

-7.2x10-6** 

(-2.134) 

BDMS 2.6x10-5 

(0.532) 

1.9x10-5 

(0.215) 

-5.0x10-8 

(-0.085) 

0.0001 

(1.274) 

0.0003* 

(1.820) 

-1.1x10-7 

(-0.107) 

BEAUTY -8.1x10-5 

(-0.558) 

0.0004 

(1.315) 

-3.2x10-6 

(-0.938) 

3.2x10-5 

(0.119) 

0.0007 

(1.181) 

-4.4x10-6 

(-0.709) 

BEC 0.0001 

(0.174) 

0.0032** 

(2.235) 

2.7x10-6 

(0.063) 

0.0001 

(0.122) 

0.0044 

(1.566) 

1.3x10-5 

(0.149) 

BEM -9.6x10-5 

(-1.382) 

9.2x10-5 

(0.437) 

-1.3x10-6 

(-1.394) 

-0.0002* 

(-1.749) 

0.0002 

(0.448) 

-3.6x10-6** 

(-2.205) 

BH 4.9x10-5 

(0.463) 

0.0007** 

(2.595) 

1.7x10-6 

(0.853) 

-8.6x10-5 

(-0.377) 

0.0009 

(1.567) 

-2.9x10-7 

(-0.068) 

BJCHI 0.0002 

(0.625) 

5.2x10-5 

(0.050) 

-3.1x10-5 

(-0.679) 

-0.0009 

(-1.097) 

-0.0025 

(-1.152) 

-0.0001 

(-1.211) 
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Appendix A-8   (Continued) 

 

Stock AT_I  AT_F AT_I x AT_F AT_I  AT_F AT_I x AT_F 

BLA 9.6x10-5 

(0.563) 

0.0002 

(0.552) 

-5.6x10-5 

(-1.427) 

1.5x10-5 

(0.051) 

-0.0002 

(-0.308) 

-9.6x10-6 

(-1.443) 

BLAND -0.0003** 

(-2.369) 

-0.0001 

(-0.245) 

-6.1x10-6 

(-1.326) 

-0.0005** 

(-2.522) 

-0.0004 

(-0.605) 

-1.5x10-5 

(-2.129) 

BTS -1.7x10-5 

(-0.153) 

-0.0005* 

(-1.905) 

-4.9x10-6** 

(-2.318) 

-0.0004** 

(-2.012) 

-0.0013*** 

(-2.012) 

-1.4x10-5*** 

(-3.616) 

CBG -3.0x10-5 

(-0.375) 

9.0x10-5 

(0.288) 

-1.9x10-6 

(-1.020) 

-3.4x10-5 

(-0.190) 

0.0002 

(0.263) 

-6.7x10-6 

(-1.643) 

CENTEL 2.5x10-5 

(0.137) 

0.0006 

(1.235) 

-5.0x10-6 

(-0.877) 

-0.0003 

(-0.734) 

-0.0002 

(-0.257) 

-1.1x10-5 

(-1.010) 

CHG -0.0001 

(-0.628) 

0.0001 

(0.205) 

-7.7x10-6 

(-1.003) 

-0.0002 

(-0.828) 

0.0004 

(0.415) 

-2.6x10-6 

(-0.229) 

CK -0.0004*** 

(-3.937) 

-0.0007*** 

(-4.239) 

-4.4x10-6*** 

(-3.948) 

-0.0007*** 

(-3.542) 

-0.0011*** 

(-3.853) 

-7.5x10-6*** 

(-3.859) 

CKP -3.9x10-5 

(-0.280) 

-0.0012*** 

(-3.102) 

-1.6x10-5*** 

(-4.729) 

-0.0002 

(-0.793) 

-0.0022*** 

(-2.726) 

-2.4x10-5*** 

(-3.498) 

CPALL 3.2x10-7 

(0.008) 

-4.6x10-6 

(-0.047) 

-2.1x10-7 

(-0.736) 

1.9x10-5 

(0.235) 

7.7x10-5 

(0.406) 

-1.4x10-7 

(-0.264) 

CPF 1.2x10-5 

(0.101) 

-8.9x10-5 

(-0.366) 

4.8x10-7 

(0.438) 

-3.7x10-6 

(-0.022) 

4.4x10-5 

(0.128) 

5.2x10-8 

(0.034) 

CPN 0.0001* 

(1.658) 

0.0006*** 

(4.240) 

5.8x10-7 

(0.639) 

0.0001 

(0.781) 

0.0009*** 

(3.190) 

5.9x10-7 

(0.304) 

DELTA 0.0002 

(1.029) 

0.0014*** 

(3.010) 

1.1x10-5 

(1.339) 

6.7x10-5 

(0.122) 

0.0021* 

(1.876) 

7.8x10-6 

(0.372) 

DTAC -0.0002** 

(-1.987) 

-0.0003* 

(-1.748) 

-3.8x10-6*** 

(-3.407) 

-0.0004** 

(-2.526) 

-0.0009*** 

(-3.263) 

-6.4x10-6*** 

(-3.390) 

EGCO 2.3x10-5 

(0.264) 

0.0005* 

(1.923) 

1.1x10-6 

(0.476) 

3.0x10-5 

(0.114) 

0.0011 

(1.375) 

3.2x10-6 

(0.461) 

EPG 1.1x10-5 

(0.141) 

-0.0003 

(-0.989) 

-4.5x10-6* 

(-1.790) 

-0.0002 

(-1.152) 

-2.7x10-5 

(-0.048) 

-8.7x10-6* 

(-1.684) 

GL -0.0004*** 

(-3.321) 

-0.0008*** 

(-2.787) 

-1.5x10-5*** 

(-4.092) 

-0.0003 

(-1.237) 

-0.0003 

(-0.479) 

-1.4x10-5* 

(-1.678) 

GLOW 0.0002* 

(1.951) 

