IMPACTS OF SUSTAINED LOW PETROLEUM PRICE ON THAILAND'S ECONOMY AND QUANTITY OF THE RELEASE OF CO₂ RESULTING FROM PETROLEUM CONSUMPTION FROM THE PERSPECTIVE OF FORECASTING COMPUTABLE GENERAL EQUILIBRIUM MODEL

Chatsamee Chanitnan

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Environmental Management) The Graduate School of Environmental Development Administration National Institute of Development Administration

IMPACTS OF SUSTAINED LOW PETROLEUM PRICE ON THAILAND'S ECONOMY AND QUANTITY OF THE RELEASE OF CO₂ RESULTING FROM PETROLEUM CONSUMPTION FROM THE PERSPECTIVE OF FORECASTING COMPUTABLE GENERAL EQUILIBRIUM MODEL

Chatsamee Chanitnan

The Graduate School of Environmental Development Administration

Associate Professor. Sompolo Knmaot Major Advisor
(Sompote Kunnoot, Ph.D.)
Co-Advisor
(Karika Kunta, Dr.sc. ETH Zurich)

The Examining Committee Approved This Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Environmental Management).

Krit Teuthanon Committee Chairperson (Krit Iemthanon, Ph.D.) Associate Professor. Sampoli Kinneet Committee (Sompote Kunnoot, Ph.D.) (Karika Kunta, Dr.sc. ETH Zurich)Dean Assistant Professor..... (Pakpong Pochanart, Ph.D.)

May 2019

ABSTRACT

Title of Dissertation	Impacts of Sustained Low Petroleum Price on
	Thailand's Economy and Quantity of the Release
	of CO ₂ Resulting from Petroleum Consumption
	from the Perspective of Forecasting Computable
	General Equilibrium Model
Author	Miss Chatsamee Chanitnan
Degree	Doctor of Philosophy (Environmental Management)
Year	2018

The increase of world supply of shale gas and shale oil had sustained the low level of oil price at about 50% of the previous level for the extended period since 2014. There are opinions as found in the media of different perspectives suggesting both positive and negative sides of the economic effects.

This study designed a model of the economic change in 5 years by applied the forecasting computable general equilibrium, for the purpose of studying the impact of oil prices that had remained low since 2014 was estimated to be 50% in comparison with that of 2012. The estimation was conducted by comparing two cases of economic changes, consist of 1) the spontaneous economic change due to the net increase in capital factor, which was resulted from the capital accumulation caused by fixed investment of several branches of production. 2) the spontaneous economic change due to the net increase due to the net increase in capital factor, which was resulted from the capital accumulation caused by fixed investment of several branches of production. 2) the spontaneous economic change due to the net increase in capital factor, which was resulted from the capital accumulation caused by fixed investment of several branches of production combined with the 50% decrease in oil prices, the level that had had the visible impacts since 2014.

The purpose of this study is to report the findings about Thailand's economic impacts from the perspective of the forecasting computable general equilibrium model. The economic impacts were further used in assessing the release of CO₂ resulting from change in oil consumption. It was found that low oil price gave positive effects on the

real GDP of Thailand. The oil consumption has increased in greater percentage than the real GDP. From the perspective of economic analysis, this study concludes with an opinion that the generation of CO_2 which follows the growth of private income can be contained by the policy that turns the growth of private consumption into saving which is used for public infrastructural investment. The external effect can create opportunity for the investment of the private sector which expands the potential for future income generation.

ACKNOWLEDGEMENTS

I would like to express my profound gratitude and heartfelt appreciation to my major advisor, Associate Professor Dr.Sompote Kunnoot, for his excellent guidance, caring, patience and providing me with the best advice and support throughout the research period. I also would to express my gratitude to all the committee members, Dr.Krit Iemthanon, Dr.Karika Kunta and for their valuable comments and suggestions.

Finally, my heartfelt thanks to all members of my family for all their understanding, unfailingly support and encouragement.

Chatsamee Chanitnan January 2019

TABLE OF CONTENTS

ABSTRACT		iii	
ACKNOWLEDGEMENTS			
TABLE OF CONTENTS			
LIST OF TABLES v			
LIST OF FIGURES			
ABBREVIAT	ABBREVIATIONS		
CHAPTER 1	INTRODUCTION	1	
	1.1 Statement and Significance of the Study Research Objectives	1	
	1.2 Research Questions	6	
	1.3 Research Scope	6	
	1.4 Limitation of the Study	6	
	1.5 Research Expected benefit	7	
CHAPTER 2	LITERATURE REVIEW	8	
	2.1 Oil Price Slump in Thailand	8	
	2.2 The Impact of Oil Price	10	
	2.3 Related Research	11	
CHAPTER 3	METHODOLOGY	22	
	3.1 Research Conceptual Framework	22	
	3.2 Underlying Principle	25	
	3.3 Data and Arrangement for Input-Output Table for	26	
	CGE Model		
	3.4 CGE Model Specification	29	
	3.5 Computation Software	50	
CHAPTER 4 RESEARCH RESULTS		51	
	4.1 Results	51	
	4.2 Carbon Dioxide Emission	64	

CHAPTER 5 CONCLUSIONS	
5.1 Conclusions	67
5.2 Policy Implication	68
BIBLIOGRAPHY	71
APPENDICES	
Appendix A Structure and Classification of Thailand 180 Sectors	
Input – Output Table	
Appendix B GEMPACK Programming of a CGE Forecasting Model	110
for 180 sectors for the Projection of Economic Impacts	
and CO ₂ Emission Potential in Thailand Following	
Oil Price Slump in 2014	
BIOGRAPHY	139

vii

LIST OF TABLES

Tables

Page

3.1 Composition of Variables, their Representation, and Range	33
3.2 Specification of Equation of CGE Model	36
3.3 Structural Exogenous Variables and Range	44
3.4 Computation of Coefficients, Shares and Parameters	44
4.1 Forecasts from the FCGE Model for Macro Variables and	52
the Volume and Value of Oil	
4.2 Top 10 sectors found to having strong output growth for	56
the case of the absence of oil price decrease (Base Case)	
4.3 Top 10 sectors found to having strong output growth for	56
the case of oil price decrease	
4.4 Top 10 Sectors found to having weak output growth for	58
the case of the absence of oil price decrease (Base Case)	
4.5 Top 10 Sectors found to having weak output growth for	58
the case of oil price decrease.	
4.6 Top 10 sectors found to having strong growth of oil use for	59
the case of the absence of oil price decrease.	
4.7 Top 10 sectors found to having strong growth of oil use for	60
the case of oil price decrease.	
4.8 Oil Consumption Rates in Various Parts of the Thai Economy	y 62
and the Elasticity Between the Change in Oil Consumption	
and the Change in Gross Domestic Product	
4.9 Carbon Dioxide Content Calculated from FCGE	65

LIST OF FIGURES

Figures

Page

1.1	Oil Prices (USD per barrel) from 1960 to 2016	2
1.2	The Analysis of Economic Impacts of the Changes in Oil Prices	7
	and Environmental Impacts	
3.1	Study Contribution	23
3.2	Research Conceptual Framework	24
3.3	Algorithm of Research	25
3.4	Modification of Input-Output Investment Cost Data Table for CGE	27
3.5	Arrangement of Input-Output Table of Thailand's Economic System	28
	for Forecasting Computable General Equilibrium Model	
3.6	The Simulation of 50% drop of oil prices and Shock Variable	30
3.7	Final Demand Theory	31
3.8	The Theory for the Factors of Production Demand	32
3.9	The Theory of Capital Factors Demand and Capital	32
	Goods Production	
4.1	Trajectory Forecast of 5 Years Growth of Real Gross Domestic	54
	Product (Real GDP), for the Case of 50% Decrease of Oil Prices	
	Compared with the Case of the Absence of Oil Prices Decrease.	
4.2	Net Impacts of Capital Accumulation and Decrease in Oil Price	63
4.3	Estimated Carbon Dioxide (Million Metric Tons) for 5 Years,	66
	Comparing Oil Inflows by 50%	

ABBREVIATIONS

Abbreviations Equivalence

CGE Model FCGE Model

GDP OPEC Computable General Equilibrium Model Forecasting Computable General Equilibrium Model Gross Domestic Products The Organization of the Petroleum Exporting Countries

CHAPTER 1

INTRODUCTION

1.1 Statement and Significance of the Study Research Objectives

Starting in 2012, petroleum prices in the world market had continued to decline until it went 50% lower in 2014. This phenomenon arose from the increase in the supplies of natural shale oil and gas that extracted from shale rock. Consequently, the USA, the world's top oil consumer, reduced large import quantity of natural oil and gas. Based on the World Bank data, although the global gross domestic product (GDP) of current prices for the years 2015 to 2016 were -5.53% and -4.22% respectively, compared to 2014, as a result of cheap oil prices, it was found that the GDP of all countries in the world in 2011 had increased continuously with a growth rate of 3.31% in 2015 and 3.13% in the year 2016. These occurrences indicated the uplift of the living standard amidst the low oil prices context.

Figure 1.1 shows the movement of oil prices from 1960 to 2016, showing the volatility of oil prices at various timeframes. Oil prices reached a record peak in 2012 at 105.87 USD per barrel and dropped to 39.69 USD per barrel in 2016. This is the sharpest and rapid decline in oil prices since 1960. In the article "The Economics of Lower Oil Prices" by Moody's Analytics (Lafakis et al., 2015), it suggested that despite the decrease in oil prices, there would be the net gain in several countries such as Singapore, Taiwan, South Korea, China, the USA , and Japan, which resulted in the increase in real GDP. In another article such as "Who's afraid of cheap oil?" (The Economist, 2016) stated that the net gain hadn't been clearly noticed since this severe and acute fluctuation had affected the stock market, which might consequently lead to the lack of confidence among the consumers. In the past, the 1973 Arab Oil Embargo had resulted in the Great Depression (Amadeo, 2017). Later, another incident that gave the entirely different outcome was the decline of oil prices in 1986, which turned

to be the factor that fostered economic growth. The notice was that the 10% decrease of oil prices prone to increase by 0.1% to 0.5% of economic growth.

The International Energy Agency (IEA) had predicted that the shale oil would take up to 50% of the supply share (Thailand Investment Forum, 2015). According to the Economics of Shale Gas Development report by Resources for the Future (Mason et al., 2015), the production of oil and gases of the USA had increased rapidly from approximately 1 trillion cubic feet in 2006 to approximately 9.7 trillion cubic feet in 2012; the production was predicted to reach 19.8 trillion cubic feet in 2040. According to the report of US Energy Information Administration (2014), it suggested that in 2014, the shale gas would account for more than 40% of the US natural gas supply. This information corresponded with the article "Shale Revolution: Opportunity to Jump-Start Economic Growth" and the article in Forbes Magazine which proposed that shale energy was the phenomenon that gave rise to the USA rapid economic growth. Consequently, it was predicted that from 2007 to 2012, the high-paying jobs would reach 135,000 positions. Including the indirect results, it was expected that the positions would increase to a total of 1.7 million and this could widely stimulate other countries to invest in shale energy production.

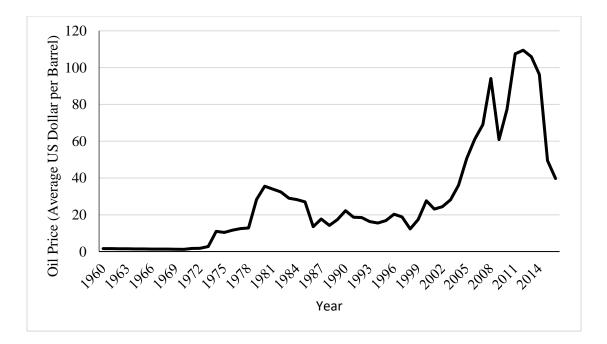


Figure 1.1 Oil Prices (USD per barrel) from 1960 to 2016Source: Adapted from Statista, 2016.

The global crude oil price has continuously fallen since the middle of 2014 due to the dynamics of supply and demand. It is well realized that the global economy has not expanded as significantly as predicted; especially in Europe, Japan, and China where the growth of the economy has witnessed disappointment, which consequently maintains a relatively mild demand for crude oil in the global market. On the contrary, the oil manufacturers remain their production to supply crude oil into the market, especially countries outside the OPEC (The Organization of the Petroleum Exporting Countries), such as the United States which has developed shale drilling. This further increases a number of crude oil circulated into the global market and becomes a factor lowering the oil price consecutively. The overall global market has gained profits from a decrease in the oil price, and in which the IMF has estimated that the oil price decline, mainly caused by the growing supply, would foster the global GDP to grow approximately 0.3-0.7%. As the top economies such as the United States, Europe, Japan, China, and India, which conquers 60 percent of the global economy, are all importers of pure crude oil. A decrease in the oil price brings about a large amount of money used for consumption; simultaneously, the business sector has lesser costs. In this case, the exporters of crude oil in the OPEC, which have lost some benefits, are not big-scale economies.

Thailand should be one of the nations which gain benefits from this matter, as Thailand is an importer of oil and fuel estimated as 10% of the GDP, which is higher than China and India; In other words, Thailand imports totaled 320 million barrels of crude oil in a year. Thailand has thus saved 5 million baht for the expenditure on crude oil import. From the perspective of energy consumers, this means the household and business sectors consumed a total of 29,000 million liters of benzene and diesel fuel in a year. This also helps the two sectors save 1.5 million baht per year. In this respect, EIC estimated that a decrease in oil price would catalyze Thailand's GDP to grow 0.2 percentage point (pp) in 2015, and lessen inflation to 0.8 pp. The deceleration of inflation further exterminated impediments in facilitating policies to nurture the Bank of Thailand's economy. It, nonetheless, should be noted that, in Thailand, both stakeholders gain and lose benefits from the fall in oil prices. A condition to be monitored as the priority is the falling oil price which is prone to affect the import to Middle Eastern countries. This is rooted in the fact that the major revenues of most of these Middle Eastern countries are generated by the export of crude oil. The falling oil price hence inevitably affects the economies of these countries, and in which the imports from Thailand to these countries are likely affected; especially in the domain of automobile exports, the net automobile exports from Thailand to Saudi Arabia is ranked third in the overall automobile export. This indicates that the falling oil price is a factor championing the exports of Thailand to soar despite the fragile global economy.

The most concerning factor nevertheless remains the urban-rural divide among Thai households. As those gaining benefits from the fall in oil price are middleincomers to high-incomers who reside in cities and use automobiles in a regular manner. Not only has this group of incomers consumed a high number of fuels and gasohol, but the decline in the benzene and gasohol prices is also more likely to occur than the decline in the benzene, which consequently helps this group save more expenditures than others. As city residents earn regular incomes, they are therefore not considerably affected by oil prices. Overall, this group of households gains benefits from the fall in oil prices at the maximum. On the other hand, those who lose benefits are in the agriculture sector residing in rural areas. This is due to the fall in crude oil prices in the global market, which affects commodity prices such as rubber, sugar cane, palm, and etc. Particularly, the current year has witnessed the lowest rubber price in 5 years, concurrently with the fall in synthesis rubber prices produced by petroleum products subject to the fall in crude oil prices. This condition, in consequence, rubber prices are unlikely to increase if prices of synthesis rubbers-which are replaceable products-remain low. There has been a decline in the demand for renewable energy like biodiesel, as global oil prices have greatly fallen. This condition affects sugar cane, cassava, palm oil prices which are all ethanol producers. This further affects the export values of Thai commodities estimated as 15% of the gross exports of Thailand, which are subject to prices in the global market. Apart from gaining benefits from having less expenditure on fuels than other groups of households due to the lack of regular automobile uses, agricultural households are more affected by lower incomes than other groups.

Moreover, the urban-rural divide takes place in the tourism industry as well. The crude oil prices heavily affect the Russian economy where the oil exports are mainly relied upon, and considerably lower than 50% of the Russian ruble. The Russian ruble's recent weakness conduces to the decreasing trend of Russian tourists traveling abroad, due to the soar of expenditure in foreign currencies. It is certain that this will affect the tourism industry in Thailand, as Russian tourists are ranked the third most important of all foreign tourists in Thailand. Specifically, in Pattaya and Phuket, there are 23% and 19% of Russian tourists respectively. In this manner, the impact is evident from a 20% decrease in the number of Russian tourists in Thailand at the end of 2014 (Tanakorn Limvittaradol, 2015).

At the end of 2015, the global oil prices substantially hit the fall, and at the beginning of 2016, it took a fall at 30 dollars per barrel. In this respect, the demand for oil consumption declined respectively from the decreasing expansion of the economy aligned with discoveries of renewable energy from petroleum which continue to cost less than previous forms of energy. A rapid decrease in oil prices consequently alters the structures of manufacturing and consumption between crude oil, natural gas, and coal. This being the case, the impact on coal prices is expected to be the most evident, followed by natural gas prices.

Countries obtaining benefits from the fall in oil prices are large countries which currently expands their economies to a great extent, and in which the trend of the economic expansion is likely to slowly decline. As importers of net energy, China and India fully obtain benefits from a fall in oil prices, followed by Japan, South Korea, Singapore, and in which this list might include Indonesia as well as Thailand. As the disadvantages are taken out of the agricultural export prices, the overall impact remains uncertain. South Asia and South East Asia might come to obtain benefits from this fall in oil prices, as it appropriately serves to decelerate the regional economies' weakness (Veerapong Ramangkul, 2016).

This research aims to study the actual economic growth in Thailand, which has been influenced by the oil prices that have fallen 50% since 2014. The computable general equilibrium model is used as a forecast method. Additionally, the economic forecast results are further used for an amount of carbon dioxide, which is influenced by economic changes. The findings of the two forms of study serve as guidelines for economic development in the future, as well as guidelines for managing carbon dioxide emissions, which are main elements of greenhouse gasses that form causes of the global climate change.

1.2 Research Objectives

1) To study the impacts of oil prices fall on Thailand economy from the perspective of the prediction from the Forecasting Computable General Equilibrium Model (FCGE Model) over 5-year period from 2014 and 2019.

2) To evaluate the amount of carbon dioxide produced by the changes in petroleum demand.

3) To recommend the energy policies of the country.

1.3 Research Scope

1) The literary review on the movement of demand, supply, oil prices and the relationship between energy and economy.

2) Design the Forecasting Computable General Equilibrium Model (FCGE Model) to use as the tool for analyzing the impacts of oil prices fall on economic change.

3) Test the oil prices fall on the economic system.

4) Analyze the changes in oil demand and the amount of carbon dioxide.

1.4 Limitation of the Study

This study uses the FCGE Model because it has abilities to capture effects in all economics that occur around economic structure of the whole country, which allow to know the direction and size of the impacts of changes from applicable measures. Also, it is capable to process the net impacts that is measured by GDP growth. However, the use of the FCGE Model is limited only to a closed system within the country, which can not bring any changes of externality factors to calculate together with this model, such as, when purchasing power of foreign countries decreased, we may export fewer products.

1.5 Research Expected Benefit

The study of oil price slump in 2014 on the Thai economy and environmental impacts by using a general equilibrium model of the domestic economy has expected advantages (Figure 1.2) as follows:

1) Know economic impacts from oil price change

2) Understand environmental impacts in the forms of the amount of carbon dioxide that is released from oil consumption

3) Offer appropriate alternative choice in designing oil price and marketing system and oil price structure changes

4) Provide insights regarding the effects of oil price slump in Thailand

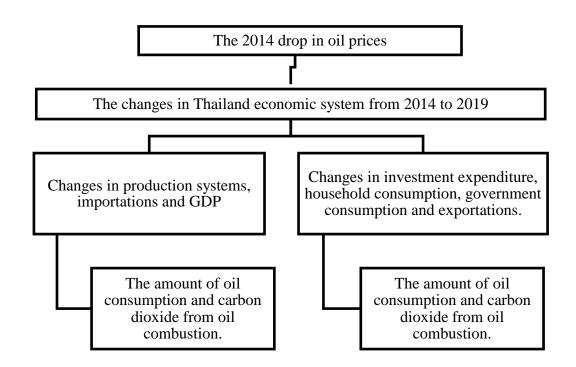


Figure 1.2 The Analysis of Economic Impacts of the Changes in Oil Prices and Environmental Impacts

CHAPTER 2

LITERATURE REVIEW

2.1 Oil Price Slump in Thailand

Crude oil prices in the global market have declined at the end of 2014. In this respect, crude oil prices in Dubai, which are the main referential prices of Thailand, decreased from 105 dollars per barrel at the beginning of 2014 to 30 dollars per barrel at the beginning of 2016. This is regarded as the lowest price in the decade (figure 1.1). Consequently, retail prices of domestic oil decreased, and in which in 2015 oil consumption exponentially expanded by 13% for benzene and 4% for diesel, compared to the economic expansion in Thailand at 2.81%. To which extent is the expansion of oil consumption beneficial to Thailand's economy in a long-term and what is the government's role to foster the oil consumption in a more effective manner, and conduce to sustainable benefit to Thailand's economy (PIER, 2016).

The IMF estimated that a 10% change in oil prices would stir a 0.2% change in the global GDP. Typically, declining oil prices facilitate the rise of GDP, as consumers use the remaining money for other aspects of expenditure such as the aspect of consumption. This assumed impact is more evident if the declining oil prices are the result of growing supply. An example can be drawn from the case of shale gas in the United States where there was an increase of oil demand, which further caused energy prices in the United States to be lower than in Europe. As a result, the American industrial sector has grown 6% higher than in other countries. In the case of the fall in oil prices caused by low demand, the supplied degree is subject to an amount of oil production of each country, OPEC's oil production quota, and discoveries of oil sources (Peraphan, 2015).

Currently, Thailand produces only 15% of the national oil demand and has proven crude oil reserves of 3 years of production. Thailand, therefore, has to import the rest 85% of oil, which is estimated at 10% of the national GDP (Ramangkul, 2016). Apart from the fundamental dependency on a large number of oil imports, it was found that Thailand's oil consumption has not been efficient. This was reflected from the intensity of Thailand's relatively high oil consumption (or known as oil intensity), which is at 3.6 in 2015; this means Thailand had to consume 3.6 barrels of oil per day in order to generate 11 million of GDP annually. Thailand's oil intensity has been consistent for the past 5 years, which is considered to be higher than countries that are leading oil importers such as the United States and Japan, which have 1.1 and 1.0 of oil intensity respectively. The low efficiency of oil consumption is likely caused by 3 structural problems. First, Thailand's transportation systems mainly depend on road transport, which in turn causes a large amount of oil consumption in Thailand; while other countries mainly use rail transport, and have better transport systems. Second, Thailand's oil excise tax is considered as low in comparison with other oil importers. This condition might result in the lack of awareness of economical oil consumption among consumers. Third, oil that has been used for the product and services of products remains to have low values.

In addition, structural limitations result in Thailand's economy being sensitive to high oil prices, and in which they additionally affect the economy in 3 aspects. First, the impacts on inflation: this brings about an impact on inflation. As Thailand's oil excise tax is lower than other countries, retail oil prices are therefore considerably subject to global oil prices. Additionally, Thailand's inflation is more sensitive to global oil prices than other countries. Second, the impacts on the consumption and production of the private sector: the consumption by the private sector is considerably sensitive to oil prices. This is because the proportion of expenses on oil and transportation is high. In this regard, there are 2 factors causing the Thai manufacturing sector's sensitivity to oil prices. The first factor is high cost reflected by Thailand's oil intensity which is higher than other countries. The second factor is from the demand for Thai products. As the demand for Thai products is proportionally conditional on oil prices, such as automobiles and automobile parts, Raney and Vine (2011) discovered that, since 1967-2009, the automobile industry is the main medium

for the US market to transfer the fluctuation of oil prices to the overall domestic production. Third, the impacts on the environment and health: this is the consequence of pollution and CO_2 emissions, which further deteriorates the health. It is, in addition, a latent cost of oil consumption. The CO_2 emissions per capita of Thailand are prone to consistently grow in contrary to the global attempt to reduce CO_2 emissions under the Conference of the Parties or COP21.

The conclusion of the structural problems of Thailand's oil consumption should be urgently solved, as we all gain benefits from the period of the fall in oil prices inefficiently. This is considered to be a risk to Thailand's energy security. It is the time for Thailand to adjust itself under the concern to future generations. Oil prices should truly reflect the actual social capital, and create secure income sources for the government to invest in transportation systems and develop alternative energies. Eventually, consumers are the ones gaining benefits in the aspect of lower spending on energy, whereas the country becomes economical in energy spending from oil imports. (Pier Puey Ungphakorn Institute for Economic Research, 2016)

2.2 The Impact of Oil Price

The study of the Economics of Lower Oil Prices by Moody's Analytic, explores the dynamics between the economies of falling oil prices, by initially tracing back to the origins of this condition, including a large number of supply growth, shortcomings of the growth in global demand, the soaring value of the U.S. dollar, and the mild perception towards the unpredictability of the global domain of oil production. In terms of the correlations between oil and the overall economy in the context of falling oil prices, on the demand end, significant changes are found in disposable income in the consumption outside of the energy domain. On the supply end, overall business investment has been involved in the oil industry to a greater extent in the past decade that it is sensitively subject to oil price changes. In relation to inflation, it was found the top-notch consumer price index (CPI) is directly affected by oil price changes. On average, following 20% of oil price decline, oil-exporting countries' real GDP growth is likely to witness a 1% reduction (Lafakis et al., 2015)

In the case study of the oil prices impacts, which employed the FCGE Model, there was the Analysis of the Impact of Petroleum Prices on the State of Hawaii's Economy (Coffman et al., 2007). The 20-year prediction mentioned in this analysis suggested that the rise in oil prices had the negative impacts upon the State of Hawaii's economic system, in which the consumption potential decreased by 2.5% per year.

The oil price volatility poses a temporary negative impact on GDP growth and inflation (Salim and Rafiq, 2011). Moreover, the study of the effects of the oil price boom on the Czech economy from 2002-2007 by applied the CGE (Computable General Equilibrium) model, suggested that 10% increase in oil prices had resulted in 1.5% of short-term decline in GDP and 0.8% in long-term (Dybczak et al., 2008).

In the study of the Impact of Falling Oil Prices on Canadian Economy, it was found that the 10% decrease in oil prices led to 1% decline of products and 0.9 % decrease of fringe benefits (Carbone and McKenzie, 2016).

