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ABSTRACT 
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Broadcast encryption is the scheme that a sender encrypts messages for a 

designated group of receivers, and sends the ciphertexts by broadcasting over the 

networks. Many research papers have done it using elliptic curve cryptosystem.  This 

research proposes a dynamic asymmetric key agreement protocols for the broadcast 

encryption which is based on braid groups cryptosystem, an alternative method in the 

public key cryptography in which it can reduce the computational cost. The proposed 

scheme is also used the concept of an identity-based cryptosystem in order to reduce a 

system complexity and cost for establishing and managing a public key authentication 

framework. The scheme has some advantages over the other scheme in that the 

proposed scheme does not require a center for group key management, thus it is 

suitable for dynamic networks like mobile ad hoc networks in which group members 

can be dynamically changed all the time. The scheme also has a low computation cost 

in encryption and decryption processes and it makes a constant ciphertext. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background 

  

Broadcast encryption is a scheme that allows a sender to send a ciphertext to 

some designated groups whose members of the group can decrypt it with his or her 

private key. However, nobody outside the group can decrypt the message. Broadcast 

encryption is widely used in the present day in many aspects, such as VoIP, TV 

subscription services over the Internet, communication among group members or 

from someone outside the group to the group members. This type of scheme also can 

be extended in networks like mobile multi-hop networks, which each node in these 

networks has limitation in computing and storage resources. The broadcast encryption 

can be divided into two categories from a relation of receivers. In the first category, a 

sender can randomly designate several receivers. Users in this category may be no 

relation between each other. For the second category, a sender can encrypt a message 

to a designated group in which each user in the group can use his private key 

independently to decrypt the ciphertext. Users can contact with other users in the 

group and all users in the group are listening on a broadcast channel. Usually the first 

category has lots of advantages. It is more flexible than the second category and 

sender can randomly designated a subset of receivers. However, these advantages 

make the first category much more complicated. It is very difficult to make the 

scheme satisfy so many advantages while keep the ciphertext and keys constant size. 

For a network like a mobile ad hoc network, the complex in computation and the need 

for large memory make it inefficient. The proposed scheme for broadcast encryption 

is in the second category.  

 There are several group key management protocols, and typically they are 

divided into three categories; centralized group key distribution, decentralized group 
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key management, and contributory group key agreement. In the centralized group key 

distribution, there is a group controller. This group controller is responsible for 

distributing a group key. The advantages in this category are that it minimizes storage 

requirements, computational power on both client and server sides, and bandwidth 

utilization. There exist some drawbacks in this category such as the performance 

bottleneck, the central point of failure, and the requirement of trusted authority. In the 

decentralized group key management, a group is divided into several subgroups. Each 

subgroup has a subgroup controller and it is responsible for key management. There 

exist the same problems as in the centralized group key distribution. The last category 

is the contributory group key agreement. In this category, a shared group key is 

generated via the cooperation of all members and there is no central management, so 

it is more suitable for ad hoc networks and a group which has small group members. 

   

1.2  Related Works  

  

Fiat and Naor (1993) proposed the concept of broadcast encryption. In this 

scheme, sender allows to send a ciphertext to a designated group whose members of 

the group can decrypt it with his or her private key. However, nobody outside the 

group can decrypt the message. Their solution was secure against m collusion users 

and the length of the ciphertext is (mlog2mlog n), where n is the number of users and 

m is the number of colluders. Further research by Naor, Naor, and Lotspiech (2001) 

proposed a solution with ciphertext and keys do not rely on the m. The scheme has 

private key size of (log2 n). There also are many research papers about broadcast 

group-oriented encryption as in Ma, Wu, and Li (2006) and Ma and Ao (2009). The 

former proposes a novel broadcast encryption used in the group communication. It is 

an asymmetric group key agreement scheme achieved a broadcast message with 

constant ciphertexts and private keys. The later proposes the improved version by 

including the identity of users to the previous scheme, and it is secure against chosen 

ciphertext attack and the key generation withstands collude attack from the users of 

the group. Both schemes are the centralized group key agreement schemes, because 

they need a private key generator for generating member’s private keys. These 
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schemes as mentioned before are implemented using bilinear pairing in elliptic curve 

cryptosystem. 

 There are also some research papers in doing asymmetric group key 

agreement as in Wu, Mu, Susilo, Qin, and Domingo-Ferrer (2009) and Zhao, Zhang 

and Tian (2011). Both schemes are the contributory group key agreement schemes. 

The former scheme is constructed on one round asymmetric group key agreement 

(ASGKA) based on the concept of aggregatable signature based broadcast (ASBB) by 

using bilinear pairings. Typically in an ASGKA protocol, it has two keys; one is a 

public group key, which is used as an encryption key for a message to a group and 

another is a private key, which a group member can use it individually as a decryption 

key. An ASBB is the scheme that the public key can be used to verify signatures as 

well as to encrypt messages, and any valid signature can be used to decrypt the 

ciphertexts. As mentioned in Wu, Mu, Susilo, Qin, and Domingo-Ferrer (2009), their 

scheme does not improve in communication overhead for one-time group applications 

in which the members of the group are about fully dynamic as in ad hoc networks, 

because their scheme has heavy communication overhead in key establishment. The 

later scheme is a dynamic asymmetric group key agreement (DASGKA) combining a 

conventional authenticated group key agreement, a public key encryption and a multi-

signature. This scheme is implemented using elliptic curve cryptosystem. In the 

dynamic asymmetric group key agreement, a group of users can form a temporary 

group and agree to share a public encryption key. Users can join or leave the group 

without running a completely new key agreement protocol. 