0.0005 

(1.490) 

-6.2x10-6 

(-1.234) 

0.0003 

(0.802) 

0.0004 

(0.453) 

-2.7x10-5** 

(-2.018) 
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Appendix A-8   (Continued) 

 

Stock AT_I  AT_F AT_I x AT_F AT_I  AT_F AT_I x AT_F 

GPSC -5.1x10-6 

(-0.075) 

4.9x10-5 

(0.169) 

-3.2x10-7 

(-0.251) 

-9.1x10-5 

(-0.791) 

7.3x10-6 

(0.015) 

-5.7x10-7 

(-0.268) 

GUNKUL 2.4x10-5 

(0.102) 

0.0006* 

(1.791) 

3.7x10-6 

(0.743) 

-0.0003 

(-0.677) 

0.0004 

(0.738) 

5.8x10-6 

(0.708) 

HANA 0.0011*** 

(3.605) 

0.0023*** 

(3.225) 

5.7x10-6 

(0.334) 

0.0012** 

(2.517) 

0.0014 

(1.236) 

-3.0x10-5 

(-1.115) 

HMPRO -0.0005 

(-1.616) 

-0.0007 

(-0.933) 

-1.1x10-5 

(-1.251) 

2.3x10-5 

(0.046) 

0.0008 

(0.601) 

1.0x10-5 

(0.672) 

ICHI 0.0001 

(0.455) 

-0.0001 

(-0.116) 

-9.8x10-6 

(-0.822) 

0.0002 

(0.711) 

-0.0007 

(-0.621) 

-1.1x10-5 

(-0.703) 

INTUCH -5.6x10-5 

(-1.098) 

-2.4x10-5 

(-0.259) 

-9.8x10-7** 

(-2.390) 

-8.9x10-5 

(-0.852) 

3.2x10-5 

(0.169) 

-1.7x10-6** 

(-2.052) 

IRPC -8.7x10-5 

(-0.685) 

-5.9x10-5 

(-0.160) 

5.3x10-7 

(0.199) 

-0.0002 

(-0.909) 

-0.0006 

(-1.169) 

-4.3x10-6 

(-1.107) 

ITD -0.0002* 

(-1.907) 

-0.0015*** 

(-3.603) 

-1.2x10-5*** 

(-5.098) 

-0.0004* 

(-1.835) 

-0.0035*** 

(-4.718) 

-2.6x10-5*** 

(-6.094) 

KBANK 2.3x10-5 

(0.606) 

2.0x10-5 

(0.328) 

-6.8x10-8 

(-0.342) 

6.0x10-5 

(0.633) 

7.9x10-5 

(0.506) 

1.3x10-8 

(0.026) 

KCE 9.9x10-5 

(1.494) 

0.0006*** 

(3.715) 

-1.6x10-6*** 

(-5.827) 

8.4x10-5 

(0.504) 

0.0012*** 

(3.023) 

-3.6x10-6*** 

(-5.357) 

KKP -3.3x10-5 

(-0.394) 

0.0002 

(0.686) 

-4.1x10-6** 

(-2.033) 

-3.4x10-5 

(-0.209) 

0.0006 

(1.187) 

-3.9x10-6 

(-1.013) 

KTB -1.9x10-5 

(-0.292) 

4.4x10-5 

(0.339) 

-4.9x10-7 

(-0.820) 

0.0001 

(1.093) 

-7.3x10-5 

(-0.379) 

-9.4x10-8 

(-0.107) 

KTC 0.0005*** 

(3.551) 

0.0012*** 

(3.035) 

2.0x10-5*** 

(3.471) 

0.0013*** 

(3.856) 

0.0032*** 

(3.385) 

5.1x10-5*** 

(3.796) 

LH 8.7x10-5 

(0.565) 

0.0001 

(0.372) 

-3.0x10-6 

(-1.175) 

0.0004 

(1.415) 

0.0008 

(1.233) 

-3.1x10-6 

(-0.634) 

LHBANK 0.0001 

(1.128) 

0.0006** 

(2.271) 

-6.8x10-7 

(-0.293) 

-4.3x10-6 

(-0.031) 

0.0001 

(0.252) 

-3.8x10-6 

(-1.141) 

LPN 9.7x10-5 

(0.609) 

-0.0002 

(-0.364) 

-2.0x10-6 

(-0.266) 

-9.2x10-5 

(-0.364) 

-1.7x10-6 

(-0.002) 

-6.0x10-6 

(-0.504) 

MAJOR 0.0005*** 

(3.786) 

0.0016*** 

(4.680) 

2.5x10-6 

(0.710) 

0.0006** 

(2.518) 

0.0022*** 

(4.114) 

5.4x10-6 

(0.958) 
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Appendix A-8   (Continued) 

 

Stock AT_I  AT_F AT_I x AT_F AT_I  AT_F AT_I x AT_F 

MINT 0.0005 

(1.560) 

0.0009** 

(2.515) 

5.5x10-7 

(0.246) 

0.0002 

(0.802) 

0.0014** 

(1.988) 

2.2x10-6 

(0.486) 

PLANB -2.7x10-5 

(-0.163) 

-0.0006 

(-1.068) 

-8.0x10-6 

(-1.100) 

-0.0002 

(-0.763) 

-0.0009 

(-0.828) 

-8.6x10-6 

(-0.677) 

PS 1.1x10-5 

(0.050) 

5.1x10-5 

(0.089) 

5.2x10-7 

(0.074) 

-0.0003 

(-1.086) 

-0.0009 

(-1.104) 

-1.9x10-6 

(-0.189) 

PTG -3.7x10-5 

(-0.298) 

5.4x10-4 

(1.077) 

1.2x10-6 

(0.330) 

0.0003 

(0.964) 

0.0013 

(1.203) 

5.7x10-6 

(0.703) 

PTT -2.0x10-5 

(-0.798) 