According to the study of the general equilibrium costs and impacts of oil price shocks in Newfoundland and Labrador, the decrease in oil prices tended to be the negative factor that contributed to 2.1% decrease in the GDP of Newfoundland and Canada (Millard et al., 2017).

2.3 Related Research

African Development Bank (2007) published the article entitled the impact of high oil prices on African Economics, of which a "dynamic stochastic general equilibrium model" was constructed to determine the effect of the rise in oil prices on the African economies including oil manufacturing and importing nations. The result points out that, in the first initial year of the doubling of oil prices in the global market, there appears a 6% contraction of the median African oil importers. On the contrary, under the same circumstance, the GDP of the African oil exporters would increase by 4% and 9% under the influence of two monetary exchange regimes, namely the managed float regime and the fixed exchange rate respectively. In relation to the aspect of inflation, it was argued that, in the context of the median oil exporters, the managed float regime would contribute to a greater proportion of inflation than

the fixed exchange rate. It should nevertheless be noted that the model does not take into account the aspects of the impact of the rise in oil prices on poverty, which is a significant factor in the African region.

Akram and Mortazavi (2011) assesses the impact of the changes of crude oil prices in the regions of India, Pakistan, and Bangladesh in the course of 1981 to 2010, by using a multivariate Vector Autoregressive analysis along with the Wald Granger causality test, and Impulse Response Function (IRF). The result indicated that the rise in crude oil prices causes a negative effect on all three countries in the beginning. In the context of Pakistan, the impact, however, becomes positive after the first year. Even though India encounters a greater impact than other two nations, the conclusion suggests that the rise in crude oil prices poses an insignificant impact on the three economies. On the contrary, the drop in crude oil prices causes a significant effect on the Indian-Subcontinent region in the first year. The Wald Granger causality test results show that the oil price decline heavily affects the Indian economy. The impact becomes more moderate for India and Bangladesh after the first year, but rather positive for Pakistan. The impact on these countries is nevertheless smaller than developed countries like the United States and OECD countries.

Gomez et al. (2011) studied the impact of oil shocks on the Spanish Economy, by employs the Qu and Perron (2007) method to determine the evidence of the impact of the oil price shock on the GDP and inflation in the Spanish economy in the course of 1970s to 2008. Based on the same timeline, the Bai and Perron method was used to investigate at the regional level, specifically concentrate on industrial ventures and relevant consequences. The results revealed that, after the period of the 1970s, it was documented that the impact of the macroeconomic volatility in Spain lessens. Starting from 2000, in the Spanish region, the impact of the oil price shocks on the domains of production and inflation shrank steadily. Moreover, it was revealed that the impact of the oil price shocks on inflation in the region always appears to be positive. The only difference between the inflation in the 1970s and the inflation in later decades is the degrees of the impact, which appears to be less severe in later years.

Spence (2016) entitled crude reckoning, what will oil price slump mean for the global economy, economics correspondent, Telegraph offers a perspective on the impact of the oil price decline in the context of the developed nations. Several

analysts have claimed that there is a possibility of the further plunge in crude oil prices, and in which Dansk Bank deemed this condition as a risk to the US economy, due to its following impact on the oil division. It was recorded that the oil price declines caused a drop in the GDP by 0.4%. The Danish bank's analysts forecast that the decline could possibly drag the US GDP down again in 2016. According to Bank of America, as a decline in oil prices has brought about a significant decrease in investments, there was consequently a higher number of bankruptcies in the second half of 2015 than a number recorded in the previous financial crisis. As for the European continent, the German bank was of the opinion that this oil price slump held a promising future for the European economies. In this case, the oil sell-off would contribute to the development of the European economies in 2016, and the lower oil prices would better the currency regime.

Yeroen et al. (2015) present an overview of direct and indirect impacts of the fall in oil prices. In general, direct impacts point to oil exporters such as Russia, Venezuela, and Malaysia whose national revenues are proportionally determined by oil prices; they suffer from following consequences such as a reduction in national budgets, a higher number of deficits, and the fluctuations of the monetary exchange regime. For Russia, its economy has heavily depended on oil and gas, it is thus expected that its GDP to decline by 3-5% along with a high degree of inflation. The decrease in Ruble and the national demand for oil imports also play a part in hurting the Russian economy, concurrently worsen by the Sanction from the EU. As for the major oil exporter like Nigeria where 90% of the revenues are generated by oil exports, its great dependency on oil exports result in a heterogenic economy and further worsen its existing poor economic conditions. Consequently, the Central Bank of Nigeria responded by putting some segments of its reserves on hold and accepting exchange rates that are more flexible than its Naira currency. There are importers who allegedly gain benefits from this oil price decline, such as China and India. China, as the world's biggest oil importing nation, exploits the decline to establish the Strategic Petroleum Reserve. In addition, due to the oil price drop, the World Bank forecasted that 0.1-0.2 of the Chinese GDP will climb up, and in which the current account surplus is, in consequence, widen by 0.4-0.7 of the GDP level. India, on the other hand, as a newcomer in the oil industry, has managed to gain 0.64 billion U.S. dollars in each oil price drop, as 30% of the nation's total imports is energy. In terms of indirect impacts, the growth markets in the regions of governments, businesses, and consumers are affected simultaneously. For the governmental sector, with fewer expenditures on oil imports, rooms for other development endeavors that require more budgets are therefore wider. As for the business sector, specifically oil and commodity-oriented businesses, it is evident that they benefit from reductions in production costs. Finally, the markets which rely upon proportions of "oil-fuelled generators" appear to clearly benefit from the oil price decline.

Vrontisi et al. (2015) discuss the possibility of economic impacts on the EU28 economies following the oil price slump since mid-2014. By using a comparative static analysis accompanied with scenarios in comparison with the baseline in 2015, the results revealed that having the consumption and investment in the private domain as a catalyst, the average GDP of the EU28 nations is expected to increase by 0.7% from a reduction in the oil price from 100 U.S. dollars to 50 U.S. dollars. In this regard, oil-oriented nations and ventures are likely to benefit from this condition more than others. Additionally, there is a possibility that 3 million jobs might be generated by a 50% reduction of the oil price.

Mohaddes and Pesaren (2017) use a quarterly multi-country econometric model to confirm an assumption that the recent 2016 fall in oil prices is proved to be beneficial to the United States and the global markets. In this manner, it was found that the oil price decline results in a lower degree of interests and inflation, and a higher level of global real equity prices. Despite taking a course of 4 quarters after the decline, it was reported that the actual production was positively affected. By investigating the impact of the oil price plunge on the US economy across several sub-periods in a form of monthly observations on real oil prices, real equity prices, and real dividends; it was discovered that the interplay between oil prices and equity prices since the financial crisis in 2008 had been positively unsecured from 1946-2016. On the other hand, an allegedly better substitute for economic ventures in comparison to equity prices was proposed to be a negatively secured interplay between oil prices and real dividends. In the perspective of the supply sector, the effects vary from one oil producer to another; it is a combination of the reduction in the US production and the rise in the OPEC production. In this case, the effects might be contrary from the expected result, due to the fact that a proportion of major oil manufacturers make an effort to counteract this dilemma by increasing the production. This indicates that oil markets are brought into equilibrium in a rather slow manner. In this respect, it is possible that oil prices are to be in discursive fluctuation, and in which the highest level of the shale oil marginal cost is at approximately 60 U.S. dollars of per barrel.

González and Nabiyev (2009) examine the consequences of the crude oil price fluctuations on the GDP growth in the context of the United States and Sweden, by using the Mork & Olsen model (1994) extended to be viable in the course of 1993 towards the third quarter of 2008. The bivariate conclusion reveals that there is no evidence of negative relationships between the Swedish GDP growth and oil price rises. On the contrary, oil prices rise appear to be more influential to the US GDP growth. Regarding this, it should be noted that both United States and Sweden have shown a considerable reduction of oil consumption in the last decade. For Sweden, the result shows that the GDP growth depends less on oil prices, and in which a negative correlation between crude oil price declines and GDP growth is found. On the other side of the spectrum, the United States witnesses a negative impact following the rise in oil prices, and vice versa following the fall in oil prices. Whereas the revenues generated in the stock market of the United States, the United Kingdom, and France suffer from the soaring oil prices, major energy exporters such as Canada and Australia witness positive impacts.

Magnani (2016) discusses the impacts of falling oil prices that the shock of commodity prices since 2011 poses as an instability for global economies. Manufactures of oil, gas, and raw materials encounter economic difficulties. The immediate impact is the fall in consumption and investments in emerging countries such as Venezuela, Russia, Brazil, and South Africa. On the other end, the industrialized countries are negatively struck by a crowding out effect on some sectors such as i.e. the green economy and the agricultural sector. Since 2014, US oil prices have been dragged down from 110 dollars per barrel to 40 dollars per barrel. This price fall is the cause of lower competitiveness in oil shale extractions; simultaneously, relevant ventures such as the development of raw materials and new technologies are put on hold, which consequently affects American and European

companies negatively. Deemed as the current concern of the Fed and the ECB, deflation is a result of the expectation from households and corporates on the fall in commodity prices that triggers them to slow down consumption and investment. Another significant concern is the financial instability which is likely to affect emerging economies and hence the following international ramifications. Additionally, there are the social and political aspects that could be triggered by the fall in oil prices. The Arab Spring, for instance, was stirred by frail social and political coherence triggered by decreasing revenues. In war-zone nations such as Nigeria, Algeria, and some parts of the Middle East, this falling revenues may devastate the governments' attempt to battle against terrorism. The last aspect is concerned with the market volatility at the global level in a manner that the industrialized nations still encounter the financial recession that is implicated in a slow pace of the economic growth. In this respect, rather than posing as economic opportunities, the slump in commodity prices present itself in a form of a risky and uncertain entity.

Alazraque et al. (2016) attempt to arrive at the conclusion on the possibility of the Chinese renewable energy sector being affected by the reduction in oil import expenses. It is nevertheless more difficult to predict the future of the renewable energy sector, by using a quantitative model, the article offers a comparison between oil demand and prices in the course of recent years with the effect on investments in the sphere of renewable energy, under the premise that the major competitor is coal. In a short-term manner, it is likely that the plunge in oil prices since 2014 would better China's supply security and economy. If this condition were to last in a longterm, it might cause a drop in investments in the sector of domestic oil and gas. This potentially brings about a halt in domestic production. Over an extended period, it is in turn likely that there will be a rise in China's dependency on oil imports, and subsequently a negative impact on energy security and implementations on renewable energy. In this regard, the findings point to a promising reciprocity between oil prices and the investments in wind and solar energy, albeit a possibility of this being moderated by high price volatility. It should be added that impact of oil prices on the aspect of renewable energy is subject to the falling period that contributes to the level of impacts, and on the renewable energy development course. Although it is possible that oil prices may distort the renewable energy development in a short run; in a short

run, investments for such development involve political schemes, which could lessen turmoil caused by low oil prices.

Naim (2015) had studied traces back to 1973-1974 which is the origin of the emergence of modern economic powers, such as those in the Middle East and North America, with the help of oil price shift from 3 U.S. dollars per barrel to 12 U.S. dollars per barrel. Oil importers such as the United States, Japan, and European countries, on the other end, were struck with a severe backlash. Currently, the oil price rise since 2014 is predicted to cause as much turmoil as the 1974 oil price. In Russia, the reduction in oil and gas revenues and economic sanctions conduce to economic suffering. Venezuela-that has been economically affected when the oil price reaches 120 U.S. dollars-is currently in shatters upon the decline in oil prices. On the global outlook, Goldman Sachs predicted that one trillion-US dollar investment could be faced with the risky financial prospect. In a short-term, energy companies are prone to be negatively affected. In a long-term, the global economy might witness a lower number of oil production and higher values of oil. The impact is nevertheless positive in countries such as Malaysia, Indonesia, and India that make use of this opportunity to lessen or demolish fuel subsidies. Lower oil prices could also lead to less production of environmentally harmful oil as well as renewable energy. Moreover, oil price declines can also remodel the financial market structure by devaluing marketable reserves like oil supply to be "stranded asset", which in turn results in new transformations of the fuel industry.

According to the Associated Press in New York (2016) investigate the crude oil price decreased by 28% since 2015, which further dragged the US index down by 9%. In this case, analysts roughly calculated that all Standard & Poor companies' profits would drop to 5.8% in 2015. It was additionally estimated that the major 20 company shares in the Standard & Poor's 500 index would be lost; of which, 13 companies are in the energy domain. This also propels investors to sell their company shares that are associated with the oil industry. In this respect, Julian Jessop, head of commodities research with London-based researchers Capital Economics, expressed that lower oil prices are expected to be positive, or neutral in the worst-case scenario, in a long-term, due to the fact that the oil price decline simply transfers benefits from oil manufacturers to consumers. On the other end, Bruce Kasman, chief economist at JPMorgan Chase, is of the opinion that falling oil prices rather represent a foreshadowing of the weak global economy, as experienced in the history. Kasman further suggested figures for consumption expenditures in the United States, Europe, and Japan are certainly lower than expected. In the United States, the growth of consumption expenditures is merely at 1.5% in the last three months of 2015. The impact is evident in the energy market in which it was revealed that, according to Dealogic, there is 500 billion dollar worth of outstanding debt circulated in the oil and gas industry. Additionally, the Federal Reserve reported that 11 trillion dollar worth of outstanding residential mortgage debt was found. This, in consequence, conduces to the rise of bankruptcies in oil and gas companies, and the "junk bonds" being affected by these companies' defaults. Big corporates such as JPMorgan Chase, Wells Fargo, Citigroup, and Bank of America were all inevitably affected by the reduction in their values of energy loans, and forced to compensate for financial loses.

Creti et al. (2013) examine the level of cross-cutting dependency between the index of oil prices and the stock market in the context of oil importing nations and oil exporting nations, by using Priestley and Tong (1973)'s evolutionary co-spectral analysis. The data was provided with monthly stock and oil prices from oil importing nations, namely the United States, Italy, Germany, Netherland, and France, and oil exporting nations, namely Emirate Arab Units, Kuwait Saudi Arabia, and Venezuela, in the course of 03 September 2000 to 03 December 2010. The analysis suggests that there is a higher of interdependence between oil prices and the stock market in the markets of oil importers and exporters. Regarding this, oil prices generated by demand shocks aligned with stock prices, especially in the context of exporters, whereas homogeneous interdependence patterns are found in both exporters and importers. Additionally, higher coherence generated by supply shocks can only be found in oil exporting nations. In the aspect of diversification potential, oil thus tends to counteract volatilities in the economic cycle in accordance with stock markets. On the contrary, if the demand is the cause of the shock, it is likely that oil prices and the stock market are aligned with each other both in the context of importing and exporting nations, under the premise that there is a variety of the strength that demands on the shock source. In such prospect, oil plays no part in neutralizing changing returns of stocks in any of the countries.

Global Network Faculty (2015) gathering opinions from experts across the Global Network for Advanced Management upon the impact of oil price fluctuations on their respective economies. In Brazil, Julia Von Maltzan Pacheco, professor and associate dean for international relations, FGA Escola De Administracao De Empresas De Sao Paulo, used Petrobras, the largest debt-bound oil company in the world, as an example for the issue of oil price influence. Petrobras, currently under revision of its investment strategy following the oil price decline, is likely going to cause a harmful ripple effect to Brazil's future oil production and hence the global production in 10 to 15 years, as well as the growth in industries and the construction sector, which are both associated with the oil production in Brazil. On the other end, the oil price fall is advantageous to the Brazilian government which can now reduce its subsidies, as companies are now able to compensate for their capital loses. For China, Lihong Yang, assistant professor of economics, Department of Trade & Economics, School of Business, Renmin University of China, articulated that China has been experiencing the economic growth at a sluggish pace. The drop in oil prices could play a significant role in strengthening the Chinese economic growth, especially in investments in the industrial domain. As the Chinese import is reliant on oil reservoirs, the drop in oil prices means a greater amount of savings from foreign exchange. On the outlook, not only low oil prices will benefit the business sector, lower inflation will raise public consumption as well. For Germany, Jens Weinmann, program director, suggested that low oil prices result in a greater number of car purchases, the German economy is therefore likely to gain significant revenues following this. In an extended period of time, oil prices will play less role in determining the German wealth, due to new innovative combustion-engine cars; German car producers are nevertheless braced for this emerging market. For Mexico, Dr. Alejandro Ibarra Yunez, professor of economics and public policy, EGADE Business School, Technologico de Monterrey, perceived that the reduction in Pemex's oil production worsens the circumstance. The Mexican economy is likely to be negatively affected by the drop in oil prices, as 30% of Mexican public finances is reliant on oil revenues. In addition, the reduction in federal subsidies and payment delays to federal suppliers result in a lower number of public contracts. The government nonetheless approved the Energy Reform in hope to strengthen the Mexican economy in the wake of oil price falling. In the case of Nigeria, Doyin Salami, economist, and professor, Lagos Bus

Pan-Atlantic University, the oil price change has lowered the Nigerian account balance to 69.3%, from 3.14 trillion nairas in 2013 to 964.6 billion nairas in 2014. Following the oil price decline, its currency was also devalued twice in the course of one year. Oil revenues, as the major source of the federal revenue and the foreign reserve, also witnessed steep declines. For Canada, Werner Antweiler, associate professor, Sauder School of Business, University of British Columbia, expressed that there are different factors determining the oil price, including operating gasoline refineries and inventories in different regions of the country, as well as local demand and supply. In the context of Canada, the impact of the changing oil price, therefore, tends to vary.

Bell (2016) vice president of recycling operations for Waste Management, offered an insight into the impact of low oil prices on the domain of recycling industry that plastic resin prices are subject to oil prices. Due to the decline in oil prices, manufacturers purchase cheaper virgin plastic instead of recycled plastic. As oil prices play a part in strengthening the US economy and its currency, the prices of waste paper and metal in the United States have in turn been raised higher than those of other parts of the world. The declining oil prices additionally contribute to the decreasing trend in oil exploration and energy infrastructures, which further results in less demand for recycled scrap metal. All in all, this reality is not an indication of a promising future for the US recycling market.

Klevnäs et al. (2015) discuss the impact of low oil prices in different dimensions, based on the publication entitled Better Growth, Better Climate: The New Climate Economy Report by the Global Commission on the Economy and Climate. In general, the drop in oil prices catalyzes economic betterment for consumers in the short run. As the world currently consumes 90 million barrels of oil on a daily basis, it is likely that declining oil prices will stimulate the global economy in different degrees of effects. The overall impact at the global level is nevertheless positive, under oil producers' loses. According to the International Monetary Fund (IMF), there is an indication that, in the case of oil prices remaining low, the global GDP is likely to be 0.3-0.7% higher in 2015 and 0.2-0.8% higher in 2016. As the oil

price is accounted for 5% of the global GDP, the volatility of energy price, which causes a 50% change within a course of a few months, is, therefore, thought be a major concern for the global economy in the energy sector. On the contrary, declining oil prices bring about reform opportunities. Across the globe, there is a momentum of energy price improvement, and in which there are 27 countries on the progress to reform energy subsidies, and, currently, there are 26 countries scheduled to introduce a carbon price. In this respect, this is expected to be an opportunity to diminish short-term resistance and transition costs, caused by these implementations. In terms of investments in renewable energy in the domain of electricity production, the drop in renewable energy prices makes it an appealing alternative, and in which the dependency on fossil fuels is prone to be lessened. In a longer course, the low-carbon policy could play a part in maintaining the lower levels of fossil fuel prices, which is predicted to be reduced by approximately 30-50%. Additionally, it is likely that an opportunity to prevent future asset stranding and commitment to the utilization of fossil fuel could simultaneously come out of this.

CHAPTER 3

METHODOLOGY

3.1 Research Conceptual Framework

In this study, a computable general equilibrium model is used to investigate economic impacts of a hypothetical situation where the price of Thai petrol fuel is a Computable General Equilibrium projection of economic impact and CO₂ emission potential in Thailand following oil price slump in 2014. The investigation is extended to discover environmental impacts that couple with economic impacts. Economic growth is the primary expectation of better economic efficiency. Scope for the measurement of environmental impacts is particularly limited to CO₂ emission which coupled with fuel consumption across economic sectors. Regarding general equilibrium, the magnitude of environmental impacts is not necessarily proportional to economic impacts. Many factors influence the unequal distribution of economic and environmental impacts across economic sectors. Net general equilibrium effects can produce higher economic impacts than environmental impacts. Also, it is possible for net general equilibrium effects to produce more significant environmental impacts than economic impacts. These two possibilities are the subject for investigation. Knowledge gained from a computable general equilibrium analysis contributes to appropriate policy formulation. The contribution is shown in Figure 3.1.

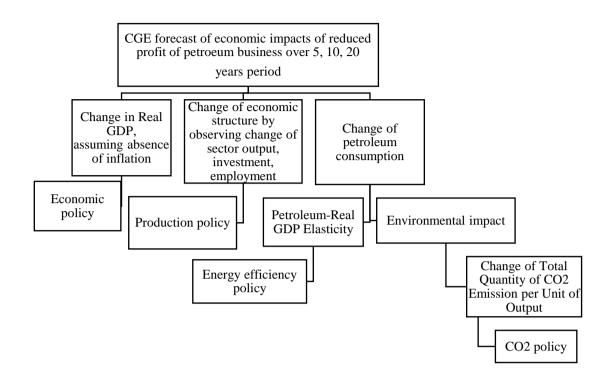


Figure 3.1 Study Contribution

To assess the economic impacts of the hypothetical shift in oil price slump in 2014, industry, household consumption, government, export-import and 180 of production sectors in Thailand. This study uses the computable general equilibrium (CGE) model to discover the change in the economic system impacted from oil price slump 2014 in Thailand. The environmental impact associated with economic changes is discovered concerning the amount of carbon dioxide released from oil uses at both aggregate and sector levels. The CGE model is specified based on ORANI-F approach (Horridge et al., 1993) which offers the convenience in using Thailand's input-output table as the primary database for the model.

The CGE model offers the possibility of applying economic theories to form the relationship between all parties within the economic system as shown in Figure 3.2. A general equilibrium system computes all changes within the economic system into net change. This approach offers a convenience in impacts assessment for oil price slump in 2014.

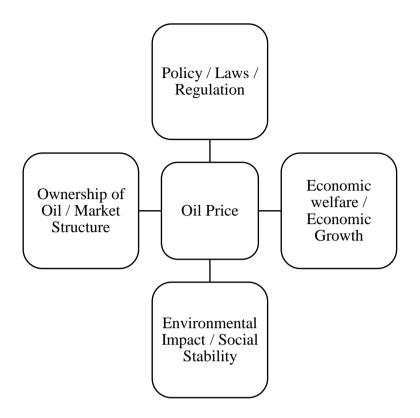


Figure 3.2 Research Conceptual Framework

In this study, a CGE model is used to expose economic changes triggered by oil policy shift as depicted in Figure 3.3. Environmental changes can be studied by coupling environmental variables to economic changes. Study of environmental changes is scoped within changes in CO_2 emission produced by the change in oil use. Aggregate economic changes will be observed regarding real GDP. Micro picture of economic changes can be observed concerning change in the output of goods and services, which is organized into 180 sectors based on Thai input-output table.

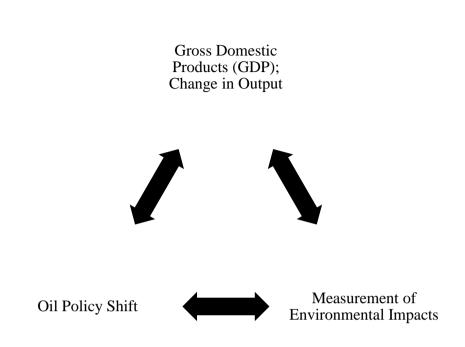


Figure 3.3 Algorithm of Research

Environmental impacts which couple with economic changes are not necessarily proportionate with economic changes. Several underlying factors explain the unequal change. First, oil intensity differs for different goods and services. Second, growth rate differs for different goods and services which is attributable to different types of constraints, including demand and supply sides. Thus, both economic and environmental impacts of oil policy shift are unknown until a general equilibrium results are produced.

3.2 Underlying Principle

This research aims to study the growth of the real economy of the country. This is influenced by falling oil prices by 50 percent from 2014, using the Computable General Equilibrium Model as a tool for forecasting. Using the results to assess the economic forecast for the amount of carbon dioxide that is attributable to changes in the economy. The study is the knowledge on both sides to find ways to develop the economy in the future and guidelines for controlling the amount of carbon dioxide, the main component of greenhouse gases, which is a factor of change in the global climate and associated environmental impacts of hypothetical oil price restructuring. One is the standard 5 year-projection in the absence of hypothetical oil price slump. The other is the 5 year-projection with the presence of hypothetical oil slump. The forecasting CGE model is input with the reduced capital price to represent hypothetical oil price slump in 2014.

3.3 Data and Arrangement for Input-Output Table for CGE Model

Since, Thailand's Input-Output Table did not have the capital goods prod matrix, the researcher, then, set the following matrix up based on the data from Thailand's Input-Output Table as shown in Figure 3.4

The process of generating the investment expenditure matrix from the data in the input-output table as shown in figure 6 are as followed:

Calculate the weight of capital goods output (zI_j) from the depreciation (D_j) in the input-output table $H_j = \frac{D_j}{\sum_{i=1}^{180} D_i}$

Calculate the total investment expenditure (C1) $cI = \sum_{i=1}^{l80} xI_{i1} + \sum_{i=1}^{l80} xI_{i2}$

Calculate the weight of capital goods output (z1) $zI_i = H_i \cdot c1$

Calculate the weight of domestic products that were used as the factors in capital goods production from input-output table $S_{iI} = \frac{\sum_{i=I}^{I80} xI_{iI}}{cI} zIj$

Calculate the weight of imported goods that were used as the factors in capital goods production from input-output table $S_{i2} = \frac{\sum_{i=1}^{180} xI_{i2}}{cI}$

Calculate the number of domestic products demand used as the factors of capital goods production $xI_{ijl}=S_{il}\cdot zI_i$

Calculate the number of imported goods demand used as the factors of capital goods production $xI_{ij2}=S_{i2}\cdot zI_j$ resulted in 180 x 180 matrix of xI_{ij1} and 180 x 180 matrix of xI_{ij2}

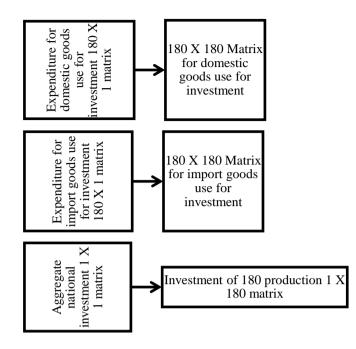


Figure 3.4 Modification of Input-Output Investment Cost Data Table for CGE

The reconfiguration of Thailand's input-output table is shown in Figure 3.5. The 2010 edition of Thailand's input-output table is available on the website by the Office of National Economic and Social Development Board (NESDB). The sector classification of Thailand's input-output table is shown in Appendix A.