6.9x10-5 

(1.472) 

-1.3x10-7 

(-1.108) 

-1.9x10-5 

(-0.291) 

0.0002* 

(1.659) 

-2.5x10-7 

(-0.855) 

PTTEP -4.3x10-5 

(-0.990) 

-6.5x10-5 

(-0.572) 

-6.1x10-7 

(-1.382) 

-6.4x10-5 

(-0.584) 

-6.9x10-5 

(-0.239) 

-1.5x10-6 

(-1.307) 

PTTGC -5.4x10-5 

(-0.775) 

-5.0x10-6 

(-0.031) 

-7.8x10-7 

(-0.860) 

-5.9x10-5 

(-0.360) 

2.7x10-5 

(0.070) 

-1.5x10-6 

(-0.692) 

QH -8.4x10-5 

(-0.344) 

0.0007 

(1.077) 

-7.2x10-6 

(-0.662) 

-0.0003 

(-1.021) 

0.0003 

(0.366) 

-1.5x10-5 

(-1.073) 

ROBINS 3.0x10-5 

(0.236) 

0.0011** 

(2.186) 

-1.9x10-6 

(-0.345) 

-0.0003 

(-0.862) 

0.0016 

(1.323) 

-1.1x10-5 

(-0.803) 

RS 0.0002 

(1.050) 

-0.0005 

(-0.461) 

-1.0x10-5 

(-0.617) 

0.0004 

(1.149) 

8.4x10-5 

(0.044) 

1.3x10-6 

(0.045) 

S -0.0003* 

(-1.865) 

-0.0001 

(-0.462) 

-1.1x10-5** 

(-2.133) 

-0.0009* 

(-1.842) 

-0.0012 

(-1.553) 

-2.2x10-5* 

(-1.756) 

SAMART -0.0003** 

(-2.250) 

-4.4x10-5 

(-0.072) 

-1.1x10-5** 

(-2.084) 

-0.0006** 

(-2.384) 

-0.0012 

(-1.085) 

-2.7x10-5*** 

(-2.889) 

SAWAD 0.0001 

(0.533) 

2.0x10-5 

(0.062) 

-2.2x10-6 

(-0.691) 

0.0004 

(0.919) 

0.0001 

(0.194) 

-1.2x10-6 

(-0.161) 

SCB 1.8x10-5 

(0.583) 

8.7x10-6 

(0.136) 

-3.0x10-7 

(1.346) 

-0.0001 

(-1.586) 

-0.0002 

(-1.495) 

-1.6x10-6*** 

(-3.013) 

SCC -4.1x10-5 

(-1.121) 

1.5x10-5 

(0.206) 

-4.7x10-7** 

(-2.085) 

-0.0001 

(-1.303) 

5.9x10-5 

(0.319) 

-9.2x10-7* 

(-1.664) 

SGP -0.0002 

(-1.184) 

0.0009 

(1.500) 

-9.4x10-6 

(-1.327) 

-0.0004* 

(-1.737) 

0.0003 

(0.279) 

-1.8x10-5* 

(-1.752) 

SIRI -0.0003 

(-1.118) 

-0.0013** 

(-2.290) 

-1.7x10-5* 

(-1.900) 

-0.0004 

(-0.977) 

-0.0018** 

(-2.051) 

-2.2x10-5 

(-1.553) 
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Appendix A-8   (Continued) 

 

Stock AT_I  AT_F AT_I x AT_F AT_I  AT_F AT_I x AT_F 

SPALI 9.8x10-5 

(1.155) 

-9.0x10-5 

(-0.302) 

-7.1x10-6** 

(-2.138) 

-4.3x10-5 

(-0.303) 

-0.0007 

(-1.293) 

-2.0x10-5*** 

(-3.645) 

SPCG 4.6x10-6 

(0.019) 

0.0007 

(1.100) 

-2.7x10-5 

(-1.289) 

-0.0003 

(-0.714) 

0.0015 

(1.575) 

-2.2x10-5 

(-0.719) 

STEC -0.0003*** 

(-3.559) 

-0.0006*** 

(-3.237) 

-2.9x10-6 

(-2.505) 

-0.0004** 

(-2.260) 

-0.0010*** 

(-3.187) 

-5.1x10-6** 

(-2.357) 

STPI -0.0007*** 

(-4.199) 

-0.0012*** 

(-3.333) 

-3.2x10-5*** 

(-5.797) 

-0.0016*** 

(-3.252) 

-0.0022** 

(-2.243) 

-6.0x10-5*** 

(-4.010) 

SVI 0.0004* 

(1.833) 

0.0008*** 

(2.768) 

7.3x10-6 

(0.962) 

0.0002 

(0.531) 

0.0013** 

(2.448) 

1.9x10-5 

(1.323) 

TASCO -0.0005** 

(-2.076) 

-0.0007** 

(-2.377) 

-7.8x10-6** 

(-2.465) 

-0.0004 

(-1.108) 

-0.0009 

(-1.500) 

-1.1x10-5* 

(-1.947) 

TCAP 0.0001 

(0.984) 

0.0004 

(1.480) 

-7.8x10-7 

(-0.487) 

0.0001 

(0.881) 

0.0005 

(1.194) 

-1.4x10-7 

(-0.064) 

THAI -0.0003** 

(-2.455) 

-0.0004 

(-1.542) 

-1.3x10-6 

(-1.298) 

-0.0003 

(-1.168) 

-0.0005 

(-0.822) 

-2.2x10-7 

(-0.099) 

THCOM -0.0001 

(-1.157) 

0.0004 

(0.969) 

4.4x10-7 

(0.079) 

-0.0001 

(-0.441) 

0.0001 

(0.138) 

-9.7x10-6 

(-0.745) 

TISCO -2.2x10-5 

(-0.244) 

0.0003 

(1.638) 

-1.7x10-6 

(-1.555) 

-8.5x10-5 

(-0.550) 

0.0005* 

(1.884) 

-1.5x10-6 

(-0.783) 

TMB -0.0001 

(-0.848) 

-0.0003 

(-0.796) 

-3.0x10-6 

(-1.029) 

-0.0002 

(-0.783) 

-0.0006 

(-1.192) 

-6.6x10-6 

(-1.640) 

TOP 4.8x10-6 

(0.068) 

-0.0001 

(-0.546) 

-1.8x10-6 

(-1.280) 

2.5x10-7 

(0.001) 

-0.0005 

(-0.991) 

-5.6x10-6* 

(-1.694) 

TPIPL -0.0005*** 

(-3.865) 

-0.0008*** 

(-4.014) 

-5.8x10-6*** 

(-4.206) 

-0.0010*** 

(-4.440) 

-0.0014*** 

(-4.288) 

-9.2x10-6*** 

(-4.157) 

TRUE -0.0002*** 

(-3.318) 

-0.0003** 

(-2.598) 

-2.2x10-6*** 

(-3.552) 

-0.0004*** 

(-2.882) 

-0.0006** 

(-2.376) 

-4.2x10-6*** 

(-3.749) 

TTCL -0.0005*** 

(-3.344) 

-0.0010** 

(-2.358) 

-1.8x10-5*** 

(-3.147) 

-0.0010*** 

(-3.276) 

-0.0023** 

(-2.556) 

-3.7x10-5*** 

(-3.059) 

TTW 0.0008* 

(1.937) 

0.0036*** 

(2.744) 

3.6x10-5 

(1.212) 

0.0004 

(0.747) 

0.0013 

(0.718) 

2.6x10-5 

(0.659) 

TU 0.0001 

(1.080) 

0.0003 

(0.929) 

1.3x10-6 

(0.451) 

0.0004** 

(2.569) 

0.0013** 

(2.364) 

7.5x10-6 

(1.567) 
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Appendix A-8   (Continued) 

 

Stock AT_I  AT_F AT_I x AT_F AT_I  AT_F AT_I x AT_F 

UNIQ 4.2x10-5 

(0.507) 

-0.0005** 

(-2.218) 

-6.8x10-6*** 

(-3.122) 

-2.0x10-5 

(-0.104) 

-0.0013** 

(-2.455) 

-1.5x10-5*** 

(-3.077) 

VGI 2.3x10-5 

(0.057) 

-0.0020 

(-1.430) 

-3.4x10-5** 

(-2.159) 

-0.0004 

(-0.932) 

-0.0042*** 

(-2.963) 

-4.2x10-5*** 

(-2.699) 

VNG 0.0003** 

(2.133) 

0.0001 

(0.186) 

-2.6x10-6 

(-0.297) 

0.0007*** 

(3.032) 

0.0014 

(0.987) 

4.8x10-6 

(0.309) 

WHA -1.3x10-5 

(-0.115) 

-0.0003 

(-1.176) 

-5.6x10-6** 

(-2.341) 

-0.0001 

(-0.600) 

-0.0002 

(-0.356) 

-5.3x10-6 

(-1.038) 

WORK 4.2x10-6 

(0.038) 

-0.0001 

(-0.563) 

-4.2x10-6 

(-1.573) 

-6.4x10-5 

(-0.292) 

-0.0007* 

(-1.806) 

-1.3x10-5** 

(-2.463) 

 

Appendix A-9   Multicollinearity Problem during the Volatile Period 

The variance inflation factor (VIF) is computed to detect the multicollinearity. 

As all the scores of the VIF is lower than five, there is no evidence that there is 

multicollinearity in the variables. 

 

Algorithmic 

Trading 

Price-to-book 

Ratio 

Share 

Turnover 

Inverse of 

Price 

Effective Half 

Spread 

Natural Log of 

Market Cap 

3.0269 1.0225 1.4465 0.2092 1.1483 2.5999 

 

Appendix A-10  Heterogeneity in the Volatility data during the Volatile Period  

The mean plot of the one-minute realized volatility across individual 
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The mean plot of the five-minute realized volatility across individual 

 

The mean plot of the range-based realized volatility across individual  

 

 

The mean plot of the one-minute realized volatility across time 
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The mean plot of the five-minute realized volatility across time 

 

 

The mean plot of the range-based volatility across time 
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Appendix A-11  Restricted F-Tests during the Volatile Period 

The restricted F- test for the two- way effects are displayed below, confirming 

that the two-way fixed-effect model is a better choice than the pooled OLS model. 

 

 Model 1 

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

F-statistics 16.597 24.450 26.265 

p-value < 0.01 < 0.01 < 0.01 

 

Appendix A-12  Chi-square Statistics for Individual and Time Effects during the 

Volatile Period 

 Model 1 Model 2 Model 3 

F-statistics 69.680 11.036 26.560 

p-value < 0.01 0.05 < 0.01 

 

Appendix A-13  Regression Coefficients during the Volatile Period 

Pooled OLS Regression Coefficients of Algorithmic Trading Proxy and Control 

Variables on Volatility Measures during the Volatile Period.   

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

Intercept  0.0028 

(0.064) 

0.6505*** 

(7.078) 

0.0886*** 

(7.973) 

𝐴𝑇𝑖𝑡 5.1981x10-5 

(0.507) 

-2.4801x10-4 

(-1.161) 

-6.4582x10-5** 

(-2.500) 

Price-to-book ratio 0.0029*** 

(4.908) 

0.0040*** 

(3.238) 

0.0008*** 

(5.682) 

Share turnover 7.6964*** 

(18.026) 

13.3648*** 

(15.019) 

1.8991*** 

(17.650) 
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Appendix A-13  (Continued) 

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

The inverse of price  0.0460*** 

(2.619) 

-0.0241 

(-0.658) 

-0.0066 

(-1.494) 

Effective half 

spread  

0.7338*** 

(37.833) 

0.7488*** 

(18.523) 

0.0073 

(1.500) 

Natural log of 

market cap 

0.0044 

(1.363) 

-0.0339*** 

(-5.042) 

-0.0050*** 

(-6.157) 

Adjusted R2 53.05% 30.32% 25.39% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 

 

Two-way Random-Effects Regression Coefficients of Algorithmic Trading 

Proxy and Control Variables on Volatility Measures during the Volatile Period.   