Figure 3.5 displays a matrix configuration of variables named for the CGE model. Domestic intermediate input is denoted by $x0_{i,j,1}$ whereas import intermediate input is denoted by $x0_{i,j,2}$. Labor input, capital input, and indirect taxes are denoted by $x01_j$, $x02_j$, and $x03_j$ respectively. Investment expenditure for domestic goods and import goods is denoted by 180 X 180 matrix $x1_{i,j,1}$ and $x1_{i,j,2}$ respectively. Household consumption for domestic goods and import goods is denoted by 180 X 1 matrix $x3_{i,1}$ and $x3_{i,2}$ respectively. Export of 180 goods is denoted by 180 X 1 matrix $x3_{i,1}$ and $x3_{i,2}$ respectively. Export of 180 goods is denoted by matrix $x4_i$. Inventory of 180 goods and services is denoted by 180 X 1 matrix $x5_{i,1}$ and $x5_{i,2}$ respectively. Special export of 180 goods is denoted by matrix $x6_i$.

Value-added originated by wage, profit, and indirect taxes sum to va1, va2, va3, which sums to gdpi, representing gross domestic products computed from income.

Domestic	x0 _{ij1}	x1 _{ij1}	x2 _{i1}	x3 _{i1}	x4 _i	x5 _{i1}	x6 _i	z01 _i
Import	x0 _{ij2}	x1 _{ij2}	x2 _{i2}	x3 _{i2}		x5 _{i2}		z02 _i
	x01 _j							va1
	x02 _j							va2
	x03 _j							va3
	z01 _j							GDPI

Figure 3.5 Arrangement of Input-Output Table of Thailand's Economic System for Forecasting computable general equilibrium model

Thailand'180 sectors input-output table is released at the interval of five years by the Office of National Economic and Social Development Board (NESDB). The 2010 edition of Thailand's input-output table was used in this study.

The input-output table consists of 1) Intermediate demand for domestically produced goods 2) Intermediate demand for imported goods 3) Value added of good production consisting of 4 part as (including 3.1) wage, 3.2) profit, 3.3) depreciation, and Indirect taxes) 4) gross domestic product 5) Household consumption of domestic and imported goods and services 6) investment expenditure on domestic and imported goods and 8) export of goods and services.

3.4 CGE Model Specification

The analysis of economic changes by using the Forecasting Computable General Equilibrium Model (FCGE Model) helped to foster the comprehension of the connections between several markets in economic system by contemplating both positive and negative impacts as the net effect. This concept was useful in providing information about the advantages and business cost, which played a significant role in the policy design that would later benefit the economic system and public.

The FCGE Model in this study had 180 manufacturing branches to correspond to the number of branches in the Input-Output Table of Thailand, which was classified into 41 branches of agricultural and primary products, 93 branches of industrial products and 46 branches of services.

The forecasting CGE system consists of system variables described in Table 3.1, equation system in Table 3.2, the partition of structural exogenous variables in Table 3.3, and the formula for the computation of parameters, shares, and data values in Table 3.4. The forecasting CGE model consists of 135,208 variables and 133,946 equations which leave 1,262 variables available for exogenous.

The simulation of 5-year-period economic change from 2014 to 2019 could be divided out into 2 comparable cases 1) the spontaneous economic change due to the net increase in capital factor, which was resulted from the capital accumulation caused by the fixed investment of several branches of production. 2) the spontaneous economic change due to the net increase in capital factor, which was resulted from the capital accumulation caused by the fixed investment of several branches of production. 6 production the capital accumulation caused by the fixed investment of several branches of production combined with the 50% drop of oil prices, the level that had had the visible impacts since 2014.

The simulation in case 1 was based on the input =1 to the delfudge variable in Table 3.1.

The simulation in case 2 was based on the input =1 to the delfudge variable in Table 3.1 and the input =-50 to the variables, which were related to the oil prices included the prices of imported goods in foreign currency pw_{2i} for crude oil and

petroleum products and $v1_i$ for crude oil and petroleum products as shown in Figure 3.6.

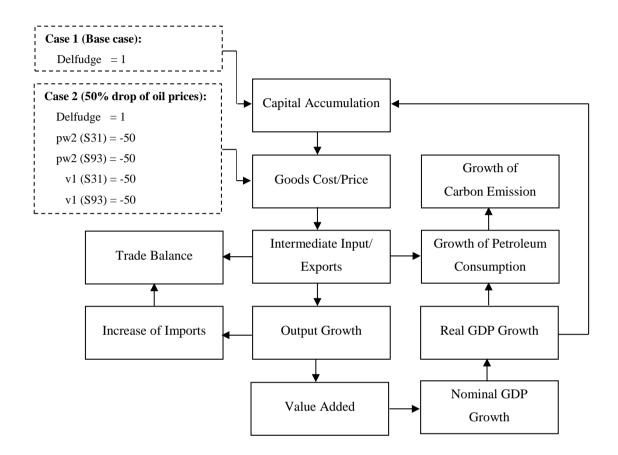


Figure 3.6 The Simulation of 50% drop of oil prices and Shock Variable

The theory used in the process of designing derived from the ORANI Model (Dixon et al., 1982) and the ORANI-F Model (Horridge et al., 1993) which possessed the prediction qualities. In this case, the final demand theory (Figure 3.7), the inputs demand theory (Figure 3.8) and the capital factors demand and the capital goods production theory (Figure 3.9) were applied.

Nominal GDP is computed from supply and demand sides which helps to calibrate the precision of the CGE model. Net change in price is computed in the various form including consumer price index, government consumption price index, the investment price index, and GDP deflator. Real GDP is the difference between nominal GDP and GDP deflator.

The core structure of a CGE model consists of 5 sets of equations: 1) Final demand 2) Production function 3) Price definitions 4) Market equilibrium and 5) Numeraire.

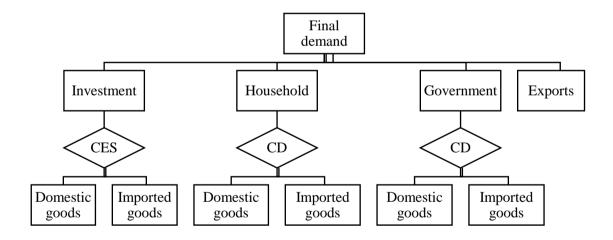


Figure 3.7 Final Demand Theory

Notes: CES= Constant Elasticity of Substitution form of production function;

CD = Cobb-Douglas form of production function

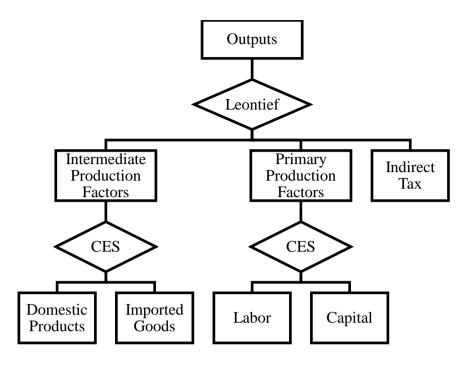



Figure 3.8 The Theory for the Factors of Production Demand

Notes: Leontief = Leontief form of production function,

CES = Constant Elasticity of Substitution form of production function

Figure 3.9 The Theory of Capital Factors Demand and Capital Goods Production **Notes:** CES = Constant Elasticity of Substitution form of the production function

In this approach, examination of economic and environmental impact from oil price slump in 2014 consists of two main steps: 1) calculation of economic impacts from oil price slump; and 2) calculation of environmental cost regarding the amount of carbon emission.

The environmental cost is measured concerning the quantity of carbon dioxide emission across the economy due to change in 180 sectors of the production system in Thailand when the oil price slump in 2014. In this study, the CO₂ emission is calculated in two methods: 1) CO₂ emission calculated based on published emission factor; and 2) CO₂ emissions calculated based on carbon credit price.

With the first methods, one of the primary determinants of carbon dioxide (CO_2) emissions from mobile source are the amount of carbon in the fuel. Carbon content varies, but typically we use average carbon content values to estimate CO_2 emissions (EPA, 2015). The code of Federal Regulations (40 CFR 600.113) provides values for carbon content per gallon of gasoline and diesel fuel which EPA uses in calculating the fuel economy of vehicles:

Gasoline carbon content per gallon:2,319 gramsDiesel carbon content per gallon:2,697 grams

	Variable	Description	Range
1	p0 _{i,s}	Commodity price	360
2	p01 _j	Labor price	180
3	p02 _j	Capital rental price	180
4	p03 _j	Indirect tax rate	180
5	pz1 _j	Investment cost	180
6	cpi1	Investment price index	1
7	cpi2	Consumer price index	1
8	cpi3	Government consumption price index	1
9	rp01 _j	Real Labor Price	180
10	rp02 _j	Real Capital Rental price	180

 Table 3.1 Composition of Variables, their Representation, and Range

 Table 3.1 (Continued)

	Variable	Description	Range
11	xr	Exchange Rate	1
12	$pw1_i$	Export Price	180
13	pw2 _i	Import Price	180
14	$v1_i$	Export tax	180
15	$v2_i$	Import tax	180
16	$fx4_i$	Shift export	180
17	$x0_{i,j,s}$	Produced inputs used by commodity production	64,800
18	x01 _j	Labor input used by commodity production	180
19	x02 _j	Capital input used by commodity production	180
20	x03 _j	Indirect taxes	180
21	$z01_j$	Commodity supply and demand	180
22	$z02_i$	Imports commodity i	180
23	$z1_j$	Investment by sector	180
24	cx1 _{i,s}	Investment by column	360
25	gdpi	Nominal gross domestic products computed from value	1
		added (income side GDP)	
26	va ₁	Total Labor input	1
27	va ₂	Total Capital input	1
28	va ₃	Total indirect taxes	1
29	gdpe	Expenditure side GDP	1
30	gdpr	Real GDP	1
31	gdpdf	GDP deflator	1
32	c1	Total investment consumption	1
33	c1r	Real total investment consumption	1
34	c2	Total household consumption	1
35	c2r	Real total household consumption	1
36	c3	Total government consumption	1

Table 3.1 (Continued)

	Variable	Description	Range
37	c3r	Real total government consumption	1
38	k0 _j	Current capital stock	180
39	e	Total nominal export in foreign currency	1
40	m	Total nominal import in foreign currency	1
41	delBT	Change in trade balance	1
42	delDT	Change in trade balance-GDP ratio	1
43	x1 _{i,j,s}	Investment	64,800
44	x2 _{i,s}	Household consumption	360
45	x3 _{i,s}	Government consumption	360
46	x4 _i	Exports of commodity i	180
47	x5 _{i,s}	Inventory commodity i	360
48	x6 _i	Special export commodity i	180
49	Del Fudge	Forecast variable	1
50	F_accum _j	Capital shift	180
51	oil	Oil consumption (Quantity)	1
52	oil_v	Oil consumption (Value)	1
53	oil_fd	Oil consumption in final demand (Quantity)	1
54	oil_fdv	Oil consumption in final demand (Value)	1
55	oil_int	Oil consumption in intermediate (Quantity)	1
56	oil_intv	Oil consumption in intermediate (Value)	1
		Total	135,208

	Equation	Range
1	$z01_{j} = \sum_{j=1}^{180} RX0_{ij1} \cdot x0_{ij1} + \sum_{j=1}^{180} RX1_{ij1} \cdot x1_{ij1} + RX2_{i1} \cdot x2_{i1} + RX3_{i1}$	180
	$\cdot x3_{i1} + RX4_i \cdot x4_i + RX5_{i1} \cdot x5_{i1} + RX6_i \cdot X6_i$	
2	$z02_{j} = \sum_{j=1}^{180} RX0_{ij2} \cdot x0_{ij2} + \sum_{j=1}^{180} RX1_{ij2} \cdot x1_{ij2} + RX2_{i2} \cdot x2_{i2} + RX3_{i2}$	180
	$\cdot x3_{i2} + RX5_{i2} \cdot x5_{i2}$	
3	$x0_{ijs} = z01_j - \eta \left(p0_{is} - \sum_{s=1}^{2} SZX0_{ijr} \cdot p0_{ir} \right)$	64,800
4	$x01_j = z01_j - \theta \left(p01_j \right)$	180
	$-\left(SFAC1_{j} \cdot p01_{j} + SFAC2_{j} \cdot p02_{j} + SFAC3_{j} \cdot p03_{j}\right)$	
5	$x02_j = z01_j - \theta \left(p02_j \right)$	180
	$-\left(SFAC1_{j} \cdot p01_{j} + SFAC2_{j} \cdot p02_{j} + SFAC3_{j} \cdot p03_{j}\right)$	
6	$x03_j = p03_j + p0_{j1} + z01_j$	180
7	$va1 = \sum_{j=1}^{180} S01_j \cdot (p01_j + x01_j)$	1
8	$va2 = \sum_{j=1}^{180} S02_j \cdot (p02_j + x02_j)$	1
9	$va3 = \sum_{i=1}^{180} S03_i \cdot x03_i$	1
10	$gdpi = H01 \cdot va1 + H02 \cdot va2 + H03 \cdot va3 + H04 \cdot va4$	1
11	$x1_{ijs} = z1_j - CES\left(p0_{is} - \sum_{s=1}^2 SZX1_{ijr} \cdot p0_{ir}\right)$	64,800
12	$x2_{is} = c2 - p0_{is}$	360
13	$x3_{is} = c3 - p0_{is}$	360

Table 3.2 (Continued)

	Equation	Rang
14	$pw1_i = -\gamma \cdot x4_i + fx4_i$	180
15	$x5_{is} = c2r$	360
16	$x6_i = c2r$	180
17	$k0_j = K_T ERM_j \cdot delfudge + M_T ERM_j \cdot R_T_j \cdot z1_j + f_accum_j$	180
18	$x02_j = k0_j$	180
19	$p0_{j1} + z01_j = \sum_{i=1}^{180} HX0_{ij1} \cdot (p0_{j1} + x0_{ij1})$	180
	$+\sum_{i=1}^{180} HX0_{ij2} \cdot (p0_{j2} + x0_{ij2}) + HX01_j \cdot x01_j + HX02_j$	
	$\cdot X02_{j} + HX03_{j} \cdot X03_{j} + HX04_{j} \cdot (p04_{j} + p0_{j1} + z01_{j})$	
20	$p0_{i1} = pw1_i + v1_i + xr$	180
21	$p0_{i2} = pw2_i + v2_i + xr$	180
22	$pz1_{j} + z1_{j} = \sum_{i=1}^{180} HZ1_{ij1} \cdot (p0_{i1} + x1_{ij1}) + \sum_{i=1}^{180} HZ1_{ij2} \cdot (p0_{i2} + x1_{ij2})$	180
23	$z1_j = c1 - pz1_j + p02_j$	180
24	$cpi1 = \sum_{j=1}^{180} SZ1_j \cdot pz1_j$	1
25	$cpi2 = \sum_{i=1}^{180} SX2_{i1} \cdot x2_{i1} + \sum_{i=1}^{180} SX2_{i2} \cdot x2_{i2}$	1
26	$cpi3 = \sum_{i=1}^{180} SX3_{i1} \cdot x3_{i1} + \sum_{i=1}^{180} SX3_{i2} \cdot x3_{i2}$	1
27	c1r = c1 - cpi1	1
28	c2r = c2 - cpi2	1
29	c3r = c3 - cpi3	1
30	c1 = gdpe	1

Table 3.2 (Continued)

	Equation	Range
32	c3 = gdpe	1
33	$e = \sum_{i=1}^{180} HX4_i \cdot (pw1_i + x4_i)$	1
34	$m = \sum_{i=1}^{180} HM_i \cdot (pw2_i + z02_i)$	1
35	$100 \cdot delbt = VE \cdot e - VM \cdot m$	1
36	$100 \cdot VGDPE \cdot deldt = VE \cdot e - VM \cdot m - (VE - VM) \cdot gdpe$	1
37	$rp01_j = p01_j - cpi2$	180
38	$rp02_j = p02_j - cpi2$	180
39	$cx1_{i1} = \sum_{j=1}^{180} RCX1_{ij1} \cdot x1_{ij1}$	180
40	$cx1_{i2} = \sum_{j=1}^{180} RCX1_{ij2} \cdot x1_{ij2}$	180

$$\begin{array}{l} \hline \textbf{Equation} & \textbf{Range} \\ \hline \hline \textbf{41} & gdpe = \sum_{i=1}^{180} SHZCX1_{i1} \cdot (p0_{i1} + cx1_{i1}) & 1 \\ & + \sum_{i=1}^{180} SHZCX1_{i2} \cdot (p0_{i2} + cx1_{i2}) \\ & + \sum_{i=1}^{180} SHX2_{i1} \cdot (p0_{i1} + x2_{i1}) \\ & + \sum_{i=1}^{180} SHX2_{i2} \cdot (p0_{i2} + x2_{i2}) \\ & + \sum_{i=1}^{180} SHX3_{i1} \cdot (p0_{i1} + x3_{i1}) \\ & + \sum_{i=1}^{180} SHX3_{i2} \cdot (p0_{i2} + x2_{i2}) \\ & + \sum_{i=1}^{180} SHX4_i \cdot (p0_{i1} + x4_i) \\ & + \sum_{i=1}^{180} SHX5_{i1} \cdot (p0_{i2} + x5_{i1}) \\ & + \sum_{i=1}^{180} SHX5_{i2} \cdot (p0_{i2} + x5_{i2}) \\ & + \sum_{i=1}^{180} SHX6_i \cdot (p0_i + x6_i) \\ & - \sum_{i=1}^{180} SHZ02_i \cdot (p0_{i2} + z02_i) \end{array}$$

	Equation	Range
45	$oil_v = \sum_{j=1}^{180} SCX0_{93,j,1} (p0_{93,1} + x0_{93,j,1})$	1
	$+\sum_{j=1}^{180} SCX0_{93,j,2}(p0_{93,2} + x0_{93,j,2})$	
	$+\sum_{j=1}^{180} SCX1_{93,j,1} (p0_{93,1} + x0_{93,j,1})$	
	$+\sum_{j=1}^{180} SCX1_{93,j,2} (p0_{93,2} + x0_{93j,2})$	
	$+ SCX2_{93,1}(p0_{93,1} + x2_{93,1})$	
	$+ SCX2_{93,2}(p0_{93,2} + x2_{93,2})$	
	$+ SCX3_{93,1}(p0_{93,1} + x3_{93,1})$	
	$+ SCX3_{93,2}(p0_{93,2} + x3_{93,2})$	
	$+ SCX4_{93}(p0_{93,1} + x4_{93})$	
	$+ SCX5_{93,1}(p0_{93,1} + x5_{93,1})$	
	$+ SCX5_{93,2}(p0_{93,2} + x5_{93,2}) + SCX6_{93}(p0_{93,1})$	
	$+ x6_{93})$	
46	$oil_{fd} = \sum_{j=1}^{180} SFDX1_{93,j,1} x 0_{93,j,1} + \sum_{j=1}^{180} SFDX1_{93,j,2} x 0_{93j,2}$	1
	$+ SFDX2_{93,1}x2_{93,1} + SFDX2_{93,2}x2_{93,2}$	
	$+ SFDX3_{93,1}x3_{93,1} + SFDX3_{93,2}x3_{93,2}$	
	$+ SFDX4_{93}x4_{93} + SFDX5_{93,1}x5_{93,1}$	
	$+ SFDX5_{93,2}x5_{93,2} + SFDX6_{93}x6_{93}$	

	Equation	Range
47	$oil_f dv = \sum_{j=1}^{180} SFDX1_{93,j,1} (p0_{93,1} + x0_{93,j,1})$	1
	$+\sum_{j=1}^{180} SFDX1_{93,j,2}(p0_{93,2}+x0_{93j,2})$	
	$+ SFDX2_{93,1}(p0_{93,1} + x2_{93,1})$	
	$+ SFDX2_{93,2}(p0_{93,2} + x2_{93,2})$	
	$+ SFDX3_{93,1}(p0_{93,1} + x3_{93,1})$	
	$+ SFDX3_{93,2}(p0_{93,2} + x3_{93,2})$	
	$+ SFDX4_{93}(p0_{93,1} + x4_{93})$	
	$+ SFDX5_{93,1}(p0_{93,1} + x5_{93,1})$	
	$+ SFDX5_{93,2}(p0_{93,2})$	
	$+ x5_{93,2}$)+SFDX6 ₉₃ (p0 _{93,1} +x6 ₉₃)	
48	$oil_int = \sum_{j=1}^{180} SINX0_{93,j,1} x 0_{93,j,1} + \sum_{j=1}^{180} SINX0_{93,j,2} x 0_{93j,2}$	1
49	$oil_intv = \sum_{i=1}^{180} SINX0_{93,j,1}(p0_{93,1} + x0_{93,j,1})$	1
	$\sum_{j=1}^{j} (j,j,j) = (j,j,j)$	
	$+\sum_{j=1}^{180} SINX0_{93,j,2}(p0_{93,2} + x0_{93,j,2})$	
	Total	133,946

The structure of exogenous variables indicated the economic theory or assumptions that were related to the FCGE model as followed: 1) Wage adjustment based on the changes in selling prices indicated that the labors, who were also the consumers, did not have lower welfare if prices rose. However, welfare would increase or decrease as a result of changes in real GDP. 2) Constant policy assumptions included indirect tax rates, export subsidy rates (if any) and import tariffs. However, the change in government revenue would depend on the general economic changes namely the output of GDP. 3) Export demand was inversely proportional to the selling prices; for instance, the demand might increase if the price of exported goods decreased. This might happen as a result of the increase in competitive capability of the production as the cost decreased, and/ or the exchange rates got weaker. On the contrary, the export demand might decrease if the prices of exported goods rose as a result of the decline in production potential due to higher production costs, and/ or the increase in exchange rates. 4) Demand for imported goods was inversely proportional to the price of imported goods; for instance, the demand would increase if the prices of imported goods went lower due to the appreciation of exchange rates. On the other hand, the demand would decline if the prices of imported goods increased due to the fall in exchange rates. 5) Expenditures and investment assumptions of the government changed according to the margin of government revenue which altered in accordance with the GDP. 6) Assumptions of trade balance (deficit or surplus) changed according to the alteration of GDP; the Debt-GDP Ratio, thus, had been fixed. As a result, Thailand economic system owed a large amount of foreign debt, in the case of the trade deficit that didn't increase, beyond its debt repayment capacity. In the same way, the Thailand economic system had the influx of money from trade surplus at the same rate as GDP. This had resulted in exchange rate stability.