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

Intercept 0.0830 

(1.358) 

0.7114*** 

(7.043) 

0.0856*** 

(6.564) 

Algorithmic 

Trading 

2.0291x10-5 

(0.194) 

-9.0996x10-5 

(-0.488) 

-3.8095x10-5* 

(-1.663) 

Price-to-book ratio 0.0029*** 

(2.991) 

0.0045*** 

(2.884) 

0.0008*** 

(4.022) 

Share turnover 4.6295*** 

(10.213) 

7.5988*** 

(9.424) 

1.4396*** 

(14.508) 

The inverse of 

price  

0.0629** 

(2.193) 

-0.0221 

(-0.484) 

-0.0079 

(-1.312) 
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Appendix A-13  (Continued) 

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

Effective half 

spread  

0.6495*** 

(32.248) 

0.6753*** 

(18.915) 

0.0101** 

(2.301) 

Natural log of 

market cap 

0.0012 

(0.273) 

-0.0345*** 

(-4.834) 

-0.0046*** 

(-4.995) 

Adjusted R2 40.68% 23.39% 16.46% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 

 

Appendix A-14  Choi (2001)’s z Statistics for Panel Unit Roots during the 

Volatile Period 

 

1-minute realized 

volatility 

5-minute realized 

volatility 

Range-based volatility Algorithmic trading  

-22.043*** -21.026*** -17.667*** -27.768*** 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1%. 

 

Appendix A-15  Regression Coefficients of Algorithmic Trading Initiated by 

Institutional and Foreign Investors during the Volatile Period 

Pooled OLS Regression Coefficients of Algorithmic Trading Initiated by 

Institutional and Foreign Investors Proxies and Control Variables on Volatility 

Measures during the Volatile Period.   

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

Intercept 0.0675 

(1.349) 

0.6623*** 

(6.328) 

0.0684*** 

(5.416) 
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Appendix A-15  (Continued) 

 

 

 

Variable 

Model 1  

1-minute realized 

volatility 

Model 2 

5-minute realized 

volatility 

Model 3 

Range-based 

volatility 

𝐴𝑇_𝐼𝑖𝑡 -5.9640x10-5 

(-1.135) 

-2.7694x10-5 

(-0.252) 

2.9421x10-5** 

(2.217) 

𝐴𝑇_𝐹𝑖𝑡 -2.6042x10-4** 

(-2.268) 

-1.7632x10-4 

(-0.734) 

4.8062x10-5* 

(1.657) 

𝐴𝑇_𝐼𝑖𝑡𝑥𝐴𝑇_𝐹𝑖𝑡 -8.7956x10-7** 

(-2.400) 

-1.6815x10-7 

(-0.219) 

3.1077x10-7*** 

(3.358) 

Price-to-book ratio 0.0030*** 

(5.002) 

0.0042*** 

(3.339) 

0.0009*** 

(5.731) 

Share turnover 7.1962*** 

(16.127) 

13.4325*** 

(14.388) 

2.1006*** 

(18.637) 

The inverse of price  0.0463*** 

(2.629) 

-0.0313 

(-0.849) 

-0.0089** 

(-1.996) 

Effective half 

spread  

0.7387*** 

(38.365) 

0.7447*** 

(18.488) 

0.0050 

(1.034) 

Natural log of 

market cap 

-0.0009 

(-0.242) 

-0.0345*** 

(-4.478) 

-0.0032*** 

(3.469) 

Adjusted R2 53.24% 30.29% 25.60% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1%. 
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APPENDIX B 

 

THE IMPACT OF ALGORITHMIC TRADING ON LIQUIDITY 
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APPENDIX B 

 

THE IMPACT OF ALGORITHMIC TRADING ON LIQUIDITY 

 

Appendix B-1   Roll’s Effective Bid-ask Spread  

Roll (1984) developed a measure of the effective bid-ask spread from a time-

series of prices. The assumption is that the securities are traded in efficient market and 

therefore, the prices reflect all publicly available information. Hence, the prices move 

randomly. Thus, the change in price will happen only when there is new information 

available. A market maker is compensated to supply liquidity with bid-ask spread. The 

average between bid-ask price is the new equilibrium price. As negative serial 

dependence in price changes is due to the activities of market maker, the bid-ask spread 

can be measured as a negative serial dependence.  

The change in Price Path  

 

 

 Assuming that the probability of price reversal is equal to one-half, the 

covariance between successive price changes (∆𝑝
𝑡
) can be expressed as: 

𝐶𝑜𝑣(∆𝑝𝑡 , ∆𝑝𝑡+1) =
1

8
(−𝑠2 − 𝑠2) =  −𝑠2/4 

 

where 𝑠 is effective half bid-ask spread and p is the transaction price. 
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Appendix B-2   Variance Inflation Factor  

Daily Variables 

Algorithmic 

Trading 

Realized 

Volatility 

Share 

Turnover 

Inverse of 

Price 

Natural Log 

of Market 

Cap 

2.8250 1.2141 1.6398 1.1545 2.5446 

 

Monthly Variables 

Algorithmic 

Trading 

Realized 

Volatility 

Inverse of Price Natural Log of 

Market Cap 

2.5769 1.1014 1.1539 2.7154 

 

Appendix B-3   Heterogeneity Across Individuals and Time  

The mean plot of the effective spread across individual 
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The mean plot of the share turnover across individual 

 

 

The mean plot of the liquidity ratio across individual 

 

 

The mean plot of the Amihud’s illiquidity ratio across individual 
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The mean plot of the effective spread across time 

 

 

The mean plot of the share turnover across time 

 

The mean plot of the liquidity ratio across time 
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The mean plot of the Amihud’s illiquidity estimate across time 

 

 

Appendix B-4   Restricted F-Test  

Restricted F-Test for Individual Effects 

 Model 1 Model 2 Model 3 Model 4 

F-statistics 66.462 98.293 11.636 19.221 

p-value < 0.01 < 0.01 < 0.01 < 0.01 

 

Restricted F-Test for Time Effects 

 Model 1 Model 2 Model 3 Model 4 

F-statistics 12.598 1.744 0.959 3.609 

p-value < 0.01 < 0.01 0.47 < 0.01 

 

Restricted F-Test for Two-Way Effects 

 Model 1 Model 2 Model 4 

F-statistics 29.962 31.469 18.254 

p-value < 0.01 < 0.01 < 0.01 

 

Appendix B-5   Chi-square Statistics for Individual and Time Effects 

 Model 1 Model 2 Model 3 Model 4 

Individual Effects 

F-statistics 187.480 53.241 8.020 72.748 

p-value < 0.01 < 0.01 0.09 < 0.01 
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Appendix B-5   (Continued) 

 

 Model 1 Model 2 Model 4 

Time Effects 

F-statistics 925.600 62.735 188.570 

p-value < 0.01 < 0.01 <0.01 

 

Appendix B-6  Regression Coefficients 

Fixed-effect (Time) Regression Coefficients of Algorithmic Trading Proxy and 

Control Variables on Liquidity Measures.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share Turnover 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Algorithmic 

trading 

0.0011*** 

(25.669) 

-1.4431x10-4*** 

(-87.129) 

5.2930x10-6 

(0.092) 

Volatility 0.6094*** 

(106.692) 

0.0099*** 

(37.441) 

-0.0034** 

(-2.285) 

The inverse of 

price  

0.0834*** 

(15.236) 

0.0025*** 

(9.631) 

-0.0290*** 

(-3.244) 

Natural log of 

market cap 

0.0190*** 

(17.848) 

-0.0029*** 

(-61.703) 

-0.0153*** 

(-9.042) 

Share turnover -4.6242*** 

(-29.354) 

  

Adjusted R2 45.89% 35.95% 16.01% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 
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Random-effect (Individual) Regression Coefficients of Algorithmic Trading 

Proxy and Control Variables on Liquidity Measures.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share 

Turnover 

(t-statistics) 

Model 3  

Liquidity 

Ratio 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Intercept 0.0367 

(0.625) 

0.0507*** 

(13.763) 

-1,048.1391*** 

(-5.930) 

0.1552*** 

(3.794) 

Algorithmic 

trading 

0.0012*** 

(23.580) 

-1.6171x10-

4*** 

(-94.235) 

-8.4957*** 

(-27.919) 

0.0003*** 

(5.274) 

Volatility 0.3743*** 

(65.0442) 

0.0081*** 

(33.935) 

-60.5777*** 

(-10.849) 

0.0011 

(1.011) 

The inverse of 

price  

0.0160 

(0.618) 

-0.0072*** 

(-5.291) 

309.1104*** 

(3.378) 

0.0107 

(0.491) 

Natural log of 

market cap 

0.0102** 

(2.517) 

-0.0039*** 

(-15.232) 

73.8156*** 

(5.908) 

-0.0086*** 

(-2.992) 

Share turnover -3.6829*** 

(-21.039) 

   

Adjusted R2 23.35% 40.99% 56.12% 6.82% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 
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Random-effect (Time) Regression Coefficients of Algorithmic Trading Proxy 

and Control Variables on Liquidity Measures.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share Turnover 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Intercept -0.1720*** 

(-11.422) 

0.0357*** 

(54.613) 

0.2298*** 

(9.737) 

Algorithmic 

trading 

0.0011*** 

(25.717) 

-1.4649x10-4*** 

(-89.704) 

5.3456x10-5 

(0.927) 

Volatility 0.5838*** 

(103.218) 

0.0099*** 

(40.141) 

-0.0023 

(-1.606) 

The inverse of 

price  

0.0845*** 

(15.233) 

0.0025*** 

(9.656) 

-0.0291*** 

(-3.215) 

Natural log of 

market cap 

0.0184*** 

(17.089) 

-0.0029*** 

(-63.214) 

-0.0141*** 

(-8.297) 

Share turnover -4.6186*** 

(-29.013) 

  

Adjusted R2 44.88% 38.47% 16.18% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 
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Appendix B-7  Regression Coefficients of Algorithmic Trading Initiated by 

Institutional and Foreign Investors 

Pooled OLS Regression Coefficients of Algorithmic Trading Initiated by 

Institutional and Foreign Investors Proxies and Control Variables on Liquidity 

Measures.  

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share 

Turnover 

(t-statistics) 

Model 3  

Liquidity 

Ratio 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Intercept  0.0124 

(0.741) 

0.0396*** 

(57.179) 

-0.0010*** 

(-9.643) 

0.2158*** 

(9.204) 

AT initiated 

by 

institutional 

investors 

1.8413x10-4*** 

(9.693) 

-3.7529x10-

5*** 

(-46.299) 

-0.7875*** 

(-5.135) 

1.6374 x10-

4*** 

(4.793) 

AT initiated 

by foreign 

investors 

5.6417x10-4*** 

(12.293) 

-8.8973x10-

5*** 

(-45.329) 

-1.2325*** 

(-2.817) 

4.5411x10-4*** 

(4.658) 

AT initiated 

by 

institutional x 

foreign 

investors 

2.0917x10-6*** 

(9.569) 

-1.8851x10-

7*** 

(-19.271) 