	Variable	Comment	Range
1	rp01 _j	Real price of labor	180
2	p03 _i	Indirect tax rate	180
3	$v1_i$	Export subsidy	180
4	v2 _i	Import tax	180
5	fx4 _i	Foreign demand independent shift	180
6	pw2 _i	Import price	180
7	delFudge	Forecast Variable	1
8	f_accum _j	Capital Shift	180
9	delBT	Change in trade balance	1
	Total		1,262

 Table 3.3 Structural Exogenous Variables and Range

 Table 3.4 Computation of Coefficients, Shares and Parameters

Shares and	Description		
Constants			
Domestic goods			
$RX0_{ij1}$	Share of domestic goods in total demand		
$RX1_{ij1}$	Share of domestic goods in total demand		
$RX2_{i1}$	Share of domestic goods used by households in total demand		
$RX3_{i1}$	Share of domestic goods used by government in total demand		
$RX4_i$	Share of export goods in total demand		
$RX5_{i1}$	Share of domestic goods used by inventory in total demand		
$RX6_i$	Share of special export goods in total demand		
Import goods			
$RX0_{ij2}$	Share of import goods in total import demand		
$RX1_{ij2}$	Share of import goods in total import demand		

Shares and	Description		
Constants			
RX2 _{i2}	Share of import goods used by households in total import		
	demand		
<i>RX</i> 3 _{<i>i</i>2}	Share of import goods used by government in total import		
	demand		
$RX5_{i2}$	Share of import goods used by inventory in total import demand		
Intermediate inputs			
$SZX0_{ijr}$	Share of domestic goods: $r=1$; import goods: $r=2$ in		
	intermediate input		
Primary inputs			
$SFAC1_j$	Share of labor in primary input		
SFAC2 _j	Share of capital in primary input		
Value added			
$S01_j$	Share of sector j labor in total demand for labor		
<i>S</i> 02 _{<i>j</i>}	Share of sector j capital in total demand for capital		
<i>S</i> 03 _{<i>j</i>}	Share of sector j indirect taxes in total indirect taxes		
GDP computed			
from income			
<i>H</i> 01	Share of total labor value added in GDP computed from income		
H02	Share of total capital value added in GDP computed from		
	income		
H03	Share of total indirect taxes value added in GDP computed from		
	income		
Capital goods			
production			
$SZX1_{ijr}$	Share of domestic goods: r=1; import goods: r=2 in input for		
	capital goods production		

Shares and	Description
Constants	
Foreign trade	
γ	Export elasticities
Capital	
accumulation	
K_TERM _j	Computed constant of return on investment
M_TERM _j	Computed constant of capital stock depreciation
R_T_j	Computed constant of investment-capital supply ratio
Cost computation	
$HX0_{ij1}$	Share of domestic intermediate input in output
$HX0_{ij2}$	Share of import intermediate input in output
$HX01_j$	Share of labor input in output
$HX02_j$	Share of capital input in output
HX03 _j	Share of indirect taxes in output
Capital goods	
$HZ1_{ij1}$	Share of domestic input in output of capital goods
$HZ1_{ij2}$	Share of import input in output of capital goods
Final demand	
$SZ1_j$	Share of output of capital goods in aggregate investment
<i>SX</i> 2 _{<i>i</i>1}	Share of domestic goods in aggregate household consumption
$SX2_{i2}$	Share of import goods in aggregate household consumption
$SX3_{i1}$	Share of domestic goods in aggregate government consumption
$SX3_{i2}$	Share of import goods in aggregate government consumption
$HX4_i$	Share of export of sector i in total export
HM_i	Share of import of sector i in total import

Shares and	Description
Constants	
Trade balance	
VE	Value of aggregate export
VM	Value of aggregate import
VGDPE	Value of GDP computed from demand
GDP computed	
from demand	
$RCX1_{ij1}$	Share of domestic goods in total demand of investment goods
$RCX1_{ij2}$	Share of imported goods in total demand of investment goods
SHZCX1 _{i1}	Share of total demand of domestic investment goods of sector i in GDP
SHZCX1 _{i2}	Share of total demand of domestic investment goods of sector i
12	in GDP
$SHX2_{i1}$	Share of domestic household goods of sector i in GDP
SHX2 _{i2}	Share of imported household goods of sector i in GDP
SHX3 _{i1}	Share of domestic government consumption goods of sector i in
	GDP
SHX3 _{i2}	Share of imported government consumption goods of sector i in
	GDP
$SHX4_i$	Share of export goods of sector i in GDP
$SHX5_{i1}$	Share of domestic inventory goods of sector i in GDP
$SHX5_{i2}$	Share of imported inventory goods of sector i in GDP
SHX6 _i	Share of special export goods of sector i in GDP
$SHZ02_i$	Share of total imported goods of sector i in GDP
Oil	
<i>SCX</i> 0 _{93,<i>j</i>,1}	Share of domestic petroleum by sector j in total demand for

petroleum

47

Shares and	Description
Constants	
<i>SCX</i> 0 _{93,<i>j</i>,1}	Share of domestic petroleum by sector j in total demand for
	petroleum
<i>SCX</i> 0 _{93,<i>j</i>,2}	Share of imported petroleum by sector j in in total demand for
	petroleum
$SCX1_{93,j,1}$	Share of domestic petroleum for investment use of sector j in
	total demand for petroleum
SCX1 _{93,j,2}	Share of imported petroleum for investment use of sector j in
	total demand for petroleum
<i>SCX</i> 2 _{93,1}	Share of domestic petroleum for household use in total demand
	for petroleum
<i>SCX</i> 2 _{93,2}	Share of imported petroleum for household use in total demand
	for petroleum
<i>SCX</i> 3 _{93,1}	Share of domestic petroleum for government use in total
	demand for petroleum
<i>SCX</i> 3 _{93,2}	Share of imported petroleum for government use in total
	demand for petroleum
<i>SCX</i> 4 ₉₃	Share of domestic petroleum for export in total demand for
	petroleum
<i>SCX</i> 5 _{93,1}	Share of domestic petroleum for inventory use in total demand
	for petroleum
<i>SCX</i> 5 _{93,2}	Share of imported petroleum for inventory use in total demand
	for petroleum
<i>SCX</i> 6 ₉₃	Share of domestic petroleum for special export in total demand
	for petroleum
<i>SFDX</i> 1 _{93,<i>j</i>,1}	Share of domestic petroleum for investment use of sector j in
	total final demand for petroleum

Shares and	Description
Constants	
<i>SFDX</i> 1 _{93,<i>j</i>,2}	Share of imported petroleum for investment use of sector j in
	total final demand for petroleum
<i>SFDX</i> 2 _{93,1}	Share of domestic petroleum for household use in total final
	demand for petroleum
<i>SFDX</i> 2 _{93,2}	Share of imported petroleum for household use in total final
	demand for petroleum
<i>SFDX</i> 3 _{93,1}	Share of domestic petroleum for government use in total final
	demand for petroleum
<i>SFDX</i> 3 _{93,2}	Share of imported petroleum for government use in total final
	demand for petroleum
SFDX4 ₉₃	Share of domestic petroleum for export in total final demand for
	petroleum
<i>SFDX</i> 5 _{93,1}	Share of domestic petroleum for inventory use in total final
	demand for petroleum
<i>SFDX</i> 5 _{93,2}	Share of imported petroleum for inventory use in total final
	demand for petroleum
SFDX6 ₉₃	Share of domestic petroleum for special export in total fina
	demand for petroleum
<i>SINX</i> 0 _{93,<i>j</i>,1}	Share of domestic petroleum by sector j in total intermediate
	use
<i>SINX</i> 0 _{93,<i>j</i>,2}	Share of imported petroleum by sector j in total intermediate
	use

3.5 Computation Software

The data processing was conducted via GEMPACK program (Harrison et al., 2014), under the license of Graduate School of Environmental Development Administration (GSEDA), NIDA.

CHAPTER 4

RESEARCH RESULTS

4.1 Results

This research aims to study the growth of Thailand's real economy, which is influenced by low oil prices by 50 percent from 2014, using the Computable General Equilibrium Model. The economic forecasts is used to quantify the amount of carbon dioxide that is a consequence of economic change. The forecast results provide the knowledge for the development of strategies for both future economic and environmental managements. And the way to control the amount of carbon dioxide, which is a significant component of greenhouse gases, which is a factor of global climate change.

In this study, the forecasting computable general equilibrium model (FCGE) is used as a tool to find the trajectory for economic growth which is used to find the trajectory of the growth of CO_2 . The FCGE model is adapted from ORANI (Dixon et al., 1982) and ORANI-F (Horridge et al., 1993).

The FCGE model has multi-sectors features, which is inherited from the Input-Output Model (Leontief, 1936) and economic structure, which gives the image a closer look, based on the net change of positive and negative changes in various sectors of the economy. The difference in the dynamics of a branch production is due to the difference in economic power. This is due to the difference in length, complexity, and weight of the inputs chain and the marketing chain and the density of the use of inputs and energy.

The simulation of 5-year-period economic change from 2014 to 2019 could be divided out into 2 comparable cases 1) the spontaneous economic change due to the net increase in capital factor, which was resulted from the capital accumulation 2) the spontaneous economic change due to the net increase in capital factor, which was

resulted from the capital accumulation combined with the 50% decreasing oil prices, the level that had had the visible impacts since 2014 as shown in the Table 4.1.

Table 4.1 Forecasts from the FCGE Model for Macro Variables and the Volume and Value of Oil

	Description	Macro	Base Case	Case of 50%	Change
		Variable		drop of oil price	8
1	Aggregate value of	c1	20.26	20.85	0.59
	investment				
	expenditure				
2	Aggregate value of	c2	20.26	20.85	0.59
	household expenditure				
3	Aggregate value of	c3	20.26	20.85	0.59
	government				
	expenditure				
4	Investment price	cpi1	7.50	-0.12	-7.62
	index				
5	Consumer price index	cpi2	6.32	-2.33	-8.65
5	Government price	cpi3	5.83	-2.63	-8.46
	index				
7	Trade balance	delBT	Deficit	Deficit	Deficit
	(change)		increased by	increased by	increased by
			139,995,424	147,204,432	7,209,008
			Million Bath	Million Bath	Million Bath
8	Debt_GDP Ratio	delDT	0	0	0
	(change)				
9	Aggregate value of	М	12.82	10.45	-2.37
	import				
10	Aggregate value of	E	12.03	9.26	-2.77
	exports				
11	GDP deflator	Gdpdf	4.51	0.62	-3.89
12	Expenditure side GDP	Gdpe	20.26	20.85	0.59
13	Income side GDP	Gdpi	20.26	20.85	0.59
14	Real GDP	Gdpr	15.07	20.10	5.03

				Unit: Perc	entage change
	Description	Macro	Base Case	Case of 50%	Change
		Variable		drop of oil price	
15	Exchange Rate	Xr	10.18	0.81	-9.37
16	Oil consumption	Oil	12.31	25.50	13.19
	(Quantity)				
17	Oil consumption for final	oil_fd	8.35	26.50	18.15
	demand (Quantity)				
18	Oil consumption for	oil_int	14.81	24.82	10.01
	intermediate demand				
	(Quantity)				

While oil prices have decreased 50% of usual prices affecting to the Consumer Price Index to be declined consequently, the prices of goods and services are then reduced as factors that induce a growth of consumption and cause the Real Gross Domestic Product (Real GDP) raising up 5.03% accordingly. Real GDP growth of 20.10% is influenced by oil prices decreasing by 50% compared to 15.07% for old oil prices. The comparative growth rate of 2 cases is shown in Figure 4.1.

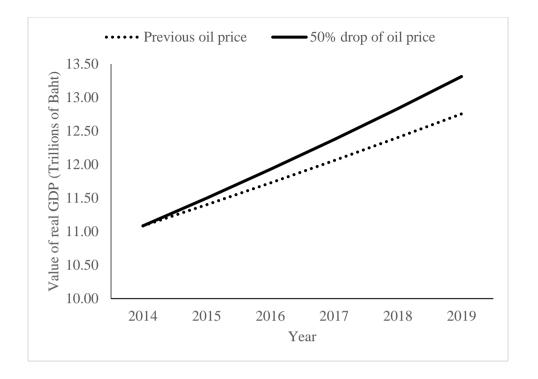


Figure 4.1 Trajectory Forecast of 5 Years Growth of Real Gross Domestic Product (Real GDP), for the Case of 50% Decrease of Oil Prices Compared with the Case of the Absence of Oil Prices Decrease.

The 50 percent drop of oil prices has been instrumental in slowing down inflation from 4.51 percent to 0.62 percent, resulting in real GDP growth. Real GDP = Nominal GDP - GDP deflator. The gross domestic product is the difference Gross domestic product at market price with total inflation. Inflation of 0.62 percent, which has been positively influenced by falling oil prices, makes Real GDP close to the nominal GDP. Consumption benefits from a higher volume of goods and services, resulting in higher quality of life. In addition, Oil known as an imported good is decreased its price causing higher consumed demand and finally making more money flowing out of the country. This incident influence Thai Bath appreciation, following exchange rate of the Baht from 10.18 to 0.81. Moreover, in the case of oil price decrease 50%, it also affects to the volume of oil consumption for final demand and oil consumption for intermediate demand increasing to be 18.15% and 10.01% respectively.

Likewise, the changes of economic sectors which get impacts from the reduction of oil prices are illustrated in the first ten sectors of the maximum and minimum growth. The first ten sectors of maximum growth in the case of no change of base case will have an average value of the growth at 20.50%, as shown in the Table 4.2, whereas the sector that gain the most advantage at the first order is the sector 33 Tin ore which has a growth rate at 29.02%. While, the second order is the sector 36 Fluorite which has a growth rate at 23.06%. Moreover, the third order is the sector 37 of Chemical which has a growth rate at 21.54%. Furthermore, the third order is the sector 43 Canning and preserving of meat which has a growth rate at 29.48%.

On the other hand, in the case of dropping oil price at 50%, it shows that the most growth sector of the first ten sectors has an average growth rate at 27.86%, which is higher than the base case, as shown in the Table 4.3, whereas the sector that gain the most advantage at the first order is the sector 151 Road freight transport which has a growth rate at 33.93%. While, the second order is the sector 150 Road passenger transport which has a growth rate at 30.04%. Moreover, the third order is the sector 105 Iron and steel which has a growth rate at 29.57%. Furthermore, the fourth order is the sector 154 Coastal and inland water transport which has a growth rate at 29.48%. Obviously, these four sectors have a growth rate higher than the sector 33 Tin ore the Base case. In summary, the sector that gain advantage and has high growth rate from dropping oil price is the transport and construction sector.

			Unit: Percentage change
Order	Sectors	Description	Base Case
1	33	Tin ore	29.02
2	36	Fluorite	23.06
3	37	Chemical Fertilizers	21.54
4	43	Canning and Preserving of meat	20.70
5	3	Other cereals	19.89
6	25	Logging	19.02
7	35	Other non-Ferrous metals	18.31
8	45	Canning fruit and vegetables	18.04
9	97	Other rubber product	17.95
10	27	Other forest product	17.71
		Average	20.52

Table 4.2	Top 10 sectors found to having strong output growth for the case of	the
	absence of oil price decrease (Base Case)	

Table 4.3 Top 10 sectors f	ound to having strong	output growth for the case of oil
price decrease.		

			Unit: Percentage change
Order	Sectors	Description	Case of 50% drop of oil
			price
1	151	Road freight transport	33.93
2	150	Road passenger transport	30.04
3	105	Iron and steel	29.57
4	154	Coastal and inland water transport	29.48
5	127	Repair of motor vehicles	26.02
6	143	Construction of communication facilities	25.93
7	141	Non-agriculture public works	25.93
8	142	Construction of electric plants	25.93
9	140	Public works for agriculture and forestry	25.93
10	156	Air transport	25.81
		Average	27.86

Besides, the base cases with no decreasing oil prices show the first ten minimum growth sectors, which has an average growth rate at 11.85%, as shown in the Table 4.4; whereas the minimum growth sector is the sector 179 Other service not classified elsewhere, which has a growth rate only 4.08%. While, the second rank is the sector 118 Radio, television and communication equipment and apparatus, which has a growth rate at 10.89%. Meanwhile, the third rank is the sector 117 Electrical industrial machinery and appliances apparatus, which has a growth rate at 12.18%. Moreover, the fourth rank is the sector 93 Petroleum refineries apparatus, which has a growth rate at 12.27%. However, the ninth rank is the sector 150 Road passenger transport, which has a growth rate at 13.35%. On the other hand, the case of decreasing oil price at 50%, it shows an average of the first ten minimum growth at 12.49%, which is higher the base case, as shown in the Table 4.5. Whereas, the minimum growth is the sector 33 Tin ore, which has a growth rate at 4.99%. While, the second rank in the sector 117 Electrical industrial machinery and appliances, which has a growth rate at 7.54% and the sector 118 Radio, television and communication equipment and apparatus, which has a growth rate at 11.49%. Obviously, the sector 117 and the sector 118 have only small changes of the growth rates from decreasing oil prices.

However, the data from the Table 4.2 - 4.5 can be summarized the impacts from decreasing oil prices, as following, the sector 33 Tin ore has lower advantage, comparing with it has a growth rate at 29.02% in the normal case (Table 4.2) and has a growth rate at 4.99% in the case of decreasing oil prices 50% (Table 4.5). Nevertheless, the sector 150 Road passenger transport has higher advantage, comparing with a growth rate of 13.35% in the normal case (Table 4.4) and has a growth rate at 30.04% in the case of decreasing oil prices 50% (Table 4.3).

Table 4.4	Top 10 Sectors found to having weak output growth for the case of the
	absence of oil price decrease (Base Case)

		Unit: Percen	tage change
Order	Sectors	Description	Base Case
1	179	Other service not classified elsewhere	4.08
2	118	Radio, television and communication equipment and apparatus	10.89
3	117	Electrical industrial machinery and appliances	12.18
4	93	Petroleum refineries	12.27
5	48	Animal oil, animal fat, vegetable oil and by- products	12.62
6	153	Ocean transport	13.11
7	129	Scientific equipment	13.13
8	178	Personal service	13.35
9	150	Road passenger transport	13.35
10	177	Repair not classified elsewhere	13.50
		Average	11.85

Table 4.5 Top 10 Sectors found to having weak output growth for the case of oil price decrease.

			Unit: Percentage change
Order	Sectors	Description	Case of 50% drop
			of oil price
1	33	Tin ore	4.99
2	117	Electrical industrial machinery and appliances	7.54
3	118	Radio, television and communication	11.49
		equipment and apparatus	
4	37	Chemical Fertilizers	12.20
5	43	Canning and Preserving of meat	12.62
6	75	Tanneries and leather finishing	13.13
7	129	Scientific equipment	13.44
8	121	Electric accumulators and batteries	13.70
9	32	Iron ore	14.24
10	90	Cosmetic	14.36
		Average	12.49

Moreover, the table 4.6-4.7 revealed a 5-years forecast in the case of no decreasing oil price (Base case) that the most growth sectors which use crude oil (S31) are Tin ore, Fluorite, Chemical fertilizers, Canning and preserving of meat and Other cereals, respectively. However, in the case of decreasing oil price at 50%, the sectors that the most growth sectors which use crude oil (S31) are Pipe line and gas distribution, Petrochemical products, Petroleum and natural gas, Road freight transport and Road passenger transport, respectively.

Likewise, the table 4.8-4.9 revealed a 5-years forecast in the case of no decreasing oil price (Base case) that the most growth sectors which use Petroleum products (S93) are Tin ore, Fluorite, Chemical fertilizers, Canning and preserving of meat and Other cereals. However, in the case of decreasing oil price at 50%, the sectors that the most growth sectors which use Petroleum products (S93) are Road freight transport, Iron and steel, Road passenger transport, Coastal and inland water transport and Air transport.

Table 4.6 Top 10 sectors found to having strong growth of oil use for the case of the absence of oil price decrease.

			Unit	: Percentage change
Order	Sectors	Description	Domestic	Import
1	33	Tin ore	29.12	27.91
2	36	Fluorite	23.18	22.03
3	37	Chemical fertilizers	21.63	20.49
4	43	Canning and preserving of meat	20.80	19.67
5	3	Other cereals	19.98	18.86
6	25	Logging	19.10	17.99
7	35	Other non-ferrous metals	18.40	17.30
8	32	Iron ore	18.22	17.11
9	45	Canning and preservation of fruit	18.13	17.03
		and vegetables		
10	97	Other rubber products	18.04	16.94

			Unit: Percentage change	
Order	Sectors	Description	Domestic	Import
1	151	Road freight transport	32.26	53.77
2	105	Iron and steel	28.61	49.53
3	150	Road passenger transport	28.47	49.36
4	154	Coastal and inland water transport	27.89	48.70
5	156	Air transport	24.40	44.62
6	140	Public works for agriculture and forestry	24.26	44.47
7	143	Construction of communication facilities	24.24	44.45
8	127	Repair of motor vehicles	24.19	44.38
9	138	Residential building construction	24.11	44.30
10	103	Concrete and cement products	24.06	44.24

Table 4.7 Top 10 sectors found to having strong growth of oil use for the case of oil price decrease.

In summary, it must be noted that whenever oil price has decreased at 50%, the sectors that use more crude oil are the sectors that involve with productions and transportations for Petroleum and Petrochemical goods, also, Road passenger transportation and Road freight transportation. However, the sectors that use more Petroleum are the sectors that involve with road, water and air transportations, including iron, steel and construction sectors.

The analysis revealed that the 50% fall in the oil price as shown in Figure 4.2. The slowdown in inflation from 4.51 percent to 0.62 percent resulted in a depreciation of the exchange rate from 10.18 percent to 0.81 percent, which resulted in a slowdown in volume and value of exports from a growth rate of 12.02 percent. 9.26 percent. For importing goods the slowdown in inflation from 4.51 percent to 0.62 percent initially resulted in an advantage for imported goods. Domestic production is benefited from a lower cost of production. Influenced by lower oil prices, 50 percent are in a better position to compete with imported products. Therefore, the net effect of the slowdown in imports of goods and the trade balance remains in parallel with the growth in the gross domestic product at market prices or Nominal GDP.

The net effect of the 50% drop in oil prices is a boon to the strengthening of the domestic economy, ie the domestic economy has a higher share of the domestic economy with the Foreign economy (Total economy = Domestic economy + Foreign economic growth). But the expansion of the domestic economy has weighed heavily on the overall economy.

As a result of the 50% drop in oil prices, oil consumption was higher than the real growth rate shown in Table 4.10.

Flexibility of oil use = $\frac{\% \Delta \text{Oil consumption}}{\% \Delta \text{Real economy}}$

The FCGE forecast is calculated from the% Δ Oil consumption (Quantity) (Item 16 in Table 4.1) ÷% Δ Real GDP (item 14 in Table 4.1)

The old oil price

Oil use elasticity =
$$\frac{\%\Delta \text{Oil use}}{\%\Delta \text{Real GDP}} = \frac{12.31}{15.07} = 0.82$$

Oil prices fall 50%

Oil use elasticity =
$$\frac{\%\Delta \text{Oil use}}{\%\Delta \text{Real GDP}} = \frac{25.50}{20.10} = 1.27$$

FCGE forecasts suggest that 50% reduction in oil prices would result in higher oil consumption than oil use elasticity of 1.27 that compared with oil use elasticity 0.82, respectively, high oil consumption in the case of 50% drop of oil price was caused by two factors, namely, fuel consumption, final demand and oil consumption (Intermediate demand). Oil use elasticity 0.82 was influenced by final demand was 8.36% and intermediate demand was 14.81%, including 12.31% and oil use elasticity 1.27 was influenced by final demand was 26.48% and intermediate demand was 24.82%, including 25.47%.

Table 4.8 Oil Consumption Rates in Various Parts of the Thai Economy and the
Elasticity Between the Change in Oil Consumption and the Change in
Gross Domestic Product

		Un	it: Percentage change
Description		Base Case	Case of 50%
			drop of oil
			price
1 Oil consumption (Quantity)	[1]	12.31	25.47
2 Oil consumption in intermediate	[2]	14.81	24.82
(Quantity)			
3 Oil consumption in final demand	[3]	8.36	26.48
(Quantity)			
4 Real GDP	[4]	15.10	20.11
5 Petroleum-GDP elasticity	[5] = [1]/[4]	0.82	1.27

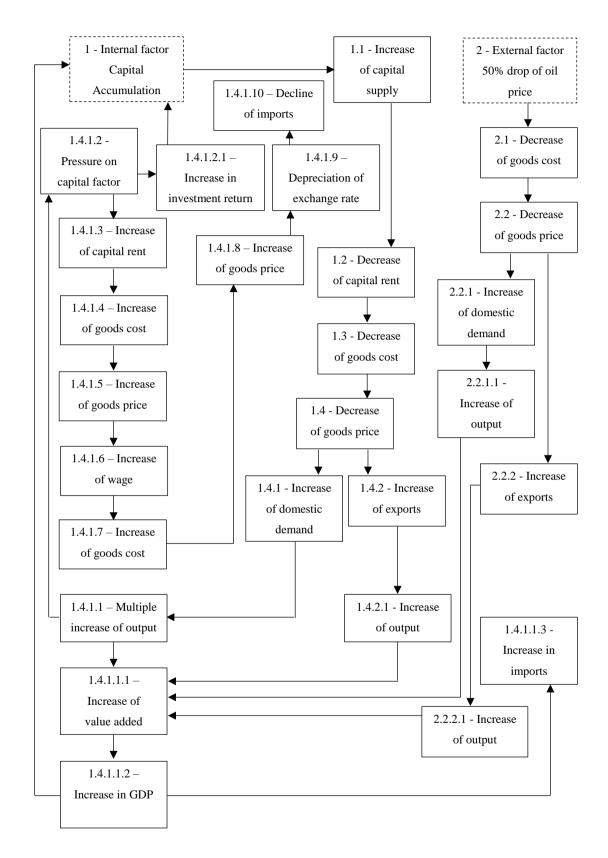


Figure 4.2 Net Impacts of Capital Accumulation and Decrease in Oil Price

4.2 Carbon Dioxide Emission

High oil prices influence low fuel consumption and have a low carbon dioxide effect. On the other hand, low oil prices influence high oil consumption and a high carbon dioxide effect. In this study, it is assumed that in the absence of change in technology, the quantity of carbon dioxide is proportional to change in oil demand, which is the basis for the calculation shown in table 4.11.

FCGE forecasts show that oil prices have fallen by 50%, fueling domestic oil consumption growth from 12.31% to 25.47%, as shown in Table 4.11 row [15]. The old oil price use of gasoline increased from the base year 10,545,851,153 liters to 13,620,652,245 liters in the fifth year. Diesel consumption increased from the base year 30,683,505,451 liters to 39,629,741,718 liters in the fifth year.

The case after oil prices decreased. The use of gasoline increased from the base year 10,545,851,153 liters to 15,216,661,359 liters in the fifth year. Diesel consumption increased from the base year. 30,683,505,451 liters to 44,275,383,433 liters in year 5.

The old oil price carbon dioxide increased from base year 106,391,334 tons to 137,411,410 tons in year 5, classified as carbon dioxide for gasoline increased from year base to 24,466,375 tons to 31,599,913 tons in the fifth year, carbon dioxide for diesel fuel, it increased from 81,924,960 tons to 105,811,410 tons in the fifth year.

The case after oil prices that affected to carbon dioxide increased from base year 106,391,334 tons to 155,512,588 tons in year 5, classified as carbon dioxide For gasoline increased from year base to 24,466,375 tons to 35,302,654 tons in the fifth year, the amount of carbon dioxide For diesel fuel, it increased from 81,924,960 tons to 118,209,934 tons in the fifth year.

	Description		Base Case	Case of 50%
				drop of oil
				price
[1]	The total value of		1,289,139,391	1,289,139,391
	domestic and imported oil			
	(thousand Baht) from I-O			
	Table base year			
[2]	Proportion of gasoline		0.29	0.29
[3]	Proportion of diesel		0.71	0.71
[4]	Price of gasoline (Baht)		35.45	35.45
	base year			
[5]	Price of diesel (Baht)		373,850,423	373,850,423
	base year			
[6]	Total value for gasoline	[2] x [1]	915,288,968	915,288,968
	(thousand Baht)			
[7]	Total value for diesel	[3] x [1]	12,127,728,826	12,127,728,826
	(thousand Baht)			
[8]	Total liter of gasoline	[6] x 1150 / [4]	35,286,031,269	35,286,031,269
[9]	Total liter of diesel	[7] x 1150 / [5]	0.00232	0.00232
[10]	Gasoline CO ₂ emission		0.00267	0.00267
	factor (tCO ₂ /liter)			
[11]	Diesel CO ₂ emission		28,136,331	28,136,331
	factor (tCO ₂ /liter)			
[12]	Gasoline CO ₂ emission	[8] x [10]	94,213,703	94,213,703
	base year			
[13]	Diesel CO ₂ emission	[9] x [11]	122,350,034	122,350,034
	base year			
[14]	Total oil CO ₂ emission	[12] + [13]	12.31	25.47
[15]	Growth factor for oil	_	373,850,423	373,850,423
-	quantity from FCGE (%)			

 Table 4.9 Carbon Dioxide Content Calculated from FCGE (Unit / Tonne)

	Description		Base Case	Case of 50%
				drop of oil
				price
[16]	Projection of total liter of	[8] x 1+[15]/100	13,620,652,245	15,216,661,359
	gasoline year 5			
[17]	Projection of total liter of	[9] x 1+[15]/100	39,629,741,718	44,273,383,433
	diesel year 5			
[18]	Projection of gasoline	[16] x [10]	31,599,913	35,302,654
	CO ₂ emission			
[19]	Projection of diesel CO ₂	[17] x [11]	105,811,410	118,209,934
	emission			
[20]	Projection of total oil CO ₂	[18] + [19]	137,411,324	153,512,588
	emission			

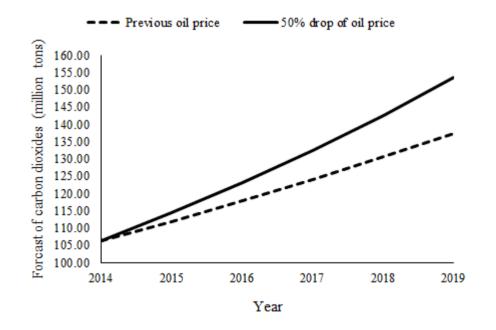


Figure 4.3 Estimated Carbon Dioxide (Million Metric Tons) for 5 Years, Comparing Oil Inflows by 50%

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

In this study, analysis of economic impacts and CO₂ emission potential in Thailand following oil price slump in 2014 that found the influence of low oil prices is the real gross domestic product. Economic growth trajectory created based on the FCGE model's shows real GDP growth forecast of 20.10% over a five-year period, compared with 15.07% in the case of the original oil price. The total economy consists of the internal economy and external front. In the case of lower oil prices, the level of external economic growth is lower than in the case of original oil prices. However, the domestic economy has a high growth rate and weight to expand the total economy. Real GDP grew in the face of declining oil prices.

Low oil prices have reduced inflation to 0.62 percent against 4.51 percent in the case of original oil prices. And it exerts an exaggerated depreciation rate of 0.81% against the depreciation rate of 10.18% in the case of original oil prices. Low inflation has resulted in increased consumption of goods and services. And the quality of life is higher.

Domestic goods and services have lower production costs, benefiting from low oil prices. And has a competitive advantage over imports from abroad. Therefore, the slowdown in the growth rate of imported goods, in line with the slowdown of export value growth. As a result, the trade balance remained in equilibrium with the increase in gross domestic product (Nominal GDP).

The result is that Thailand, which imports oil in large quantities to sustain the economy, benefited from low oil prices. Consumption can reach more and more goods and services with the reduced financial burden. It is an opportunity for the development of educational structures for human resource development. Investment in personnel education human capital accumulation in the field of high productivity.

R&D investment in science and technology paves the way for future economic growth.

Low oil prices have fueled higher demand for both final demand and intermediate demand, which is used as inputs for other products. Oil consumption grew at a rate 25.47 percent, which is 1.27 times higher than the GDP growth rate of 20.10 percent. For the trajectory of the growth of carbon dioxide to be created, it is assumed in this study that technology remains unchanged. Accordingly, the growth of carbon dioxide is similar to the growth of oil consumption. Knowledge of the increase in carbon dioxide excretion indicates the need for investment incentives to improve the efficiency of oil used to make economic growth use less oil.

5.2 Policy Implication

1) Economic Policy

The economic change leads to a change in oil demand as an intermediate factor in the production of goods and the final demand, namely investment expenditure, household consumption, and government consumption. Based on Thailand's economic structure, when the oil price decreases 50%, the economic growth would expand as shown in the Real GDP Growth. However, it also impacts oil consumption to be higher as well. Therefore, the savings policy should be adopted to slow down this consumption, in order to postpone the consumption to the future. However, this measure should be applied by the people's voluntary needs. It should be used to strengthen investment for the future income. This policy is adopted as the Policy Mix to delay the consumption in aspects of pollution controls and expanding channels for economic growth.

The savings promotion policy is to set up a voluntary measure for the people based on their capacities together with personal and family incomes. This mechanism would establish funds for governmental investments in making public goods, such as infrastructure investments for railway transportation, which will reduce energy consumption in the long term (Gritsana Patjakreng and Sompote Kunnoot, 2017). To promote the people's savings, this approach is a different measure from taxation, which is a compulsory measure that may cause higher price products and make the poor people in trouble.

However, the savings promotion policy is to launch together with a public affair campaign, so that the people could understand and be aware of expenses for sustainable economic growth in the future as well. The people's savings would be enhanced if there are saving instruments, which are reliable and safety enough, for example, governmental development funds, which provide attractive returns and give public opportunities of ownership as semi-monopoly business for long-term compensation income. Since many investments are to be accompanied with human resource investment, in order to make businesses capable enough for economic growth (Romer,1994), not to cause abandonment of labor factors, but make sustainable economic development by raising the level of well-being and quality of life of the people.

Moreover, the forecast model of decreasing oil prices 50%, as to the economic growth from the impacts of investments and low oil prices, revealed that low oil prices influence low increasing in production cost and goods prices (low inflation). These impacts are catalysts for consumptions, which give good results for a short-term export. However, when economic growth induces higher rental cost of capital factors both labor and physical capital, it also causes cost and product prices increase. These impacts would affect to Baht depreciation (exchange rate deteriorated), but it affects less weak of currency comparing with the case of no decreasing oil price.

Although this phenomenon gives a good result to economic growth; however, it is to make investment along with this implementation, in order to make more accumulated supply and prices of capital factor decreased as well. This investment may apply to human resource investment, so that not to lower quality labor factors and interrupt development later but make more continued productivity of labor factor in the long-term period.

2) Environmental Policy

The change in oil demand also culminates in a change in carbon dioxide emissions, which is regarded as a significant component of greenhouse gases.

The environmental impact triggered by expanding oil demand simultaneously triggers an increase of carbon dioxide, which is considered as a reason for implementing the policy to decelerate oil demand under the premise that the environment can be protected. From the forecast, it revealed that when oil price has decreased at 50%, the sectors that use more oil are the sectors that involve with productions and transportations for Petroleum and Petrochemical, and also Road passenger transportation and Road freight transportation. However, the sectors that use more Petroleum are the sectors that involve with road, water and air transportations, including iron, steel and construction.

Therefore, to control a level of carbon dioxide emissions from oil consumption, the policy to promote a system of transforming growing oil demand into growing savings. In this case, these savings can be accumulated and allocated to the governmental investment for infrastructure development, which is likely to create a ripple effect to stimulate more investment in the private sector; this condition is, in turn, likely to enhance more capacities to generate more revenue and the future economic growth.

The environmental policies for pollution control are to modify the transportation model to be more energy saving, especially rail transport. Since road transport cost is a factor that undermine Thailand's competitiveness throughout the past; therefore, it is to promote the use and development of fuel-saving technologies and reduce pollution, such as Electric vehicle (EV). This campaign could also reduce dependence on oil in the country and create added value for Thailand's industry as well. Furthermore, it is to support sustainable renewable energy development through researches and improve agricultural efficiency, in order to reduce the production cost of ethanol and biodiesel.

BIBLIOGRAPHY

BIBLIOGRAPHY

- African Development Bank. (2007). *The impact of high oil prices on African economies*. Retrieved from http://www.afdb.org/
- Akram, M., & Mortazavi, R. (2011). Do crude oil prices affect economic growth of India, Pakistan and Bangladesh?. Retrieved from http://www.diva-portal.org/smash/get/diva2:551295/FULLTEXT02
- Alazraque-Cherni, J., He, J., & Rosillo-Calle, F. (2016). Renewable energy investment in China: the impact of low oil prices. *Economic and Political Studies*, 4(3), 278-298. Doi: 10.1080/20954816.2016.1218688
- Amadeo, K. (2017). *OPEC oil embargo, its causes, and the effects of the crisis*. Retrieved from https://www.thebalance.com/opec-oil-embargo
- Associated Press in New York. (2016). Why low oil prices hurt the stock market-but won't lead to a US recession. Retrieved from https://www.theguardian.com/ business/2016/jan/21/oilpricesstockmarketusrecessioneconomy
- Bell, B. (2016). *How do low oil prices affect recycling*?. Retrieved from http://mediaroom.wm.com /how-do-low-oil-prices-affect-recycling/
- Carbone, J. C., & McKenzie, K. J. (2016). Going dutch? The impact of falling oil prices on the Canadian economy. *Canadian Public Policy*, 42(2), 1-13. Doi: 10.3138/cpp.2015-045
- Coffman, M., Terry, S., & Denise, K. (2007). Analysis of the impact of petroleum prices on the state of Hawaii's economy. State of Hawaii Department of Business, Economic Development & Tourism. Retrived from http://www.hawaiicleanenergyinitiative.org/storage/petroleum_price_impact_a ssessment.pdf
- Creti, A., Ftiti, Z., & Guesmi, K. (2013). Oil price impact on financial markets: Co-spectral analysis for exporting versus importing countries. Retrived from https://hal.archives-ouvertes.fr/hal-00822070/document

- Dixon, P. B., Parmenter, B. R., Sutton, J., & Vincent, D. P. (1982). ORANI: A multisectoral model of the autralian economy. Amsterdam: North-Holland Publishing Company.
- Dybczak, K., Voňka, D., & Nico van der Windt. (2008). The effect of oil price shocks on the Czech economy. Czech National Bank Economic Research Department. Retrieved from http://invenio.nusl.cz/record/123998/files/nusl-123998_1.pdf
- The Economist. (2016). *Who's afraid of cheap oil?*. Retrieved from http://www.economist.com/news/leaders/21688854-low-energy-prices-oughtbe-shot-arm-economy-think-again-whos-afraid-cheap
- Gomez-Loscos, A., Montanes, A., & Gadea, M. D. (2011). The impact of oil shocks on the Spanish economy. *Energy Economics*, 33(6),1070-1081.Doi: 10.10.1016/j. eneco. 2011. 05. 016
- González, A., & Nabiyev, S. (2009). Oil price fluctuations and its effect on GDP growth: A case study of USA and Sweden. Retrieved from https://pdfs. semanticscholar.org/e2dc/68b6cb8346e1bda8491b6dd490594d0e6e94.pdf
- Global Network Faculty. (2015). How does the changing price of oil affect your economy, now and potentially in the future?. Retrieved from http://gnp.advancedmanagement.net/article/2015/08/ howdoeschangingpriceoilaffectyoureconomynowandpotentiallyfuture
- Harrison, J., Horridge, M., Jerie M., & Pearson, K. (2014). GEMPACK manual. Retrieved from https://www.copsmodels.com/gpmanual.htm
- Horridge, J. M., Parmenter, B. R., & Pearson, K. R. (1993). ORANI-F: A general equilibrium model of the Australian economy. A Journal of the European Economics and Financial Centre, 2(3), 71-140.
- Intergovernmental Panel on Climate Change. (2006). *IPCC guidelines for national greenhouse gas inventories*. Intergovernmental Panel on Climate Change. Geneva, Switzerland. Retrieved from http://www.ipcc- nggip.iges.or.jp/public/2006gl/index.html
- Klevnäs, P., Stern, N., & Frejova, J. (2015). *Oil prices and the new climate economy*.Global commission on the economy and climate briefing paper.Retrieved from http://newclimateeconomy. report

- Lafakis, C., Kamins, A., Friedman, E., & White, D. (2015). *The economics of lower oil prices*. Moody's analytics. Retrieved from https://www.economy.com/theeconomics-of-lower-oil-prices
- Leontief, W. W. (1936). Quantitative input and output relations in the economic system of the United States. *Review of Economics and Statistics*, 18(3), 105-125.
- Mason, C. F., Muehlenbachs, L. A., & Olmstead, S. M. (2015). *The economics of shale gas development*. Retrieved from http://www.rff.org/files/sharepoint/WorkImages/Download/RFF-DP-14-42.pdf
- Mohaddes, K., & Pesaran, M. H. (2017). Oil prices and the global economy; is it different this time around?. IMF Working Paper. Retrieved from https://ideas.repec.org/a/eee/eneeco/v65y2017icp315-325.html
- Magnani, M. (2016). Why the fall in oil prices is a problem for everyone. Retrieved from https://www.weforum.org/agenda/2016/03/why-the-fall-in-oilprices-is-a-problem-for-everyone/
- World Economic Forum 2016. Retrieved from https://www.weforum.org/agenda/ 2016/03/why-the-fall-in-oil-prices-is-a-problem-for-everyone/
- Millard, R., Withey, P., Lantzb, V., & Ochuodhoc, T. O. (2017). The general equilibrium costs and impacts of oil price shocks in Newfoundland and Labrador. *Energy Economics*,68(C), 192-198. Doi.org/10.1016/j.eneco.2017.09.003
- Naim, M. (2015). The hidden effects of cheap oil. Retrieved from https://www.theatlantic.com/international/archive/ 2015/ 03/ the-hiddenconsequences-of-low-oil-prices/389156/
- Organisation for Economic Co-operation and Development. (2011). *The effects of oil* price hikes on economic activity and inflation. Retrieved from https://www.oecd.org/eco/monetary/47332660.pdf Puey
- Ungphakorn Institute for Economic Research. (2016). *Windfall from falling oil prices, a bridged marking research accessible*. Retrieved from https://www.pier.or.the- abridged
- Veerapong Ramangkul. (2016, February 3). Oil prices and world economy. *Matichon*. Retrieved from http://www.matichon.co.th/news/ 23403. (In Thai)

- Salim, R., & Rafiq, S. (2011). The impact of Crude oil price volatility on selected. Retrieved from https://espace.curtin.edu.au/bitstream/handle/20.500.11937/ 14857/173574_51920_CHINA%20CONF%20WITH%20SUDDHA%20RAFI .pdf?sequence=2&isAllowed=y
- Statista. (2016). Average annual OPEC crude oil prices from 1960 to 2017 (in U.S dollars per barrel). Retrieved from http://www.statista.com
- Spence, P. (2016). Crude reckoning: what will oil price slump mean for the global economy. Retrieved from https://www.telegraph.co.uk/ finance/oilprices/ 12093667/Crude-reckoning-what-will-oil-price-slump-mean-for-the-globaleconomy.html
- Tanakorn Limvittaradol. (2015). Oil prices cheaper were helped Thailand's economy actually. *International Journal of Business and Social Science*, 10(12), 17.
 DOI: 10.30845/ijbss
- Thailand Investment Forum. (2015). *Low oil price*. Retrieved from https://thailandinvestmentforum.com/ (In Thai)
- United States-Environmental Protection Agency. (2015). *GHG emissions factors hub*. Center for Corporate Climate Leadership. United Stated Environmental Protection Agency. Retrieved from https://www.epa.gov/sites/production/ files/2016-09/documents/emission-factors_nov_2015_v2.pdf
- US Energy Information Administration. (2014). *Annual energy outlook 2014, with projections to 2040.* EIA. Rep. US Energy Information Administration, Washington, DC. Retrieved, from http://www.eia.gov/forecasts/aeo
- Vrontisi, Z., Kitous, A., Saveyn, B., & Vandyck, T. (2015). Impact of low oil prices on the EU economy. JRC Technical Reports. Doi:10.2791/222885

Wikipedia. (2016). Shale gas. Retrieved from https://en.wikipedia.org/wiki/Shale_gas

Yeroen van der Leer, Nevin A. S., Wijeratne, D., Jagdev, S., Jullens, J., & Peeters, M. (2015). *The perils and blessings of low cost oil for growth markets*. Retrieved from https://www.pwc.com/structure

APPENDICES

Appendix A

Structure and Classification of Thailand 180 Sectors Input – Output Table

Appendix A

Structure and Classification of Thailand 180 Sectors Input – Output Table

 Table A1
 Structure and Classification of Thailand 180 Sectors Input – Output Table

Code	Sector	Description
001	Paddy	This sector covers the combined the production of
		both glutinous and no glutinous paddy. The by-
		product is straw.
002	Maize	This sector covers the combined the production of
		fresh, dried and young maize includes by-product.
003	Other cereals	Production in this sector combines sorghum and
		barley includes by-product.
004	Cassava	The only product included in this sector is fresh
		cassava roots.
005	Other root crops	The potato, sweet potato, taro root and root-crops not
		mentioned elsewhere
006	Beans and nuts	This sector covers beans and nuts of all kinds such as
		mung bean, castor seed, kindney bean, red bean,
		sesame and ground nut.
007	Vegetable	Vegetable such as chili, ginger, Chinese radish, onion
		shallot, garlic, cabbage, tomato and other vegetables
		not mentioned elsewhere are included in this sector.
008	Fruits	This sector includes the production of oranges, grapes
		durians, rambutans, mangoes, pineapples, water
		melons, bananas, mangosteens, pomeloes, longens,
		jack fruits, lychees and other fruits not mentioned
		elsewhere.

Code	Sector	Description
009	Sugar cane	The product included in this sector is sugar cane
		which was consumed by household and put to
		industrial.
010	Coconut	Fresh coconut is the main product of this sector.
		Coconut leaf, coconut fiber, copra and coconut shell
		are the by-product.
011	Oil palm	Production in this sector combines oil palm and palm
		lily includes by-product.
012	Kenaf and jute	This sector covers the production of kenaf, jute and
		ramie.
013	Other crops for	This sector includes the fiber and seed of kapok and
	textile and matting	other fiber crops.
014	Tobacco	Fresh tobacco leaf and seed are the two main
		agricultural products of this sector. Production is
		classified into Virginia Barley, Turkish and Native
		varieties.
015	Coffee and tea	This sector covers the production of all fresh coffee
		bean, tea leaf and cocoa.
016	Rubber	Latex from the rubber tree is the main product of this
		sector.
017	Other agricultural	This sector covers flowers and seed of all kinds,
	product	including sunflower seed, ornamental plants, horse
		tamarind, mint and the like.
018	Cattle and buffalo	This sector covers the production of cattle and buffalo
		for slaughter, export and breeding. Also included in
		this sector is fresh milk for dairying.

Code	Sector	Description
019	Swine	The only product included in this sector is swine.
020	Other livestock	Goat, sheep, horse, rabbit, crocodile, elephant and
		others are covered under this sector.
021	Poultry	This sector covers the production of chickens, ducks
		and geese.
022	Poultry products	The product covered by this sector is egg derived
		from raising fowl.
023	Silk worm	This sector includes the products of silk-worm and
		silk cocoons.
024	Agricultural	This sector covers the plough services using both
	services	animals and tractors.
025	Logging	This sector includes logs of all kinds such as teak,
		yang, etc.
026	Charcoal and fire-	This sector covers the production of charcoal and
	wood	firewood.
027	Other forest	Products of this sector are bamboo, bamboo shoot,
	products	rattan and other forest products.
028	Ocean and coastal	Covered in this sector are ocean fishing, coastal
	fishing	fishing and coastal fish-cultivation.
029	Inland fishing	This sector covers the activities of both inland fish
		catching and cultivation.
030	Coal and lignite	This sector includes establishments primarily engaged
		in mining coal and lignite.
031	Petroleum and	This sector covers the exploration activities for crude
	natural gas	petroleum and natural gas, the drilling, completing
		and equipping of wells carried out on an own-account
		basis, and the operation of oil and natural gas wells.

Code	Sector	Description
032	Iron ore	This sector includes activities primarily involving the
		extraction and extraction and dressing and dressing of
		iron ore.
033	Tin ore	The coverage of this sector includes activities
		involving in extracting and dressing of tin ore.
034	Tungsten ore	This sector includes activities involved in extraction
		and preparing tungsten ore.
035	Other non-ferrous	This sector includes activities involved in extraction
	metals	and dressing non-ferrous ore, such as antimony,
		chromite, columbite, copper, manganese, monazite,
		tantalite, zenotize, zinc, zircon and lead ore.
036	Fluorite	This sector covers the activities of exploring for and
		extraction of fluorite.
037	Chemical	Covered in this sector are activities related to the
	fertilizers	mining or other extraction of mineral such as fluorite,
		phosphate and nitrate mineral.
038	Salt	Covered in this sector are activities related to
		extraction of rock salt and the production of salt from
		sea water.
039	Limestone	This sector primarily covers the activity involved in
		the extraction of limestone.
040	Stone quarrying	This sector covers the activities of stone quarrying,
		clay extraction, gravel and sand pit operation, clay pit
		operation, and marble mining.

Code	Sector	Description
041	Other mining and	Excluding stone quarrying, this sector covers
	quarrying	activities of mining and other quarrying of produce
		such as asbestos, calcite, diatomite, dolomite,
		feldspar, gypsum, marl quartz, silica sand and jewelry
		stone.
042	Slaughtering	This sector covers the activity of slaughter-houses and
		products such as fresh meat, pork, chicken and duck.
		Also included are hides of cattle and buffalo, feathers
		of chicken and duck, buffalo horns and other by-
		products of cattle, buffalo, swine, chicken and duck.
043	Canning and	This sector covers the activity of canning and
	preserving of meat	preserving meat, and the preparation of ham, and
		sausage.
044	Dairy products	This sector covers pasteurized milk, condensed milk,
		cream, butter, cheese, margarine and ice cream.
045	Canning and	This sector covers dried and frozen fruits, canned and
	preservation of	bottled fruits and vegetables, fruit and vegetable juice
	fruit and vegetables	jam, jellies and others.
046	Canning and	This sector covers frozen fish, salted and dried fish
	preservation of fish	and preserved fish.
	and other sea foods	
047	Coconut and palm	This sector covers coconut oil. palm oil, coconut cake
	oil	and palm cake.
048	Animal oil, animal	The products are lard, animal fat, soy-been oil, cotton
	fat, vegetable oil	seed oil, kapok-seed oil, sunflower-seed oil, rice-bran
	and by-products	oil, other vegetable oil, and their by-products.

Code	Sector	Description
049	Rice milling	This sector covers production of husked-cleaned-
		polished rice, parboiled rice, broken rice, rice bran
		and rice husk.
050	Tapioca milling	This sector covers milled products of cassava of all
		kinds such as tapioca flour, tapioca chips and tapioca
		pellets.
051	Grinding of maize	This sector covers maize milling activities such as the
		grinding corn, corn cob and other maize products.
052	Flour and other	This sector covers the activity of flour and other grain
	grain milling	milling.
053	Bakery products	This sector covers all bakery products such as bread,
		cake, pies, crackers.
054	Noodles and	Covers in this sector are noodles of all kinds such as
	similar products	yellow noodles, white noodles made from rice flours,
		spaghetti, macaroni, etc. Also included in this sector is
		the production of instant noodles.
055	Sugar	This sector covers and refined sugar made from sugar-
		cane and coconut tree as well as the by-products of
		sugar such as syrup, molasses and bagasse.
056	Confectionery	Candies, chocolate, chewing gum and other
		confectioneries are covered by this sector.
057	Ice	Ice is the sole product of this sector.
058	Monosodium	Monosodium glutamate is covered in this sector.
	glutamate	
059	Coffee and tea	This sector covers the activities involved in the
		processing of coffee and tea. The productions covered
		by this sector are coffee and tea powers, instant coffee
		and tea as well as roasted coffee beans and tea leaves.

Code	Sector	Description
060	Other food	This sector includes soy sauce, bean curd, fish sauce,
	products	vinegar, salted and fermented eggs, spices, table salt,
		other sauces and other prepared food.
061	Animal feed	Covered in this sector is the production of all kinds of
		animal feed such chicken feed, fish meal.
062	Distilling and	This sector covers brandy, liqueurs and wine.
	spirits blending	
063	Breweries	Malt and beer are included in this sector.
064	Soft drinks and	This sector covers soda water, carbonated fruit drinks,
	carbonated water	distilled water and the other soft drinks.
065	Tobacco	This sector covers the activities of tobacco-leaf
	processing	processing. Only dried tobacco-leaf is included in this
		sector. There are four kinds of dried tobacco-leaf, i.e.,
		Virginia, Burley, Turkish and Native.
066	Tobacco products	This sector consists of cigar, cigarettes, cut tobacco
		and chewing tobacco.
067	Spinning	This sector includes cotton, synthetic silk yarn, spun,
		short and long synthetic staple. Excluded from this
		sector are yarns from jute and kenaf.
068	Weaving	Covered in this sector are cotton fabrics, mixed-cottor
		fabrics, synthetic fabrics and silk fabrics. Jute and
		kenaf fabrics are not included here.
069	Textile bleaching,	This sector covers the activities of printing, bleaching
	printing and	and finishing textile.
	finishing	

Code	Sector	Description
070	Made-up textile	This sector covers all textile processed products not
	goods	classified elsewhere. Products included are household
		textile furnishing materials, textile bags, canvas products,
		lace and lace products, textile-coated fabrics, felt and felt
		products and textile wadding material.
071	Knitting	Covered in this sector are knitted fabrics and products
		from knitted fabrics. Knitting products made directly
		from yarn such as stocking are also included.
072	Wearing apparel	This sector covers the products of wearing apparel and
		allied clothing produced in factory, except woven
		products such as handkerchiefs, neckties, shawls and
		veils Excluded are all kind of wearing apparel made
		by tailors.
073	Carpets and rugs	This sector covers only the products of carpets and
		rugs made from textile materials. Carpets and rugs
		from straw or material other than textile were not
		included.
074	Jute mill products	Covered in this sector are products made from kenaf
		and jute. Other products included are yarn and fabrics
		of kenaf and jute except for those used in gunny bags.
		However, fishing nets made from materials of all
		kinds are included in this sector.
075	Tanneries and	The tanning and finishing of animal leather and skin
	leather finishing	are included in this sector. Excluded are all kinds of
		artificial leathers.
076	Leather products	Leather and artificial leather products are covered in
		this sector.