0.0155*** 

(10.834) 

2.3098x10-6*** 

(7.244) 

Volatility 0.5227*** 

(91.755) 

0.0091*** 

(36.467) 

-38.6576*** 

(-6.200) 

-0.0009 

(-0.679) 

The inverse of 

price  

0.1101*** 

(18.693) 

8.0211x10-5 

(0.301) 

170.0326*** 

(4.308) 

-0.0322*** 

(-3.661) 

Natural log of 

market cap 

0.0063*** 

(5.316) 

-0.0031*** 

(-64.575) 

78.7791*** 

(4.308) 

-0.0121*** 

(-7.094) 
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Appendix B-7  (Continued) 

 

 

 

Variable 

Model 1  

Effective Half 

Spread 

(t-statistics) 

Model 2  

Share 

Turnover 

(t-statistics) 

Model 3  

Liquidity 

Ratio 

(t-statistics) 

Model 4 

Amihud’s 

illiquidity 

(t-statistics) 

Share turnover -5.8517*** 

(9.569) 

   

Adjusted R2 39.05% 38.29% 83.79% 20.58% 

 

Note:  *, ** and *** Denote Significance at the 10%, 5% and 1% Level. 

 

Appendix B-8   Variance Inflation Factor during the Volatile Period 

 

Daily Variables 

Algorithmic 

Trading 

Realized 

Volatility 

Share 

Turnover 

Inverse of 

Price 

Natural Log 

of Market 

Cap 

3.1283 1.2147 1.9137 1.1722 2.5539 

 

Monthly Variables 

Algorithmic 

Trading 

Realized 

Volatility 

Inverse of Price Natural Log of 

Market Cap 

3.0567 1.5910 1.1683 4.0912 
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Appendix B-9   Stock Heterogeneity during the Volatile Period 

 

The mean plot of the effective spread across individual during the volatile period 

 

 

The mean plot of the share turnover across individual during the volatile period  
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The mean plot of the effective spread across time during the volatile period  

 

 

The mean plot of the share turnover across time during the volatile period  
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Appendix B-10  Restricted F-test during the Volatile Period 

 

Restricted F-test for Two-way Effects 

 Model 1 Model 2 

F-statistics 21.298 17.395 

p-value < 0.01 < 0.01 
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APPENDIX C 

 

THE IMPACT OF ALGORITHMIC TRADING ON PRICE 

EFFICIENCY 

 

Appendix C-1   Hasbrouck (1993)’s variance of pricing error 

  In a market, there are informed and uninformed investors who have different set 

of private information. Investors signal their private information through trading. Thus, 

trade convey information. Hasbrouck (1991a) introduced the method to measure the 

information content of the stock prices using a vector autoregressive system. Hasbrouck 

(1991b) measured trade informativeness by measuring the variance of the trade-

correlated components of the efficient price. However, these two methods required 

midpoints of the bid-ask quotes. Due to the lack of data, I therefore, used the method 

proposed by Hasbrouck (1993) which was the standard deviation of the pricing error, 

𝜎𝑠. Pricing error is the difference between transaction prices and efficient price. Pricing 

error is caused by microstructure effects such as discreteness, inventory component, 

information-uncorrelated noise etc. The standard deviation of the pricing error 

demonstrates how the prices track the efficient prices. The limitation of this 

measurement is that it only measures the pricing error of the trades that have already 

occurred, but it cannot reveal any information about quotes, forgone trade or private 

information.  

Hasbrouck (1993) proposed a method to measure the pricing error, using the 

security transaction prices and volume. A nonstationary time-series of transaction 

prices consists of two components, namely, a random-walk component and a residual 

stationary component. Hasbrouck (1993), therefore, decomposes the logarithmic of the 

transaction price into these two components. The random walk or permanent 

component represents the efficient price, or the expected final value of the securities 

which incorporate all the publicly available information at time t. The residual 

stationary component is the pricing error or the different between actual transaction 
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prices and efficient prices. Therefore, the logarithmic of the transaction price, 𝑝
𝑡
 can be 

expressed as: 

𝑝
𝑡

=  𝑚𝑡 + 𝑠𝑡 

where 𝑚𝑡 is the efficient price, 𝑠𝑡 is the pricing error and t is the sequence of the 

transaction.  

Two assumptions are made: 

1) 𝑚𝑡 =  𝑚𝑡−1 + 𝑤𝑡, 

where 𝑤𝑡 is the uncorrelated increment. 

2) The pricing error is covariance-stationary with a zero mean.  

  Hasbrouck (1993) defined the pricing error term as: 

𝑠𝑡 =  𝑚𝑡 − 𝑝𝑡  =  𝛼𝑤𝑡 + 𝜂
𝑡
  

where 𝑤𝑡 is the uncorrelated increment and the stationary component or pricing error 

can be decomposed into the information-correlated and information-uncorrelated 

components.  

Moreover, it can be expressed as a function of trade volume (𝑥𝑡): 

𝑠𝑡 =  𝛼𝑥𝑡 + 𝛽𝑢𝑡 + 𝜂
𝑡
, 

where 𝑢𝑡 is an innovation that is not derived from the trade and 𝜂𝑡 is the residual that 

is uncorrelated with the trade (𝑥𝑡) and other innovation that is not inferred from the 

trade (𝑢𝑡). 

  Therefore, the return series is a regression with a moving-average error term. 