Table A1 (Continued)

Code	Sector	Description
077	Footwear, except	This sector covers footwear made of leather, fabrics
	of rubber	and other materials. It excludes that wholly made of
		wood or moulded rubber or plastic.
078	Saw mills	This sector covers sawn timber and other wooden
		construction materials such as plywood and chip
		board.
079	wood and cork	Except for furniture and fixtures, this sector covers
	products	products made from wood, rattan and bamboo such a
		wooden boxes and containers. Also included are
		handicraft utensils, articles and parts of equipment
		which can be commonly installed in different kinds of
		equipments.
080	Wooden furniture	This sector covers all kinds of furniture and fixtures
	and fixtures	except those made of metal.
081	Pulp, paper and	This sector covers pulp, paper and paperboard.
	paperboard	
082	Paper and	This sector included all kinds of paper and paperboar
	paperboard	products such as paper boxes, book covers, writing-
	products	pads, envelopes, labels, paper bags and sanitary pape
		Publishing house production such as books magazine
		and newspapers are not included.
083	Printing and	This sector covers printing activities by one or more
	publishing	of the common processes such as the use of the letter
		press, lithographing, offset printing and bookbinding
		Also included are the publishing of newspapers,
		periodicals, books and maps.

Table A1 (Continued)

Code	Sector	Description
084	Basic industrial	This sector covers the manufacture of basic industrial
	chemicals	chemicals such as hydrogen, oxygen, nitrogen,
		chlorine, sulfur and other chemical elements;
		inorganic acids and other oxygen compounds of
		metalloids such as hydrochloric acid, sulfuric acid,
		nitric acid and carbon dioxide; inorganic bases and
		metallic oxides such as ammonia and caustic soda;
		salts of inorganic acids such as aluminum sulfate,
		potassium nitrate, soda ash, sodium silicate and
		calciumhypochloride; carbides; and organic chemical
		such as methylalcohol, polyhydric alcohols, esters of
		polyhydric alcohols, acetic acid and aldehydes.
085	Fertilizer and	The products of this are urea, ammonium sulfate,
	pesticides	phosphate, chemical fertilizer, organic fertilizer,
		pesticides and insecticides.
086	Petrochemical	This sector covers the activities involved in the
	products	processing of petrochemical. The productions covered
		by this sector are upstream production such as
		Ethylene, Propylene; intermediate production such as
		Vinyl chloride monomer, Styrene monomer and
		downstream production such as Polyvinyl chloride,
		Polyethylene, etc.
087	Paints	This sector covers the manufacture of paints,
		varnishes, stains and shellac, lacquers, enamels and
		japans. Also included are the manufacture of allied
		products such as composite thinners, paint removers,
		paint brush cleaners, putty and other coating and
		filling material. Dyes, organic and inorganic pigments
		are not included.

Table A1 (Continued)

Code	Sector	Description
088	Drugs and	This sector includes the production of drugs and
	medicines	medicines in all forms such as tables, capsules,
		powder, syrup and liquids for injection. Traditional
		medicine such as herbs is also included.
089	Soap and cleaning	This products includes in this sector are soap, detergent,
	preparations	shampoo, glycerine and toilet preparation.
090	Cosmetic	This sector includes the production of perfumes,
		cosmetic, hair cream, toothpaste, talcum powder and
		deodorant.
091	Matches	This sector covers matches of all kinds.
092	Other chemical	Included in this sector are the manufacture of
	products	chemical products such as furniture and metal
		polishes, leather polishes, waxes, adhesive and glues,
		candles, inks, carbon black and essential oil. Also
		included are tanning and dyeing material such as
		natural indigo, vegetable dye, tanning agents and
		inorganic pigments. Wood chemicals such as gums
		and incense products such as joss sticks are also
		covered.
093	Petroleum	This sector covers oil-processing refineries. The
	refineries	products if this sectors are gasoline, jet oil, LPG,
		asphalt, paraffin, sulfur, kerosene, diesel and fuel oil.
094	Other petroleum	This sector covers refined oil, refined grease and
	products	lubricating oil
095	Rubber sheet and	This sector covers rubber sheets, block rubber, crepe
	block rubber	rubber and other processed rubber.

Code	Sector	Description
096	Types and tubes	This sector covers all types and tubes such as those for
		passenger car, truck and bus, tractor, motorcycle and
		bicycle.
097	Other rubber	This sector covers the manufacture of rubber products
	products	not classified elsewhere such as rubber raincoats,
		rubber gloves, rubber bags, rubber mats, rubber toys,
		rubber bands, rubber hose and tubes, rubber bottles
		and rubber sponges.
098	Plastic ware	This sector covers the moulding, extruding and
		fabricating of plastic articles such as plastic household
		articles, plastic containers and cups, plastic mats,
		laminated sheets. Also included are plastic
		components for insulation, plastic furniture, and
		plastic industrial supplies.
099	Ceramic and	The sector covers pottery, ceramic and earthenware
	earthen ware	for industrial and construction use. Sanitary supplies
		are also included.
100	Glass and glass	This sector consists of window flat glass, bottles,
	products	drinking glasses, lamp chimneys and other.
101	Structural clay	This sector covers bricks, tiles pipes, refractory bricks
	products	and other similarly structural clay products.
102	Cement	This sector consists of portland cement, white cement
		and lime.
103	Concrete and	This sector covers the manufacture of concrete
	cement products	products such as blocks, posts and piles, precast
		elements for prefabricates construction materials,
		other reinforced and pre-stressed concrete products as
		well as Buddha images and spirit houses.

Code	Sector	Description
104	Other non-metallic	Included in this sector are the manufacture of gypsum
	products	plaster products, wood-wool board (cellocrete) and
		other asbestos product. Cut stone products which were
		not produced in conjunction with quarrying and all
		other non-metallic mineral products not classified
		elsewhere are also included.
105	Iron and steel	The sector covers pig iron, ingot, ferro-silicon, ferro-
		manganese and (by-product of pig iron).
106	Secondary steel	The products of this sector are galvanized sheet, tin
	products	plate, angle bar and rod wire, tube and pipe. Steel
		forging, steel casting, polished steel are also included.
107	Non-ferrous metal	This sector covers the activities relating to the
		manufacture of primary non-ferrous metal products
		consisting of primary and secondary smelting,
		alloying, refining, rolling and drawing, founding and
		casting.
108	Cutlery and hand	This sector covers the manufacture of table, kitchen
	tools	and other cutlery, hand and edge tools such as axes,
		sickles, shovels, rakes and other agricultural and
		garden tools, hammers, screw drivers, files and
		handsaws. Plumbers', masons', mechanics' and
		machinists' precision hand tools, hinges, locks key
		sets, builders' hardware and marine luggage and
		vehicles hardware are also included.
109	Metal furniture and	This sector covers the manufacture and alteration of
	fixtures	furniture and fixtures consisting primary of metal for
		household, office, public building, transport
		equipment, professional and restaurant uses.

Code	Sector	Description
110	Structure metal	This sector covers the manufacture of steel or other
	products	metal structure components such as bridges, tanks,
		building structure, doors and screens, window frames
		and sashes, shutter, staircases, wrought iron gates.
		Other architectural metalwork such as metal
		components for ventilating and air-conditioning
		systems as well as steam and water-tanks are also
		included.
111	Other fabricated	This sector covers the manufacture of fabricated metal
	metal products	products such as metal cans from tinplate, enameled
		sheet metal, metal conveyances, metal shipping
		containers, metal stamping, fabricates wire and wire
		products from purchased wire rods (excluding
		insulated wire and cable). Sanitary ware, plumbers'
		brass good, pipe fittings, enameling, lacquering,
		galvanizing, electroplating and polishing metal
		products and a variety of metal products not classified
		elsewhere are also included. In addition, the sector
		covers common machinery part such as bearing an
		spring, except specialized parts for motor vehicles,
		aircraft and ships which belong to their respective
		machinery sectors.
112	Engines and	This sector covers the assembling of stream engines,
	turbines	other engines and turbines. Also included are the parts
		and repair of engines and turbines.

Code	Sector	Description
113	Agricultural	This sector covers the assembling of cultivating
	machinery and	machines and equipment, sawing and planting
	equipment	machines, harvesting machines and equipment. parts
		and repair of agricultural machines and equipment.
114	Wood and metal	This sector covers the activities relating to the
	working machines	assembling of wood and metal working machines
		such as sawing machines, and the parts and repairing
		of such machines.
115	Special industrial	This sector covers all kinds of industrial machines
	machinery	except those used for wood and metalworking,
		agricultural machines as well as electrical machines.
		Machinery included in the sector is for example,
		construction and mining machines, food and chemical
		machines, leather and textile machines, etc. Also
		included in this sector are pneumatic tools, carrying
		and loading equipment such as cranes, forklifts and
		loading trucks, etc. Parts of such machinery and their
		repair are also included.
116	Office and	This sector covers the assembling of office and
	household	household machinery and appliances such as air
	machinery and	conditioners, refrigerator, freezers, water cooler,
	appliances	sewing machines, typewriters, electric calculators and
		all parts. Since the repair of them are not covered in
		this sector.

Code	Sector	Description
117	Electrical industrial	This sector covers the products of electrical industrial
	machinery and	machinery and appliances such as generators,
	appliances	transformer, rectifiers, motors, electrical hand tools,
		electrical motors, electrical welding machines and
		other electrical machines. Parts for these machines are
		also are also included.
118	Radio, television	This sector covers the assembly of radios, television
	and	sets, tape and cassette recorders, stereo components,
	communication	telephone and other communication equipment. Also
	equipment and	included are their parts but repairing is excluded.
	apparatus	
119	Household	This sector covers the production of household
	electrical	electrical appliances such as electric stoves, electric
	appliances	iron, electric fans, rice cooker, toasters, food mixers
		and all their parts.
120	Insulated wire and	This sector covers the production of insulates wire and
	cable	cable.
121	Electric	This sector covers the production of batteries and dry
	accumulators and	cells Parts such as lead plate are also included
	batteries	
122	Other electrical	This sector covers electrical apparatus and supplies
	apparatus and	not classified elsewhere, such as electric bulbs, and
	supplies	related light sources. Other products included are
		conductors, fuses, connectors, etc.
123	Ship building and	Covered in this sector are the building and repairing
	repairing	of ship, boat and other water transport vessels. Part for
		these vessels are also included in the sector.

Code	Sector	Description
124	Railroad	This sector covers the production of railroad
	equipment	passenger cars and wagons. The parts and repairs of
		such equipment are also included in the sector.
125	Motor vehicles	This sector covers the production and assembly of
		motor vehicles. The products included are passenger
		cars, trucks, vans, pick-up, buses and the classis and
		parts of such vehicles.
126	Motor vehicles	The products of this sector are motorcycles, tricycles,
		bicycles, carriages and parts for such products.
127	Repair of motor	This sector covers automobile and motorcycle repair
	vehicles	of all kinds.
128	Aircraft	This sector covers only aircraft repairing
129	Scientific	The sector covers measuring equipment, medical
	equipment	equipment and the parts and repairs of such
		equipment.
130	Photographic and	This sector included optical goods, spectacles,
	optical goods	telescopes, astronomical, instrument, microscopes,
		projectors, cameras, photo copying apparatus and
		parts for these products.
131	Watches and	This sector covers the production and assembly of
	clocks	clocks and watches.
132	Jewelry and related	This sector covers activities primary related to the
	articles	manufacturing of jewelry using precious metals,
		precious and semi-precious stones and pearls,
		silverware and plotted ware using silver, gold and
		other precious metal plating. The cutting and
		polishing of precious stones and the making of coins
		and medals from precious metal are also included.

Code	Sector	Description
133	Recreational and	The products in this sector include musical
	athletic equipment	instruments, music recording, footballs, golf balls,
		badminton rackets, boxing gloves and other
		recreational and athletic equipment.
134	Other	This sector covers the products that have been
	manufactured	excluded from the manufacturing sectors by code 042
	goods	to 133. The main products of this sector are stationary,
		toys, umbrella, zippers, buttons, fasteners, etc.
135	Electricity	This sector covers the generation, transmission and
		distribution of electric for sale to household,
		industrial, commercial and public users. Electricity
		generation plants owned by manufacturing enterprises
		for their own use are also included.
136	Pipe line and gas	This sector covers gas distribution such as LPG,
	distribution	ethane, propane, natural gasoline (NGL).
137	Water work and	This sector covers the activities related of the
	supply	purification and distribution of water to household,
		industrial, commercial and public users. The operation
		of irrigation system is not included in this sector.
138	Residential	This sector covers the construction of new building
	building	for residential purposes such as homes, sop houses,
	construction	apartment and dormitories. The activities of
		extending, repairing, painting and decorating
		buildings as well as the installation of electricity and
		air conditioning systems are also included. Excluded
		from this section is the cost of acquiring land.

Code	Sector	Description
139	Non-residential	This sector covers the construction of new non-
	building	residential building such as business building,
	construction	factories, hotels, school, hospitals, and warehouse
		as well as related activities of extension and repair.
		Excluded are the constructions of railway station,
		power station or communication plants.
140	Public works for	This sector covers the construction and extension of
	agriculture and	irrigation works for agriculture and forestry. Only new
	forestry	construction is included.
141	Non-agriculture	This sector covers the construction and repair of
	public works	highway, streets, roads, bridges, airports, water
		supplies and sewage systems.
142	Construction of	This sector covers the construction and repair of
	electric plants	electricity generating plants and transmission systems
143	Construction of	This sector covers the construction and repair of
	communication	broadcasting and communication systems such as
	facilities	radio station, town telephone installation and other
		facilities.
144	Other construction	This sector covers the construction work not classified
		elsewhere such as the construction of public parks,
		parking lots, golf courses, tennis courts, swimming
		pools and athletic fields of all kinds.
145	Wholesale trade	This sector includes establishments for the re-sale of
		new and used goods to retail, industrial, commercial,
		institutional and professional outlets, as well as for
		other wholesale uses. Agents engaged in buying or
		selling merchandise are also covered in the sector.
		The principal type of business included are wholesale

Code	Sector	Description
		merchants engaged in own-account buying and
		selling, industrial distributors, exporters and co-
		operative buying associations and sales offices
		maintained by mining or manufacturing enterprises
		for the purpose of marketing their products. Also
		included are co-operative associations engaged in the
		marketing of farm produce, scrap metal and waste
		dealers, junk yards, wholesalers who sort and grade
		goods in large lots wholesale packers, bottling
		companies except those engaged in packing or
		bottling in airtight containers.
146	Retail trade	This sector included establishments engaged in the
		sale to the general public of new and used goods for
		personal or household consumption. Retailing
		establishments include shops, department stores,
		stalls, gasoline service stations, retail motor vehicle
		dealers, peddlers, consumer co-operatives, and auction
		houses. Included also are own-account retailers who
		act as agents, buying and selling on consignment or on
		a commission basis. Establishments engaged in selling
		displayed merchandise such as typewriters, stationary
		and petrol to the general public are classified in this
		group though these goods may not be for personal or
		household uses.

Code	Sector	Description
147	Restaurants and	The sector includes establishments engaged in selling
	drinking places	prepared food or drink for immediate consumption
		such as nightclubs, restaurants, bard, coffee shops, etc
		Also included are canteens and eating facilities in
		plants and offices. Restaurants operated by hotels and
		massage parlors for the general public are also
		included. Peddlers of food and noodle stands are also
		covered in this sector.
148	Hotels and places	This sector includes establishments engaged in the
	of loading	provision for fee of lodging and camping facilities,
		whether open to the general public or restricted to
		members of a particular organization. Related
		restaurant facilities operated for the purpose of
		serving the establishment's customers are also
		included.
149	Railways	This sector covers the service related to the
		transportation of both passengers and cargo. Also
		included are dining car services. Since the repair of
		railway equipment is not covered in this sector.
150	Road passenger	This sector covers only the transport of passengers by
	transport	taxicabs, buses, inter-city buses and other vehicles
		such as tricycles. Private vehicles for personal
		transportation are excluded.
151	Road freight	This sector cover local and long distance trucking.
	transport	Also included are such services for one's own
		business purposes.

Code	Sector	Description
152	Land transport	This sector includes all land transport support services
	support service	such as the operation of parking lots, toll roads rental
		of automobiles and self-driven trucks.
153	Ocean transport	This sector covers the ocean transport of both
		passengers and freight.
154	Coastal and inland	This sector refers to the operation of freight and
	water transport	passenger vessels along various parts of the coast of
		Thailand. Those operated on inland waterways, river
		ferries and tugboats are included.
155	Water transport	Included in this sector are the provision of supporting
	services	services for water transport of all kinds such as the
		maintenance and operation of harbors, docks,
		lighthouses and other navigation aids, loading and
		unloading services, the salvaging of vessels, ship
		leasing and rental. Included in this sector are the
		activities of the Port Authority of Thailand.
156	Air transport	The transportation of passengers and freight by air by
		regular services or by charter are covered in this
		sector. The operation of airports, landing fields and
		navigational facilities such as flight control centers,
		radar stations and the rental of aircraft are also
		included in the sector.
157	Other services	This sector covers the activity of establishments
		engaged in providing travel information and arranging
		tours and transportation for passengers. The activities
		of establishments engaged in cargo transportation are
		also covered.

Code	Sector	Description
158	Storage and	This sector covers the operation of storage facilities
	warehousing	and warehouse. Silo services for drying maize are als
		included.
159	Post and	This sector covers the services of central and
	telecommunication	provincial offices of the Telephone Organization of
		Thailand. Construction and radio-communication
		activities of the Post and Telegraph Department are
		not included.
160	Banking services	This sector covers all activities of monetary and
		financial institutions. Included are the central bank,
		commercial banks, development banks, saving bank,
		rural banks, pawnshops, credit cooperatives and
		foreign exchange dealers.
161	Life insurance	Life insurance is defined as the activities of life
	services	insurance institutions and related services.
162	Other insurance	This sector covers all insurance other than life such a
	services	fire, accident, marine and health insurance.
163	Real estate	This sector covers the activities of real estate agents
		and brokers
164	Business services	The sector includes service such as accounting,
		auditing and book-keeping services, data processing
		and tabulating services, engineering, architectural and
		technical services, parliament and the judicial
		authorities.
165	Public	The sector covers the central, provincial and local
	administration	government, as well as the royal household,
		parliament and the judicial authorities.

Sector	Description
Sanitary and	This sector covers the activities related to sanitary and
similar services	similar services such as garbage and sewage disposal,
	the operation of drainage systems and the purification
	of water for consumption. Also included are cleaning
	services
Education	This sector covers all public and education institution
	at all levels such as kindergartens, primary schools,
	secondary schools, colleges and universities. Also
	included are vocational schools and others providing
	specialized education such as language and painting
	schools. Research institute, hospitals belonging to
	universities, as well as education provided neither by
	government nor household are not included.
Research	This sector includes institutions primarily engaged in
	basic and general research in the biological, physical
	and social sciences. Since information on private
	research institutes in Thailand are not available, only
	research accomplished by government offices,
	universities and public enterprises are included.
Hospital	Covered in this sector are medical, surgical, dental
	and other health services. This includes hospitals,
	sanitariums, nursing homes and similar institution,
	maternity and child welfare clinics, consulting offices
	of physicians, surgeons and other medical
	practitioners such as dentists, the services of midwives
	and nurses in private practice ambulance service and
	medical and dental laboratories that provide testing,
	diagnostic and other service to the medical and dental
	Sanitary and similar services Education Research

Code	Sector	Description
		professions. Activities primary relating to the
		manufacture of dental supplies and artificial teeth to
		order are also included.
170	Business and labor	This sector includes private business institution such
	associations	as the Board of Trade of Thailand, the Thai Chamber
		of Commerce, The Association of Thai industries and
		professional organizations such as the Engineering
		Institute of Thailand, labor unions and labor
		organization.
171	Other community	This sector includes institution engaged in providing
	service	social welfare services such as the Red Cross Society
		and other organization for the collection and
		allocation of charitable contribution such as children
		and societies, dry nurseries, orphanages, home for
		destitute adults, homes for handicapped person, home
		for aged, family welfare society and other charitable
		organization. This section was classified broadly into
		three types of organizations, namely, Red Cross
		Society, other charitable organizations and religious
		organizations.
172	Movie theatres	This sector covers the activities relating to the
		production of motion pictures for showing. They also
		include both still and slide films. Other related
		services such as film developing, printing, film
		editing, titling, copying and distributing of both local
		and foreign films are also included.

103

Code	Sector	Description
173	Movie theatres	All theatres and movie houses are covered in this
		sector.
174	Radio, television	Included in this sector are radio and television stations
	and related services	primarily engaged in the production and dissemination
		of audiovisual programs for the public. The activities
		of television and radio relay stations are also included
		in this sector.
175	Libraries and	This sector covers the operation of libraries,
	museums	information centers, archeological and others
		museums, art galleries, botanical and zoological
		gardens and similar institutions.
176	Amusement and	This sector covers the activities of theatres providing
	recreation	theatrical presentation such as classical drama, dance
		and concerts, entertainment services such as those
		provided by bands and orchestras and musical
		recording. This sector also includes the services
		related to theatrical presentation such as those
		provided by booking agencies for plays. Self-
		employed artists and instructors such as actors,
		dancers, musicians, singer and other entertainers and
		producers for radio and television programs, motion
		picture, play and other presentations, composers and
		song writers, authors, painters and operators of dance
		halls, bowling alleys, billiard and pool rooms, race
		tracks, boxing stadiums, football fields, sports clubs,
		gymnasiums, tennis courts and golf courses, sport
		promoters, operators, of amusement parks and renters
		of pleasure boats, motorcycles, golf carts, saddle.
		1 , , , , , , , , , , , , , , , , , , ,

	Sector	Description
		horses and similar recreation goods are also included
		in this sector.
177	Repair not	This sector included establishments specialized in the
	classified	repair of household appliances, equipment and
	elsewhere	furnishing, motor cars and other consumers goods
		which are not classified elsewhere. Also included in
		this sector are establishments specialized in the
		installation of household appliances such as stoves
		and ranges, refrigerators, air-conditioning apparatus
		and television sets.
178	Personal service	This sector included establishments primarily engaged
		in washing, ironing, dry cleaning, pressing and dyeing
		apparel, house furnishing or household fabrics. The
		repair of clothing, bedspreads, blanket, curtains and
		other personal and household textiles are also
		included in this sector. This sector also included the
		services of maids, cooks, gardeners, caretakers and
		other maintenance workers for household, whether
		provided by individuals who are employed by these
		households or by business units primarily engaged in
		furnishing these services. In addition, establishments
		engaged in rendering personal care and services not
		classified elsewhere such as barber hairdressing and
		beauty shop, photographic studios, Turkish baths
		establishments, massage parlors and crematories are
		also included.

Code	Sector	Description
179	Other service not	This sector included all service that are not covered by
	classified	other sectors.
	elsewhere	
180	Unclassified	This sector includes mainly activities not classified
		elsewhere.
190	Total intermediate	This is the sum of sectors 001 to 180
	transactions	
201	Wages and salaries	This sector covers compensation by employers to
		employees both in cash and in kind. Employees are
		classified as long-term workers, temporary workers,
		temporary workers, executives and hired laborers in
		the agricultural sector, but not family workers.
202	Operating surplus	The operating surplus is defined as the total value
		added including business income tax, minus wages
		and salaries, depreciation and indirect taxes, less
		subsidies.
203	Depreciation	Depreciation consists of capital consumption
		allowances for all fixed assets. The imputation of
		depreciation of government buildings is describe in
		the public administration sector and that of self-
		occupied dwellings is in real estate sector. The
		depreciation on fixed assets for leasing such as
		computers is shown in the sector of owner of fixed
		assets for leasing such as computers is show in the
		sector of owner of fixed assets.

Code	Sector	Description
204	Indirect taxes less	Indirect taxes cover the domestic commodity sales
	subsidies	tax, export duty, licensing frees, service tax of hotels,
		restaurant and the like, duty stamps and special
		commodity tax such as those on automobiles,
		electrical equipment, alcoholic drinks, cigarettes,
		petroleum products, ect.
209	Total value added	This is sum of all the primary inputs from 201 to 204
210	Control total	This is sum of total intermediate transactions and
		value added.
301	Private	Private consumption expenditures are the current
	consumption	expenditures on goods and service by households and
	expenditures	private non-profit organizations. The expenditure also
		cover the expenditures of Thai nationals abroad as
		tourists and the expenditures of the family of a
		foreigner who is working for a private company or a
		non-profit organization in Thailand.
302	Government	Government consumption expenditures cover all
	consumption	current expenditures of government for goods and
	expenditure	services, including those for the police and military
		forces. Expenditures of Royal household are also
		included. However, consumption expenditures of
		public enterprises which are profit-making are not
		included.
303	Gross domestic	Gross domestic fixed capital formation includes fixed
	fixed capital	assets such as land, buildings, machinery and
	formation	equipment belonging to households, government and
		private enterprise except those for military use. Public
		infrastructure such as roads, dams and power stations

 finished products stored in producers' factories or warehouses, unused raw materials purchased by producers, semi-processed products and products on processing lines and marketable stocks held by wholesalers and retailers. Stocks kept by households are not included. 805 Export In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. 806 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service 	Code	Sector	Description
 304 Increase in stock Stocks or inventories comprise the followings : finished products stored in producers' factories or warehouses, unused raw materials purchased by producers, semi-processed products and products on processing lines and marketable stocks held by wholesalers and retailers. Stocks kept by households are not included. 305 Export In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. 306 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service 			are also included. However, installation costs of
 finished products stored in producers' factories or warehouses, unused raw materials purchased by producers, semi-processed products and products on processing lines and marketable stocks held by wholesalers and retailers. Stocks kept by households are not included. 805 Export In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. 806 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service 			equipment and machinery are not covered.
 warehouses, unused raw materials purchased by producers, semi-processed products and products on processing lines and marketable stocks held by wholesalers and retailers. Stocks kept by households are not included. 305 Export In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. 306 Special exports Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service 	304	Increase in stock	Stocks or inventories comprise the followings :
producers, semi-processed products and products on processing lines and marketable stocks held by wholesalers and retailers. Stocks kept by households are not included. 305 Export In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. 306 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			finished products stored in producers' factories or
processing lines and marketable stocks held by wholesalers and retailers. Stocks kept by households are not included. 305 Export In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. 306 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			warehouses, unused raw materials purchased by
wholesalers and retailers. Stocks kept by households are not included. 305 Export In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. 306 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			producers, semi-processed products and products on
 are not included. In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service 			processing lines and marketable stocks held by
 Export In the input-output table at purchasers' prices, export were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service 			wholesalers and retailers. Stocks kept by households
were valued at f.o.b. prices. As for producers' prices, exports were valued by subtracting trade margins and transport costs from f.o.b. process. 306 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			are not included.
exports were valued by subtracting trade margins and transport costs from f.o.b. process. 306 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service	305	Export	In the input-output table at purchasers' prices, export
 Special exports Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service 			were valued at f.o.b. prices. As for producers' prices,
306 Special exports Special exports cover non-merchandised goods and services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			exports were valued by subtracting trade margins and
services which are not included in the official export statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			transport costs from f.o.b. process.
statistics. Item which are included here are freight an insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service	306	Special exports	Special exports cover non-merchandised goods and
insurance related to export, expenditures of foreign tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			services which are not included in the official export
tourists in Thailand and related transportation cost, expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			statistics. Item which are included here are freight and
expenditures of foreign government organization, international organizations and families of diplomats expenditures of foreign military bases, other service			insurance related to export, expenditures of foreign
international organizations and families of diplomats expenditures of foreign military bases, other service			tourists in Thailand and related transportation cost,
expenditures of foreign military bases, other service			expenditures of foreign government organization,
			international organizations and families of diplomats,
charges which are naid by foreigners and estimated			expenditures of foreign military bases, other service
enarges when are part by foreigners and estimated			charges which are paid by foreigners and estimated
smuggling.			smuggling.
Total final demand This is the sum of codes 301 to 306.	309	Total final demand	This is the sum of codes 301 to 306.
Total demand This is the sum of codes 190 and 309	310	Total demand	This is the sum of codes 190 and 309

Code	Sector	Description
401	Imports	Imports were valued at c.i.f. process plus tariff.
		However, for valuation at domestic producers' prices,
		the transport costs and insurance paid by the Thai
		importers were subtracted in order to avoid double
		counting. A special treatment was used here. The
		redundant transport costs and insurance were regarded
		as special exports and are treated in the special export
		sector.
402	Import duty	Customs duty on imports is included under this code.
403	Import tax	The Import tax includes both import sales tax and
		municipal tax on imported.
404	Special imports	As in the case special exports, special imports are
		non-merchandised goods and services which are not
		covered in the official trade statistics, e.g.
		expenditures of Thai nationals abroad, expenditure of
		Thai government organizations and of the families of
		Thai diplomats outside Thailand and estimated
		smuggling into Thailand.
409	Total imports	This is the sum of codes 401 to 404
501	Wholesale trade	Wholesale trade margin is margin of goods from
	margin	factory toward retail trade.
502	Retail trade margin	Retail trade margin is margin of goods from retail
		toward household consumption.
503	Transport cost	The transport costs is value of transport goods process
		from factory toward consumer.
509	Total trade margin	This is the sum of codes 501 to 503
	and transport costs	

Code	Sector	Description
600	Control total	This is sum of total intermediate transactions and final
		demands which indicates the output distribution of the
		table and is equal to codes $190 + 309 + 409 + 509$.
700	Total supply	The total supply is equal to codes $600 - 409 - 509$.

Appendix B

GEMPACK Programming of a CGE Forecasting Model for 180 sectors for the Projection of Economic Impacts and CO₂ Emission Potential in Thailand Following Oil Price Slump in 2014

Appendix B

GEMPACK Programming of a CGE Forecasting Model for 180 sectors for the Projection of Economic Impacts and CO₂ Emission Potential in Thailand FollowingOil Price Slump in 2014

!!
! CGE Forecasting Model for 180 sectors !
! for the PROJECTION OF ECONOMIC IMPACTS !
! AND CO2 EMISSION POTENTIAL !
! IN THAILAND FOLLOWING OIL PRICE SLUMP IN 2014 !
!!
!!
! SET !
!!
SET SECT # Sectors # (s1-s180);
SET SOURCE # Source # (Domestic,Import) ;
!!
! VARIABLE !
!!
VARIABLE (all,i,SECT)(all,s,SOURCE) p0(i,s) # Commodity price #;
VARIABLE (all, j, SECT) p01(j) # Labor Price #;
VARIABLE (all,j,SECT) p02(j) # Capital Rent #;
VARIABLE (all,j,SECT) p03(j) # Tax Rate # ;
VARIABLE (all,j,SECT) pz1(j) # Investment cost #;

VARIABLE cpi1 # Investment Price # ; VARIABLE cpi2 # Consumer Price # ; VARIABLE cpi3 # Government Price # ;

VARIABLE (all,j,SECT) rp01(j) # Real Labor Price # ; VARIABLE (all,j,SECT) rp02(j) # Real Capital Rent # ;

VARIABLE xr # *Exchange Rate* # ;

VARIABLE (all,i,SECT) pw1(i) # Export Price # ; VARIABLE (all,i,SECT) pw2(i) # Import Price # ; VARIABLE (all,i,SECT) v1(i) # Export tax # ; VARIABLE (all,i,SECT) v2(i) # Import Tax# ; VARIABLE (all,i,SECT) fx4(i) # Shift export # ; VARIABLE (all,i,SECT) (all,j,SECT) (all,s,SOURCE) x0(i,j,s) # Breakdown produced inputs # ;

VARIABLE (all,j,SECT) x01(j) # Labor input #; VARIABLE (all,j,SECT) x02(j) # Capital input #; VARIABLE (all,j,SECT) x03(j) # Indirect taxes #;

```
VARIABLE (all,j,SECT) z01(j) # Commodity supply and demand #;
VARIABLE (all,i,SECT) z02(i) # Imports commodity i #;
VARIABLE (all,j,SECT) z1(j) # Investment by sector #;
VARIABLE (all,i,SECT) (all,s,SOURCE) cx1(i,s) # Investment by column #;
```

VARIABLE gdpi # income side GDP # ; VARIABLE va1 # Total labor input # ; VARIABLE va2 # Total Capital input # ; VARIABLE va3 # Total indirect taxes # ; VARIABLE gdpe # expenditure side GDP # ; VARIABLE gdpr # real GDP # ; VARIABLE gdpdf # GDP deflator # ;

VARIABLE c1 # Total investment consumption # ; VARIABLE c1r # Real Total investment consumption # ; VARIABLE c2 # Total household consumption # ; VARIABLE c2r # Real Total household consumption # ; VARIABLE c3 # Total government consumption # ; VARIABLE c3r # Real Total government consumption # ; VARIABLE c3r # Real Total government consumption # ;

VARIABLE e # Total exports # ;
VARIABLE m # Total import # ;
VARIABLE (change) delBT # Trade balance # ;
VARIABLE (change) delDT # Debt_GDP Ratio # ;

VARIABLE (all,i,SECT) (all,j,SECT) (all,s,SOURCE) x1(i,j,s)

Breakdown investment #;

VARIABLE (all,i,SECT) (all,s,SOURCE) x2(i,s) # Breakdown HH consumption #;
VARIABLE (all,i,SECT) (all,s,SOURCE) x3(i,s) # Breakdown government #;
VARIABLE (all,i,SECT) x4(i) # Exports commodity i #;
VARIABLE (all,i,SECT) (all,s,SOURCE) x5(i,s) # Inventory commodity i #;
VARIABLE (all,i,SECT) x6(i) # Special exports commodity i #;

VARIABLE (change) delFudge # Forecast var # ; VARIABLE (all,j,SECT) f_accum(j) # Cap shift # ;

!-----!

! Read Files !

FILE data2010 # Data # ;
FILE MDATA180 # Cap_accum # ;

!-----!
! COEFFICIENT !
! base data, updates and reads !
!-----!

COEFFICIENT (all,i,SECT)(all,j,SECT) VDINPUT(i,j)

Value domestic intermediate #;

UPDATE(all,i,SECT)(all,j,SECT) VDINPUT(i,j)

= p0(i, "Domestic") * x0(i,j, "Domestic");

COEFFICIENT (all,i,SECT)(all,j,SECT) VMINPUT(i,j)# value import intermediate #;

```
UPDATE(all,i,SECT)(all,j,SECT) VMINPUT(i,j)
= p0(i, "Import") * x0(i,j, "import");
```

```
COEFFICIENT (all,j,SECT) VX01(j) # value labor inputs #;
UPDATE (all,j,SECT) VX01(j) = p01(j) * x01(j);
```

```
COEFFICIENT (all,j,SECT) VX02(j) # value capital inputs #;
UPDATE (all,j,SECT) VX02(j) = p02(j) * x02(j) ;
```

```
COEFFICIENT (all,j,SECT) VX03(j) # value indirect taxes # ;
UPDATE (all,j,SECT) VX03(j) = x03(j) ;
```

```
COEFFICIENT (all,i,SECT)(all,j,SECT) VDX1(i,j) # value domestic investment # ;

UPDATE (all,i,SECT)(all,j,SECT) VDX1(i,j)

= p0(i, "Domestic") * x1(i,j, "Domestic") ;
```

COEFFICIENT (all,i,SECT)(all,j,SECT) VMX1(i,j) # value Import investment #; **UPDATE** (all,i,SECT)(all,j,SECT) VMX1(i,j) = p0(i, "Import") * x1(i,j, "Import");

COEFFICIENT (all,i,SECT) VDX2(i) # value domestic HH consumption # ; **UPDATE** (all,i,SECT) VDX2(i) = p0(i, "Domestic") * x2(i, "Domestic") ;

COEFFICIENT (all,i,SECT) VMX2(i) # value Import HH consumption # ; **UPDATE** (all,i,SECT) VMX2(i) = p0(i, "Import") * x2(i, "Import") ;

COEFFICIENT (all,i,SECT) VDX3(i) # value domestic government #; **UPDATE** (all,i,SECT) VDX3(i) = p0(i, "Domestic") * x3(i, "Domestic");

COEFFICIENT (all,i,SECT) VMX3(i) # value Import government # ; **UPDATE** (all,i,SECT) VMX3(i) = p0(i, "Import") * x3(i, "Import") ;

```
COEFFICIENT (all,i,SECT) VX4(i) # value export # ;
UPDATE (all,i,SECT) VX4(i) = p0(i, "Domestic") * x4(i) ;
```

```
COEFFICIENT (all,i,SECT) VDX5(i) # value domestic inventory #;
UPDATE (all,i,SECT) VDX5(i) = p0(i, "Domestic") * x5(i, "Domestic");
```

```
COEFFICIENT (all,i,SECT) VMX5(i) # value Import inventory # ;
UPDATE (all,i,SECT) VMX5(i) = p0(i, "Import") * x5(i, "Import") ;
```

```
COEFFICIENT (all,i,SECT) VX6(i) # value special export # ;
UPDATE (all,i,SECT) VX6(i) = p0(i,"Domestic") * x6(i) ;
COEFFICIENT TINY # Small Value # ;
FORMULA TINY = 0.000001 ;
```

COEFFICIENT TINY2 # Small Value 2 # ; **FORMULA** TINY2 = 0.000002 ;

COEFFICIENT TINY4 # Small Value 4 # ; FORMULA TINY4 = 0.000180 ;

COEFFICIENT (**Parameter**)(**all**,i,SECT) GAM(i) # *Export elasticity* # ; **READ** GAM **FROM FILE** mdata180 **HEADER** "*GAMM*" ;

!-----!

READ VDINPUT **FROM FILE** data2010 **HEADER** "X0DO"; **READ** VMINPUT **FROM FILE** data2010 **HEADER** "X0IM";

READ VX01 FROM FILE data2010 HEADER "VA1"; READ VX02 FROM FILE data2010 HEADER "VA2"; READ VX03 FROM FILE data2010 HEADER "VA3";

READ VDX1 FROM FILE data2010 HEADER "DX1"; READ VMX1 FROM FILE data2010 HEADER "MX1"; READ VDX2 FROM FILE data2010 HEADER "DX2"; READ VMX2 FROM FILE data2010 HEADER "MX2"; READ VDX3 FROM FILE data2010 HEADER "DX3"; READ VMX3 FROM FILE data2010 HEADER "MX3"; READ VX4 FROM FILE data2010 HEADER "EXPD"; READ VDX5 FROM FILE data2010 HEADER "DX5"; READ VMX5 FROM FILE data2010 HEADER "MX5"; READ VMX5 FROM FILE data2010 HEADER "MX5"; READ VX6 FROM FILE data2010 HEADER "EXPS"; !----- other coefficients and formulas------! ZERODIVIDE (NONZERO_BY_ZERO) DEFAULT 0.000001;

```
\begin{aligned} \textbf{COEFFICIENT} & (\textbf{all}, i, \text{SECT}) \ \text{VZ01}(i) \ \# \ \textit{Total domestic demand \#}; \\ \textbf{FORMULA} & (\textbf{all}, i, \text{SECT}) \ \text{VZ01}(i) = \textbf{SUM}(j, \text{SECT}, [\text{VDINPUT}(i, j) + \text{TINY}]) \\ &+ \ \textbf{SUM}(j, \text{SECT}, [\text{VDX1}(i, j) + \text{TINY}]) + [\text{VDX2}(i) + \text{TINY}] + [\text{VDX3}(i) + \text{TINY}] \\ &+ [\text{VX4}(i) + \text{TINY}] + [\text{VDX5}(i) + \text{TINY}] + [\text{VX6}(i) + \text{TINY}]; \end{aligned}
```

```
COEFFICIENT (all,i,SECT) VZ02(i) # Total demand import goods #;
FORMULA (all,i,SECT) VZ02(i) = SUM(j,SECT,[VMINPUT(i,j)+TINY])
+ SUM(j,SECT,[VMX1(i,j)+TINY]) + [VMX2(i)+TINY] + [VMX3(i)+TINY]
+ [VMX5(i)+TINY] ;
```

```
COEFFICIENT (all,j,SECT) VSPLY(j) # Total supply # ;
FORMULA (all,j,SECT) VSPLY(j) = SUM(i,SECT,[VDINPUT(i,j)+TINY])
+ SUM(i,SECT,[VMINPUT(i,j)+TINY]) + [VX01(j)+TINY] + [VX02(j)+TINY]
+ [VX03(j)+TINY] ;
```

```
COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,SOURCE) HX0(i,j,s)
# share X0 Supply # ;
FORMULA (all,i,SECT)(all,j,SECT) HX0(i,j,"Domestic")
= [VDINPUT(i,j) + TINY] / VSPLY(j) ;
```

```
FORMULA (all,i,SECT)(all,j,SECT) HX0(i,j,"Import")
= [VMINPUT(i,j) + TINY] / VSPLY(j);
```

```
COEFFICIENT (all,j,SECT) HX01(j) # Share X01 supply #;
FORMULA (all,j,SECT) HX01(j) = [VX01(j) + TINY] / VSPLY(j);
```

```
COEFFICIENT (all,j,SECT) HX02(j) # Share X02 supply #;
FORMULA (all,j,SECT) HX02(j) = [VX02(j) + TINY] / VSPLY(j) ;
```

```
COEFFICIENT (all,j,SECT) HX03(j) # Share X03 supply #;
FORMULA (all,j,SECT) HX03(j) = [VX03(j) + TINY] / VSPLY(j);
```

COEFFICIENT (all,j,SECT) VFAC(j) # Total primary factor # ; **FORMULA** (all,j,SECT) VFAC(j) = [VX01(j) + TINY] + [VX02(j) + TINY] ;

COEFFICIENT (**Parameter**) (all,j,SECT) SFAC1(j) # Share X01 Primary # ; **FORMULA** (**Initial**)(all,j,SECT) SFAC1(j) = [VX01(j) +TINY] / VFAC(j) ;

COEFFICIENT (**Parameter**) (all,j,SECT) SFAC2(j) # Share X02 Primary #; **FORMULA** (**Initial**)(all,j,SECT) SFAC2(j) = [VX02(j) +TINY] / VFAC(j);

COEFFICIENT VA_1 # Total VA1 # ; **FORMULA** VA_1 = **SUM**(j,SECT,[VX01(j)+TINY]) ;

COEFFICIENT VA_2 # Total VA2 # ; **FORMULA** VA_2 = **SUM**(j,SECT,[VX02(j)+TINY]) ;

COEFFICIENT VA_3 # Total VA3 # ; **FORMULA** VA_3 = **SUM**(j,SECT,[VX03(j)+TINY]) ;

COEFFICIENT (all,j,SECT) S01(j) # Share VA1 #; **FORMULA** (all,j,SECT) S01(j) = [VX01(j) + TINY] / VA_1;

COEFFICIENT (all,j,SECT) S02(j) # Share VA2 # ; FORMULA (all,j,SECT) S02(j) = [VX02(j) + TINY] / VA_2 ;

COEFFICIENT (all,j,SECT) S03(j) # *Share VA3* # ; **FORMULA** (all,j,SECT) S03(j) = [VX03(j) + TINY] / VA_3 ;

COEFFICIENT VGDPI # Income GDP # ; **FORMULA** VGDPI = VA_1 + VA_2 + VA_3 ; **COEFFICIENT** H01 # Share ZVA1 #; **FORMULA** H01=VA_1 / VGDPI;

COEFFICIENT H02 # Share ZVA2 # ; **FORMULA** H02=VA_2 / VGDPI ;

```
COEFFICIENT H03 # Share ZVA3 # ;
FORMULA H03=VA_3 / VGDPI ;
```

COEFFICIENT (all,i,SECT)(all,j,SECT) VZX0(i,j) # Total sectoral x0 # ; **FORMULA** (all,i,SECT)(all,j,SECT) VZX0(i,j) = [VDINPUT(i,j) + TINY] + [VMINPUT(i,j) + TINY] ;

COEFFICIENT (**Parameter**)(**all**,i,SECT)(**all**,j,SECT)(**all**,s,SOURCE) SZX0(i,j,s) # Share sectoral x0 # ;

```
FORMULA (Initial)(all,i,SECT)(all,j,SECT) SZX0(i,j,"Domestic")
= [VDINPUT(i,j) + TINY] / VZX0(i,j) ;
FORMULA (Initial)(all,i,SECT)(all,j,SECT) SZX0(i,j,"Import")
= [VMINPUT(i,j) + TINY] / VZX0(i,j) ;
```

! Capital production parameter SZX1 !

```
COEFFICIENT (all,i,SECT)(all,j,SECT) VZX1(i,j) # Total sectoral x1 #;

FORMULA (all,i,SECT)(all,j,SECT) VZX1(i,j)

= [VDX1(i,j)+TINY] + [VMX1(i,j)+TINY] ;
```

COEFFICIENT(Parameter)(all,i,SECT)(all,j,SECT)(all,s,SOURCE) SZX1(i,j,s) # Sectoral share x1 investment # ; FORMULA (Initial)(all,i,SECT) (all,j,SECT) SZX1(i,j,"Domestic") = [VDX1(i,j)+TINY] / VZX1(i,j) ; **FORMULA** (**Initial**)(**all**,i,SECT) (**all**,j,SECT) SZX1(i,j,"*Import*") = [VMX1(i,j)+TINY] / VZX1(i,j) ;

! ----- !

```
COEFFICIENT (all,i,SECT)(all,s,SOURCE) COLX1(i,s) # Column x1 #;
FORMULA (all,i,SECT) COLX1(i, "Domestic") = SUM(j,SECT,[VDX1(i,j)+TINY])
```

FORMULA (all,i,SECT) COLX1(i, "*Import*") = **SUM**(j,SECT,[VMX1(i,j)+TINY]) ;

COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,Source) RCX1(i,j,s)

Share for column x1 #;

FORMULA (all,i,SECT)(all,j,SECT) RCX1(i,j,"Domestic")

= [VDX1(i,j)+TINY]/COLX1(i,"Domestic");

FORMULA (all,i,SECT)(all,j,SECT) RCX1(i,j,"Import")

= [VMX1(i,j)+TINY] /COLX1(i,"*Import*");

```
! ------ !
```

COEFFICIENT(all,j,SECT) VZ1(j) # Investment by sector #; FORMULA (all,j,SECT) VZ1(j) = SUM(i,SECT,[VDX1(i,j)+TINY]) + SUM(i,SECT,[VMX1(i,j)+TINY]);

```
COEFFICIENT(all,j,SECT) G(j) # Z1 / K1 likes depreciation of capital#;
FORMULA (all,j,SECT) G(j) = VZ1(j) / [VX02(j) + VZ1(j)];
```

```
COEFFICIENT VC1 # Total investment #;
FORMULA VC1 = SUM(j,SECT,[VZ1(j)+TINY]);
```

COEFFICIENT (all,j,SECT) SZ1(j) # Share total investment #; **FORMULA** (all,j,SECT) SZ1(j) = [VZ1(j)+TINY]/VC1;

121

! Add share capital production !

COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,SOURCE) HZ1(i,j,s) # Share for z1 #; FORMULA (all,i,SECT)(all,j,SECT) HZ1(i,j,"Domestic") = [VDX1(i,j)+TINY]/VZ1(j); FORMULA (all,i,SECT)(all,j,SECT) HZ1(i,j,"Import") = [VMX1(i,j)+TINY]/VZ1(j);

COEFFICIENT VC2 # Total HH consumption #; FORMULA VC2 = SUM(i,SECT,[VDX2(i)+TINY]) + SUM(i,SECT,[VMX2(i)+TINY]);

```
COEFFICIENT (all,i,SECT)(all,s,SOURCE) SX2(i,s) # Share x2 #;
FORMULA (all,i,SECT) SX2(i,"Domestic") = [VDX2(i)+TINY] / VC2 ;
FORMULA (all,i,SECT) SX2(i,"Import") = [VMX2(i) + TINY] / VC2 ;
```

```
COEFFICIENT VC3 # Total government # ;
FORMULA VC3 = SUM(i,SECT,[VDX3(i)+TINY]) +
SUM(i,SECT,[VMX3(i)+TINY]) ;
```

```
COEFFICIENT (all,i,SECT)(all,s,SOURCE) SX3(i,s) # Share x3 # ;
FORMULA (all,i,SECT) SX3(i,"Domestic") = [VDX3(i) + TINY] / VC3 ;
FORMULA (all,i,SECT) SX3(i,"Import") = [VMX3(i) + TINY] / VC3 ;
```

COEFFICIENT VC5 # Total inventory # ;
FORMULA VC5 = SUM(i,SECT,[VDX5(i)+TINY]) +
SUM(i,SECT,[VMX5(i)+TINY]) ;

COEFFICIENT VC6 # Total Special Export # ;
FORMULA VC6 = SUM(i,SECT,[VX6(i)+TINY]);

```
COEFFICIENT VE # Total Export # ;
FORMULA VE = SUM(i,SECT,[VX4(i)+TINY]) ;
```

```
COEFFICIENT VM # Total Import #;
FORMULA VM = SUM(i,SECT,[VZ02(i)+TINY]) ;
```

COEFFICIENT VGDPE # *Expenditure GDP* # ; **FORMULA** VGDPE = VC1 + VC2 + VC3 + VC5 + VC6 + VE - VM ;

```
COEFFICIENT (all,i,SECT) HX4(i) # Share x4 # ;
FORMULA (all,i,SECT) HX4(i) = [VX4(i) + TINY] / VE ;
```

```
COEFFICIENT (all,i,SECT) HM(i) # Share z02 #;
FORMULA (all,i,SECT) HM(i) = [VZ02(i) + TINY] / VM ;
```

```
COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,SOURCE) RX0(i,j,s)
# Share X0 in Total demand #;
```

```
FORMULA (all,i,SECT)(all,j,SECT) RX0(i,j,"Domestic")
= [VDINPUT(i,j) + TINY] / VZ01(i) ;
FORMULA (all,i,SECT)(all,j,SECT) RX0(i,j,"Import")
= [VMINPUT(i,j) + TINY] / VZ02(i) ;
```

```
COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,SOURCE) RX1(i,j,s)
# Share X1 in total demand # ;
FORMULA (all,i,SECT)(all,j,SECT) RX1(i,j,"Domestic")
= [VDX1(i,j) + TINY] / VZ01(i) ;
```

```
FORMULA (all,i,SECT)(all,j,SECT) RX1(i,j,"Import")
= [VMX1(i,j) + TINY] / VZ02(i) ;
```

COEFFICIENT (all,i,SECT)(all,s,SOURCE) RX2(i,s) # Share X2 in total demand # ;

```
FORMULA (all,i,SECT) RX2(i,"Domestic") = [VDX2(i) + TINY] / VZ01(i);
FORMULA (all,i,SECT) RX2(i,"Import") = [VMX2(i) + TINY] / VZ02(i);
```

COEFFICIENT (all,i,SECT)(all,s,SOURCE) RX3(i,s) # Share X3 in total demand # .

```
FORMULA (all,i,SECT) RX3(i, "Domestic") = [VDX3(i) + TINY] / VZ01(i);
FORMULA (all,i,SECT) RX3(i, "Import") = [VMX3(i) + TINY] / VZ02(i);
```

```
COEFFICIENT (all,i,SECT) RX4(i) # Share X4 in total demand #;
FORMULA (all,i,SECT) RX4(i) = [VX4(i) + TINY] / VZ01(i);
```

COEFFICIENT (all,i,SECT)(all,s,SOURCE) RX5(i,s) # Share X5 in total demand #

```
FORMULA (all,i,SECT) RX5(i, "Domestic") = [VDX5(i) + TINY] / VZ01(i);
FORMULA (all,i,SECT) RX5(i, "Import") = [VMX5(i) + TINY] / VZ02(i);
```

```
COEFFICIENT (all,i,SECT) RX6(i) # Share X6 in total demand #;
FORMULA (all,i,SECT) RX6(i) = [VX6(i) + TINY] / VZ01(i);
```

!-----created share SHZCX1------!