Hence, the model relating trades and price changes can be expressed using vector 

autoregression (VAR) as: 

𝑟𝑡 =  ∑ 𝑎𝑖𝑟𝑡−𝑖

10

𝑖=1

+ ∑ 𝑏𝑖𝑥𝑡−𝑖 + 𝑣1,𝑡

10

𝑖=1

, 

𝑥𝑡 =  ∑ 𝑐𝑖𝑟𝑡−𝑖

10

𝑖=1

+ ∑ 𝑑𝑖𝑥𝑡−𝑖 + 𝑣2,𝑡

10

𝑖=1

, 

where 𝑟𝑡 is the return (𝑝𝑡 − 𝑝𝑡−1) and for the purpose of this framework, 𝑥𝑡 is the signed 

of the volume of trade variable. The sign is positive if it is a buyer-initiated trade and 

negative if it is a seller-initiated trade. 𝑣1,𝑡 and 𝑣2,𝑡 are the zero-mean and serially 

uncorrelated innovative disturbance terms, with 𝑉𝑎𝑟(𝑣1,𝑡) =  𝜎1
2, 𝑉𝑎𝑟(𝑣2,𝑡) =  Ω and 

𝐸(𝑣1,𝑡𝑣2,𝑡) = 0. This method does not account for heteroskedasticity. According to 
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Harris (1987), return heteroskedasticity can be mitigated by using the transaction time, 

instead of natural time.  

 As we are interested in the innovative disturbance terms, we transformed the 

VAR models into the vector moving average (VMA) models. Therefore, the return and 

the signed trade variables can be constituted as the functions of the current and lagged 

innovative disturbances. Therefore, the VMA models become: 

𝑟𝑡 =  ∑ 𝑎𝑖
∗𝑣1,𝑡−𝑖

10

𝑖=0

+ ∑ 𝑏𝑖
∗𝑣2,𝑡−𝑖

10

𝑖=0

, 

𝑥𝑡 =  ∑ 𝑐𝑖
∗𝑣1,𝑡−𝑖

10

𝑖=0

+ ∑ 𝑑𝑖
∗𝑣2,𝑡−𝑖

10

𝑖=0

, 

or it can be written in term of lag operators as: 

𝑟𝑡 = 𝑎∗(𝐿)𝑣1,𝑡 + 𝑏∗(𝐿)𝑣2,𝑡, 

𝑥𝑡 = 𝑐∗(𝐿)𝑣1,𝑡 + 𝑑∗(𝐿)𝑣2,𝑡. 

This can be expressed in the matrices forms as: 

𝑦𝑡 = [
𝑟𝑡

𝑥𝑡
] = 𝜃(𝐿)𝑣𝑡 =  [

𝑎∗(𝐿) 𝑏∗(𝐿)
𝑐∗(𝐿) 𝑑∗(𝐿)

] 

As a result, the variance of the random-walk component is: 

𝜎𝑤
2 = [∑ 𝑎𝑖

∗∞
𝑖=0 ∑ 𝑏𝑖

∗∞
𝑖=0 ]𝐶𝑜𝑣(𝑣) [

∑ 𝑎𝑖
∗∞

𝑖=0

∑ 𝑏𝑖
∗′∞

𝑖=0

]. 

As the pricing error is defined as the function of information-correlated and 

information-uncorrelated terms, the pricing error variance is: 

𝜎𝑠
2 =  𝛼2𝜎𝑠

2 + 𝜎𝜂
2, 

  For the ease of computation, by imposing the Beveridge and Nelson (1981) 

restriction, Hasbrouck (1993) established the lower bound for the variance of pricing 

error (𝜎𝑠
2) as: 

𝑉𝐴𝑅(𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟) = 𝜎𝑠
2 =

∑ [− ∑ 𝑎𝑘
∗∞

𝑘=𝑗+1 − ∑ 𝑏𝑘
∗∞

𝑘=𝑗+1 ]∞
𝑗=0 𝐶𝑜𝑣(𝑣) [

− ∑ 𝑎𝑘
∗∞

𝑘=𝑗+1

− ∑ 𝑏𝑘
∗′∞

𝑘=𝑗+1

]. 

 

 

 

 



215 

   
 

Appendix C-2   Variance Inflation Factor (VIF) 

 

Algorithmic 

Trading 

Realized 

Volatility 

Share 

Turnover 

Inverse of 

Price 

Natural Log 

of Market 

Cap 

2.0712 1.1553 1.3808 1.1612 1.9012 

 

Appendix C-3   Stock Heterogeneity  

 

The mean plot of the standard deviation of pricing error across individual 

 

The mean plot of the standard deviation of pricing error across time 
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Appendix C-4   Restricted F-test  

 

 Individual Time Twoways 

F-statistics 32.252 2.854 12.859 

p-value < 0.01 < 0.01 < 0.01 

 

Appendix C-5   Chi-square Statistics for Individual and Time Effects  

 

 Individual Time 

F-statistics 40.383 153.49 

p-value < 0.01 < 0.01 

 

Appendix C-6   Variance Inflation Factor  

 

AT Initiated by 

Institutional 

Investors 

AT Initiated 

by Foreign 

Investors 

Realized 

Volatility 

Share 

Turnover 

Inverse of 

Price 

Natural Log 

of Market 

Cap 

3.6089 4.9794 1.1697 1.3798 1.1251 1.9568 

 

Appendix C-7   Restricted F-Test  

 

 Individual Time Twoways 

F-statistics 29.985 2.843 12.025 

p-value < 0.01 < 0.01 < 0.01 

 

Appendix C-8   Chi-square Statistics  

 

 Model 1 Model 2 

F-statistics 45.473 57.505 

p-value < 0.01 < 0.01 
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Appendix C-9   Stock Heterogeneity during the Volatile Period 

The mean plot of the standard deviation of pricing error across individual during the 

volatile period 

 

 

The mean plot of the standard deviation of pricing error across time during the volatile 

period 

  

 

Appendix C-10  Restricted F-test during the Volatile Period 

 

 Individual Time Twoways 

F-statistics 6.747 2.984 6.012 

p-value < 0.01 < 0.01 < 0.01 
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Appendix C-11  Chi-square Statistics for Individual and Time effects during the 

Volatile Period 

 

 Model 1 Model 2 

F-statistics 42.176 28.096 

p-value < 0.01 < 0.01 
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