COEFFICIENT (all,i,SECT)(all,s,SOURCE) SHZCX1(i,s)
Share x1 by column in GDPE # ;
FORMULA (all,i,SECT) SHZCX1(i,"Domestic")
= [COLX1(i,"Domestic") + TINY] / VGDPE ;
FORMULA (all,i,SECT) SHZCX1(i,"Import")

124

= [COLX1(i,"*Import*") + TINY] / VGDPE ;

```
COEFFICIENT (all,i,SECT)(all,s,SOURCE) SHX2(i,s) # Share x2 in GDPE # ;
FORMULA (all,i,SECT) SHX2(i, "Domestic") = [VDX2(i) + TINY] / VGDPE ;
FORMULA (all,i,SECT) SHX2(i, "Import") = [VMX2(i) + TINY] / VGDPE ;
```

```
COEFFICIENT (all,i,SECT)(all,s,SOURCE) SHX3(i,s) # Share x3 in GDPE # ;
FORMULA (all,i,SECT) SHX3(i, "Domestic") = [VDX3(i) + TINY] / VGDPE ;
FORMULA (all,i,SECT) SHX3(i, "Import") = [VMX3(i) + TINY] / VGDPE ;
```

```
COEFFICIENT (all,i,SECT) SHX4(i) # Share x4 in GDPE # ;
FORMULA (all,i,SECT) SHX4(i) = [VX4(i) + TINY] / VGDPE ;
```

```
COEFFICIENT (all,i,SECT)(all,s,SOURCE) SHX5(i,s) # Share x5 in GDPE # ;
FORMULA (all,i,SECT) SHX5(i, "Domestic") = [VDX5(i) + TINY] / VGDPE ;
FORMULA (all,i,SECT) SHX5(i, "Import") = [VMX5(i) + TINY] / VGDPE ;
```

```
COEFFICIENT (all,i,SECT) SHX6(i) # Share x6 in GDPE # ;
FORMULA (all,i,SECT) SHX6(i) = [VX6(i) + TINY] / VGDPE ;
```

```
COEFFICIENT (all,i,SECT) SHZ02(i) # Share z02 in GDPE # ;
FORMULA (all,i,SECT) SHZ02(i) = [VZ02(i) + TINY] / VGDPE ;
```

!-----!
! EQUATION !
!-----!
!-----Final Demand------!

EQUATION Total_demand *#Total domestic demand#* (all,i,SECT) z01(i)

= **sum**(j,SECT,RX0(i,j, "Domestic") * x0(i,j, "Domestic"))

+ **sum**(j,SECT,RX1(i,j,"Domestic") * x1(i,j,"Domestic"))

+ RX2(i, "Domestic") * x2(i, "Domestic")

+ RX3(i, "Domestic") * x3(i, "Domestic") + RX4(i) * x4(i)

+ RX5(i, "Domestic") * x5(i, "Domestic") + RX6(i) * x6(i);

EQUATION Import_demand #Total import demand# (all,i,SECT) z02(i) = sum(j,SECT,RX0(i,j,"Import") * x0(i,j,"Import")) + sum(j,SECT,RX1(i,j,"Import") * x1(i,j,"Import")) + RX2(i,"Import") * x2(i,"Import") + RX3(i,"Import") * x3(i,"Import") + RX5(i,"Import") * x5(i,"Import");

!-----Production Function------!

EQUATION Funcion_x0 #Sectoral produced input# (all,i,SECT)(all,j,SECT)(all,s,SOURCE) x0(i,j,s) = z01(j) - 1 * (p0(i,s) - SUM(r,SOURCE,SZX0(i,j,r) * p0(i,r)));

EQUATION Labor_demand # *Labor demand* # (**all**,j,SECT) x01(j) = z01(j) - 1 * [p01(j) - ([SFAC1(j) * p01(j)] + [SFAC2(j) * p02(j)])];

EQUATION Capital_demand # *Capital Demand* # (**all**,j,SECT) x02(j) = z01(j) - 1 * [p02(j) - ([SFAC1(j) * p01(j)] + [SFAC2(j) * p02(j)])];

```
EQUATION Indirect_taxes # Indirect taxes #
(all,j,SECT) x03(j) = p03(j) + p0(j,"Domestic") + z01(j);
```

!-----Market Clearing (Equilibrium)------!

```
EQUATION Total_labor # Total labor demand #
va1 = sum(j,SECT,S01(j) * [p01(j) + x01(j)]);
```

```
EQUATION Total_Capital # Total Capital #
va2 = sum(j,SECT,S02(j) * [p02(j) + x02(j)]);
```

```
EQUATION Total_taxes # Total indirect taxes # va3 = sum(j,SECT,S03(j) * [p03(j) + x03(j)]);
```

```
EQUATION Income_GDP # Income GDP #
gdpi = (H01 * va1) + (H02 * va2) + (H03 * va3);
! Capital production SZX1 !
```

EQUATION Substitution_inv # Substitution of investment # (all,i,SECT)(all,j,SECT)(all,s,SOURCE) x1(i,j,s) = z1(j) -1* [p0(i,s) - SUM(r,SOURCE,SZX1(i,j,r) * p0(i,r))];

! ------ !

EQUATION Substitution_HH1 #Substitution of Domestic HH# (all,i,SECT) (all,s,SOURCE) x2(i,s) = c2 - p0(i,s) ;

EQUATION Substitution_Gov1 #Substitution of Government# (all,i,SECT) (all,s,SOURCE) x3(i,s) = c3 - p0(i,s) ;

EQUATION Export_dem # Export demand #

(all,i,SECT) pw1(i) = -GAM(i) * x4(i) + fx4(i);

EQUATION Inventory_Dem #Inventory Demand# (all,i,SECT)(all,s,SOURCE) x5(i,s) = c2r;

```
EQUATION Special_exp # Special Export #
(all,i,SECT) x6(i) = c2r;
```

! Investment/Capital Accumulation !

Coefficient (All, j, SECT) DEP(j) # depreciation factors #; Read DEP From File MDATA180 Header "DPRC"; ! numbers like 0.95 !

```
Coefficient (All,j,SECT) R_T(j) # investment/capital ratio #;
Read R_T From File MDATA180 Header "YBYK"; ! numbers like 0.08 !
Update (Change) (All,j,SECT)
R_T(j) = R_T(j)*[z1(j)-k0(j)]/100;
```

Coefficient (INTEGER) T # number of years covered by simulation #; Formula T = 5 ; Set YEARS MAXIMUM SIZE 100 SIZE T;

Coefficient (all,y,YEARS) ORD(y) # = y for y = 1 to T #; **Read** ORD **From File** MDATA180 **Header** "*ORDY*";

```
Coefficient (All,j,SECT) Z(j) \# K(T)/K(0)\#;
Formula (Initial) (All,j,SECT) Z(j) = 1;
Update (All,j,SECT) Z(j) = k0(j);
```

```
Coefficient (All,j,SECT) R_0(j) # Y(0)/K(0) ratio#;
Formula (Initial) (All,j,SECT) R_0(j) = R_T(j);
```

```
Coefficient (All,j,SECT) DEP_T(j) # DEP to the power of T #;
Formula (Initial) (All,j,SECT) DEP_T(j) = DEP(j)^T;
```

```
Coefficient (All,j,SECT) N_term(j) # useful constant #;
Formula (Initial) (All, j, SECT) N_term(j) =
  Sum(y,YEARS, DEP(j)^{T -ORD(y)}); !note y takes values 1 to T!
Coefficient (All, j, SECT) M_term(j) # useful constant #;
Formula (Initial) (All, j, SECT) M_term(j) =
  Sum(y,YEARS,([ORD(y)-1]/T)*DEP(j)^{T -ORD(y)});
Coefficient (All, j, SECT) K_TERM(j) # delFudge coefficient #;
Formula (All, j, SECT) K_TERM(j) = 100 * [DEP_T(j) - 1 + R_0(j)*N_term(j)] / Z(j);
Equation k0_f # investment/capital accumulation #
(All,j,SECT) k0(j) = K_TERM(j)*delFudge + M_term(j)*R_T(j)*z1(j) + f_accum(j);
EQUATION Utilization_k # Capital utilization #
(all,j,SECT) x02(j) = k0(j);
!-----Commodity Price Equation-----!
EQUATION Price_p0 #Commodity price define#
(all,j,SECT) [p0(j,"Domestic")+ z01(j)]
= SUM(i,SECT,HX0(i,j,"Domestic")*[p0(i,"Domestic") + x0(i,j,"Domestic")])
+ SUM(i,SECT,HX0(i,j,"Import") * [p0(i,"Import") + x0(i,j,"Import")])
+ [HX01(j) * (p01(j) + x01(j))] + [HX02(j) * (p02(j) + x02(j))]
+ [HX03(j) * (p03(j) + p0(j, "Domestic") + z01(j))];
EQUATION Export_price # Export price #
(all,i,SECT) p0(i,"Domestic") = pw1(i) + v1(i) + xr;
EQUATION Import_price # Import price #
(all,i,SECT) p0(i,"Import") = pw2(i) + v2(i) + xr;
```

! Cost of Capital SZX1 !

```
EQUATION Capital_Cost # Investment by sector #

(all,j,SECT) pz1(j) + z1(j)

= SUM(i,SECT,HZ1(i,j,"Domestic") *[p0(i,"Domestic") + x1(i,j,"Domestic")])

+ SUM(i,SECT,HZ1(i,j,"Import") *[p0(i,"Import") + x1(i,j,"Import")]);
```

EQUATION Capital_out # Capital output # (all,j,SECT) z1(j) = c1 - pz1(j) + p02(j);

! ------ !

EQUATION Inv_price #Investment price index# cpi1 = **SUM**(j,SECT,SZ1(j) * pz1(j));

EQUATION Cons_price #Consumer price index# cpi2 = SUM(i,SECT,SX2(i,"Domestic") * p0(i,"Domestic")) + SUM(i,SECT,SX2(i,"Import") * p0(i,"import"));

```
EQUATION Gov_price #Government price index#
cpi3 = SUM(i,SECT,SX3(i,"Domestic") * p0(i,"Domestic"))
+ SUM(i,SECT,SX3(i,"Import") * p0(i,"Import"));
```

```
EQUATION Real_C1 #Real investment#

c1r = c1 - cpi1 ;

EQUATION Real_C2 #Real consumption#

c2r = c2 - cpi2 ;

EQUATION Real_C3 #Real goverment#

c3r = c3 - cpi3 ;
```

EQUATION Inv_total #Total investment consumption# c1 = gdpe ; EQUATION HH_total #Total HH consumption# c2 = gdpe ; EQUATION Gov_total #Total government consumption# c3 = gdpe ;

EQUATION Total_export #Total exports# e= SUM(i,SECT,HX4(i)*[pw1(i) + x4(i)]); EQUATION Total_import #Total imports# m= SUM(i,SECT,HM(i)*[pw2(i) + z02(i)]);

!-----Numeraire (Reference)-----!

EQUATION Balance_Trade #Odinary Change in the Balance of Trade# 100*delBT = (VE*e) - (VM*m);

EQUATION Debt_GDP #Debt-GDP# 100*VGDPE*delDT = (VE*e) - (VM*m) - [(VE - VM)*gdpe];

EQUATION Real_wage # Real wage # (all,j,SECT) rp01(j) = p01(j) - cpi2;

EQUATION Real_cap # Real capital Rent # (all,j,SECT) rp02(j) = p02(j) - cpi2 ;

! Column Investment SZX1 !

EQUATION Col_x1 # Column domestic investment # (all,i,SECT) cx1(i,"Domestic") = sum(j,SECT,RCX1(i,j,"Domestic") * x1(i,j,"Domestic")); EQUATION Invest_C2 #Column import investment# (all,i,SECT) cx1(i,"Import") = sum(j,SECT,RCX1(i,j,"Import") * x1(i,j,"Import"));

! ------ !

EQUATION Identity_GDP # Identity GDP # gdpe = SUM(i,SECT,SHZCX1(i,"Domestic") * [p0(i,"Domestic") + cx1(i,"Domestic")]) + SUM(i,SECT,SHZCX1(i,"Import") * [p0(i,"Import") + cx1(i,"Import")]) + SUM(i,SECT,SHX2(i,"Domestic") * [p0(i,"Domestic") + x2(i,"Domestic")]) + SUM(i,SECT,SHX2(i,"Import") * [p0(i,"Import") + x2(i,"Import")]) + SUM(i,SECT,SHX3(i,"Domestic") * [p0(i,"Domestic") + x3(i,"Domestic")]) + SUM(i,SECT,SHX3(i,"Import") * [p0(i,"Import") + x3(i,"Import")]) + SUM(i,SECT,SHX4(i) * [p0(i,"Domestic") + x4(i)]) + SUM(i,SECT,SHX5(i,"Import") * [p0(i,"Domestic") + x5(i,"Domestic")]) + SUM(i,SECT,SHX5(i,"Import") * [p0(i,"Import") + x5(i,"Import")]) + SUM(i,SECT,SHX6(i) * [p0(i,"Domestic") + x6(i)]) - SUM(i,SECT,SHZ02(i) * [p0(i,"Import") + z02(i)]) ;

EQUATION GDP_Def # GDP Deflator # gdpdf = SUM(i,SECT,SHZCX1(i,"Domestic") * p0(i,"Domestic")) + SUM(i,SECT,SHZCX1(i,"Import") * p0(i,"Import")) + SUM(i,SECT,SHX2(i,"Domestic") * p0(i,"Domestic")) + SUM(i,SECT,SHX2(i,"Import") * p0(i,"Import")) + SUM(i,SECT,SHX3(i,"Domestic") * p0(i,"Domestic")) + SUM(i,SECT,SHX3(i,"Import") * p0(i,"Import")) + SUM(i,SECT,SHX4(i) * p0(i,"Domestic")) + SUM(i,SECT,SHX5(i,"Import") * p0(i,"Domestic")) + SUM(i,SECT,SHX5(i,"Import") * p0(i,"Import")) + SUM(i,SECT,SHX6(i) * p0(i,"Import")); **EQUATION** Real_GDP # *Real GDP* # gdpr = gdpe - gdpdf ;

!--- Cosmetics Equations (Linearized) ----!
!--- Petroleum refinery (oil consumption) -----!

VARIABLE oil # Oil consumption (Quantity) #; VARIABLE oil_v # Oil consumption (Value) #;

COEFFICIENT (all,i,SECT) VCOM(i) # Total commodity demand # ; **FORMULA** (all,i,SECT) VCOM(i) = VZ01(i) + VZ02(i) ;

COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,SOURCE) SCX0(i,j,s) # Share X0 in total demand # ; FORMULA (all,i,SECT)(all,j,SECT) SCX0(i,j,"Domestic") = [VDINPUT(i,j)+TINY]/VCOM(i) ; FORMULA (all,i,SECT)(all,j,SECT) SCX0(i,j,"Import") = [VMINPUT(i,j)+TINY]/VCOM(i) ;

COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,SOURCE) SCX1(i,j,s) # Share X1 in total demand # ; FORMULA (all,i,SECT)(all,j,SECT) SCX1(i,j,"Domestic") = [VDX1(i,j)+TINY]/VCOM(i) ; FORMULA (all,i,SECT)(all,j,SECT) SCX1(i,j,"Import") = [VMX1(i,j)+TINY]/VCOM(i) ;

COEFFICIENT (all,i,SECT)(all,s,SOURCE) SCX2(i,s) # Share X2 in total demand # ; FORMULA (all,i,SECT) SCX2(i,"Domestic") = [VDX2(i)+TINY]/VCOM(i) ; FORMULA (all,i,SECT) SCX2(i,"Import")

= [VMX2(i)+TINY]/VCOM(i) ;

COEFFICIENT (all,i,SECT)(all,s,SOURCE) SCX3(i,s) # Share X3 in total demand # ; FORMULA (all,i,SECT) SCX3(i,"Domestic") = [VDX3(i)+TINY]/VCOM(i) ; FORMULA (all,i,SECT) SCX3(i,"Import") = [VMX3(i)+TINY]/VCOM(i) ;

COEFFICIENT (all,i,SECT) SCX4(i) # Share X4 in total demand # ; FORMULA (all,i,SECT) SCX4(i) = [VX4(i)+TINY]/VCOM(i) ;

COEFFICIENT (all,i,SECT)(all,s,SOURCE) SCX5(i,s) # Share X5 in total demand # ; FORMULA (all,i,SECT) SCX5(i,"Domestic") = [VDX5(i)+TINY]/VCOM(i) ; FORMULA (all,i,SECT) SCX5(i,"Import") = [VMX5(i)+TINY]/VCOM(i) ;

COEFFICIENT (all,i,SECT) SCX6(i)

Share X6 in total demand # ;
FORMULA (all,i,SECT) SCX6(i) = [VX6(i)+TINY]/VCOM(i) ;

EQUATION refinary # Oil consumption (Quantity) #

oil = **sum**(j,SECT,SCX0("*s*93",j,"*Domestic*")*x0("*s*93",j,"*Domestic*"))

+ **sum**(j,SECT,SCX0("*s*93",j,"*Import*")*x0("*s*93",j,"*Import*"))

+ **sum**(j,SECT,SCX1("s93",j,"Domestic")*x1("s93",j,"Domestic"))

+ **sum**(j,SECT,SCX1("*s*93",j,"*Import*")*x1("*s*93",j,"*Import*"))

+ SCX2("s93","Domestic")*x2("s93","Domestic")

+ SCX2("*s*93","*Import*")*x2("*s*93","*Import*")

- + SCX3("s93","Domestic")*x3("s93","Domestic")
- + SCX3("*s*93","*Import*")*x3("*s*93","*Import*")
- + SCX4("s93")*x4("s93")
- + SCX5("s93","Domestic")*x5("s93","Domestic")
- + SCX5("s93","Import")*x5("s93","Import")
- + SCX6("s93")*x6("s93");

EQUATION refiery_v # *Oil consumption* (*Value*) # oil v =

sum(j,SECT,SCX0("*s*93",j,"*Domestic*")*[p0("*s*93","*Domestic*")+x0("*s*93",j,"*Domesti c*")])

+ **sum**(j,SECT,SCX0("*s*93",j,"*Import*")*[p0("*s*93","*Import*")+x0("*s*93",j,"*Import*")]) +

sum(j,SECT,SCX1("*s*93",j,"*Domestic*")*[p0("*s*93","*Domestic*")+x1("*s*93",j,"*Domesti c*")])

- + **sum**(j,SECT,SCX1("*s*93",j,"*Import*")*[p0("*s*93","*Import*")+x1("*s*93",j,"*Import*")])
- + SCX2("s93","Domestic")*[p0("s93","Domestic")+x2("s93","Domestic")]
- + SCX2("s93","Import")*[p0("s93","Import")+x2("s93","Import")]
- + SCX3("s93","Domestic")*[p0("s93","Domestic")+x3("s93","Domestic")]
- + SCX3("s93","Import")*[p0("s93","Import")+x3("s93","Import")]
- + SCX4("*s*93")*[p0("*s*93","*Domestic*")+ x4("*s*93")]
- + SCX5("*s*93","*Domestic*")*[p0("*s*93","*Domestic*")+x5("*s*93","*Domestic*")]
- + SCX5("s93","Import")*[p0("s93","Import")+x5("s93","Import")]
- + SCX6("s93")*[p0("s93","Domestic")+x6("s93")];

!--- Oil consumption in Final Demand -----!

VARIABLE oil_fd # Oil consumption in Final Demand (Quantity) # ; VARIABLE oil_fdv # Oil consumption in Final Demand (Value) # ;

```
COEFFICIENT (all,i,SECT) VFDD(i) # Final Demand Domestic # ;

FORMULA (all,i,SECT) VFDD(i) = sum(j,SECT,VDX1(i,j)) + VDX2(i) + VDX3(i)

+ VX4(i) + VDX5(i) + VX6(i) ;

COEFFICIENT (all,i,SECT) VFDM(i) # Final Demand Import # ;

FORMULA (all,i,SECT) VFDM(i) = sum(j,SECT,VMX1(i,j)) + VMX2(i) +

VMX3(i)

+ VMX5(i) ;

COEFFICIENT (all,i,SECT) VFDT(i) # Total Oil Final Demand # ;

FORMULA (all,i,SECT) VFDT(i) = VFDD(i) + VFDM(i) ;

COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,source) SFDX1(i,j,s)

# Share X1 in Final Demand # ;

FORMULA (all,i,SECT)(all,j,SECT) SFDX1(i,j,"Domestic")

= [VDX1(i,j) + TINY]/VFDT(i) ;

FORMULA (all,i,SECT)(all,j,SECT) SFDX1(i,j,"Import")

= [VMX1(i,j) + TINY]/VFDT(i) ;
```

```
COEFFICIENT (all,i,SECT)(all,s,source) SFDX2(i,s)
# Share X2 in Final Demand # ;
FORMULA (all,i,SECT) SFDX2(i,"Domestic")
= [VDX2(i) + TINY]/VFDT(i) ;
FORMULA (all,i,SECT) SFDX2(i,"Import")
= [VMX2(i) + TINY]/VFDT(i) ;
```

COEFFICIENT (all,i,SECT)(all,s,source) SFDX3(i,s) # Share X3 in Final Demand # ; FORMULA (all,i,SECT) SFDX3(i,"Domestic") = [VDX3(i) + TINY]/VFDT(i) ; FORMULA (all,i,SECT) SFDX3(i,"Import") = [VMX3(i) + TINY]/VFDT(i) ; COEFFICIENT (all,i,SECT) SFDX4(i)

Share X4 in Final Demand # ;
FORMULA (all,i,SECT) SFDX4(i)
= [VX4(i) + TINY]/VFDT(i) ;

COEFFICIENT (all,i,SECT)(all,s,source) SFDX5(i,s) # Share X5 in Final Demand # ; FORMULA (all,i,SECT) SFDX5(i,"Domestic") = [VDX5(i) + TINY]/VFDT(i) ; FORMULA (all,i,SECT) SFDX5(i,"Import") = [VMX5(i) + TINY]/VFDT(i) ;

COEFFICIENT (all,i,SECT) SFDX6(i) # Share X6 in Final Demand # ; FORMULA (all,i,SECT) SFDX6(i) = [VX6(i) + TINY]/VFDT(i) ;

EQUATION refiery_fd # Oil consumption in final demand (Quantity) # oil_fd = sum(j,SECT,SFDX1("s93",j,"Domestic")*x1("s93",j,"Domestic")) + sum(j,SECT,SFDX1("s93",j,"Import")*x1("s93",j,"Import")) + SFDX2("s93","Domestic")*x2("s93","Domestic") + SFDX2("s93","Import")*x2("s93","Import") + SFDX3("s93","Domestic")*x3("s93","Domestic") + SFDX3("s93","Import")*x3("s93","Import") + SFDX4("s93")*x4("s93") + SFDX5("s93","Domestic")*x5("s93","Domestic") + SFDX5("s93","Import")*x5("s93","Import") + SFDX5("s93","Import")*x5("s93","Import") + SFDX5("s93","Import")*x5("s93","Import") + SFDX5("s93","Import")*x5("s93","Import") + SFDX5("s93","Import")*x5("s93","Import") **EQUATION** refiery_fdv # *Oil consumption in final demand (Value)* # oil fdv =

sum(j,SECT,SFDX1("*s*93",j,"*Domestic*")*[p0("*s*93","*Domestic*")+x1("*s*93",j,"*Domes tic*")])

+ **sum**(j,SECT,SFDX1("*s*93",j,"*Import*")*[p0("*s*93","*Import*")+x1("*s*93",j,"*Import*")])

+ SFDX2("s93","Domestic")*[p0("s93","Domestic")+x2("s93","Domestic")]

+ SFDX2("s93","Import")*[p0("s93","Import")+x2("s93","Import")]

+ SFDX3("s93","Domestic")*[p0("s93","Domestic")+x3("s93","Domestic")]

+ SFDX3("s93","Import")*[p0("s93","Import")+x3("s93","Import")]

+ SFDX4("s93")*[p0("s93","Domestic")+ x4("s93")]

+ SFDX5("s93","Domestic")*[p0("s93","Domestic")+x5("s93","Domestic")]

+ SFDX5("s93","Import")*[p0("s93","Import")+x5("s93","Import")]

+ SFDX6("s93")*[p0("s93","Domestic")+x6("s93")];

!--- Oil consumption in intermediate -----!

VARIABLE oil_int # Oil consumption in intermediate (Quantity) # ; VARIABLE oil_intv # Oil consumption in intermediate (Value) # ;

```
COEFFICIENT (all,i,SECT) VIND(i) # Domestic intermediate demand #;
FORMULA (all,i,SECT) VIND(i) = VZ01(i) -VFDD(i);
COEFFICIENT (all,i,SECT) VINI(i) # Import intermediate demand #;
FORMULA (all,i,SECT) VINI(i) = VZ02(i) -VFDM(i);
```

```
COEFFICIENT (all,i,SECT) VINT(i) # Total intermediate demand # ;
FORMULA (all,i,SECT) VINT(i) = VIND(i) + VINI(i) ;
```

```
COEFFICIENT (all,i,SECT)(all,j,SECT)(all,s,SOURCE) SINX0(i,j,s)
# Share X0 in intermediate demand # ;
FORMULA (all,i,SECT)(all,j,SECT) SINX0(i,j,"Domestic")
= [VDINPUT(i,j)+TINY]/VINT(i) ;
```

```
FORMULA (all,i,SECT)(all,j,SECT) SINX0(i,j,"Import")
= [VMINPUT(i,j)+TINY]/VINT(i);
```

EQUATION refinary_int # Oil consumption in intermediate (Quantity) # oil_int = **sum**(j,SECT,SINX0("s93",j,"Domestic")*x0("s93",j,"Domestic")) + **sum**(j,SECT,SINX0("s93",j,"Import")*x0("s93",j,"Import"));

EQUATION refiery_intv # *Oil consumption in intermediate (Value)* # oil_intv =

sum(j,SECT,SINX0("*s*93",j,"*Domestic*")*[p0("*s*93","*Domestic*")+x0("*s*93",j,"*Domest ic*")])

+ **sum**(j,SECT,SINX0("*s*93",j,"*Import*")*[p0("*s*93","*Import*")+x0("*s*93",j,"*Import*")])

```
;
```

ZERODIVIDE OFF;

!-----! !----!

BIOGRAPHY

 NAME Miss Chatsamee Chanitnan
 ACDEMIC BACKGROUD Bachelor's Degree with a major in Biochemistry Engineering from Rungsit university, Pathum Thani Province, Thailand in 1996 and a Master's Degree in Public Administration from National Institute Development Administration, Bangkok, Thailand in 2011.
 PRESENT POSITION 2004 - Present CEO, THAI-HO Group (Thailand) Bangkok, Thailand