 The concept of an identity-based cryptosystem was proposed by Shamir 

(1984). An idea of this new paradigm is to use user’s identifier information such as 

email address or IP address as a public key for encryption or signature verification.  

An identity-based cryptosystem can reduce a system complexity and cost for 

establishing and managing a public key authentication framework known as the 

public key infrastructure (PKI). The first identity-based cryptosystem scheme which 

was proposed by Shamir is an identity-based signature scheme (IBS). An identity-

based encryption scheme (IBE) became an opening problem until 2001. In 2001, 

Shamir’s open problem was solved by Boneh and Franklin (2001) as well as Cook (2001). 

An identity-based cryptosystem has mostly been implemented using bilinear pairing 

which has exponential cost in pairing operation. 
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1.3  Motivation 

  

Braid groups were introduced by Artin (1947) and first used to construct a 

Diffie-Hellman type key agreement protocol and a public key encryption scheme by 

Ko , Lee , Cheon , Han , Kang , Park (2000). In Karu and Loikkanen work (2000), the 

comparison of fast public key cryptosystems; elliptic curve cryptography (ECC), 

NTRU, and braid groups has been made. The result shown that the braid groups based 

efficient cryptosystem can be implemented, and it is faster than RSA and elliptic 

curve cryptography. For very limited environments like personal digital assistant 

(PDA)’s, smart cards, and mobile phones they require faster cryptosystem, therefore 

braid groups based cryptosystem can be one of the choices. The braid groups can be 

used in a symmetric group key agreement protocol as in Thanongsak Aneksrup and 

Pipat Hiranvanichakorn (2011). The motivation for this research is to create an 

asymmetric broadcast encryption scheme based on an identity-based cryptosystem 

and braid group concepts in contributory group key agreement manner. The proposed 

scheme starts with building an asymmetric broadcast encryption scheme based on 

braid groups and then applies the identity-based cryptosystem to it. 

  

 



 
CHAPTER 2 

 

LITERATURE REVIEW 

 
 This chapter gives an overview of the concepts relating in the proposed 

scheme on a dynamic asymmetric key agreement for broadcast encryption such as the 

concept of broadcast encryption, identity-based cryptosystem, braid groups based 

cryptosystem, some related researches in asymmetric group key agreement scheme 

for broadcast encryption, and identity-based broadcast encryption. 

 

2.1  Broadcast Encryption 

 

 Fiat and Naor (1993) proposed the concept of broadcast encryption in 1993. In 

this scheme, sender allows to send a ciphertext to a designated group whose members 

of the group can decrypt it with his or her private key. However, nobody outside the 

group can decrypt the message. Broadcast encryption is widely used in the present 

day in many aspects, such as VoIP, TV subscription services over the Internet, 

communication among group members or from someone outside the group to the 

group members. This type of scheme also can be extended in networks like mobile 

multi-hop networks, which each node in these networks has limitation in computing 

and storage resources. 

The original scheme which is proposed by Fiat and Naor was to prove that two 

devices which were not known each other could agree on a common key for secure 

communications over a one-way communication. This is different from a traditional 

secure transmission of information using public key cryptography in which devices 

must know about each other and agree on encryption keys before transmission. 

Broadcast encryption allows devices which may not have existed, when a group was 

firstly formed, can join into the group and communicate securely.  

In the original broadcast encryption scheme proposed by Fiat and Naor, there 

exists a key distribution center. The center allocates predefined keys for all of the 
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users in a group. It was also a zero-message scheme in which the broadcast center did 

not have to broadcast a message for the members to be able to compute the key. It 

could be computed from information that the members receives from the center, and 

from other members. The scheme is a k-resilient broadcast encryption scheme in 

which it is secure against a coalition of at most k non-privileged users.  

There are many research papers about broadcast group-oriented encryption as 

in Ma, Wu, and Li (2006) and Ma and Ao (2009). The former proposes a novel 

broadcast encryption used in the group communication. It is an asymmetric group key 

agreement scheme achieved a broadcast message with constant ciphertexts and private 

keys. The later proposes the improved version by including the identity of users to the 

previous scheme, and it is secure against chosen ciphertext attack and the key 

generation withstands collude attack from the users of the group. Because a member’s 

identity is included in a private key generation, two or more members cannot forge a 

new private key to the other. The review of these papers can be found in related works 

section in this chapter. 

 

2.2  Identity-Based Cryptosystem 

 

The concept of an identity-based cryptosystem was proposed by Shamir 

(1984). There are two schemes in an identity-based cryptosystem. The first one is an 

identity-based encryption scheme (IBE) and the second one is an identity-based 

signature scheme (IBS). This section reviews a concept of both the identity-based 

encryption scheme (IBE) and the identity-based signature scheme (IBS). It also gives 

an example of an identity-based cryptosystem using bilinear paring.  

 

2.2.1  Basic Concept of Identity-Based Encryption and Signature 

This subsection describes the concept of identity-based encryption (IBE) and 

identity-based Signature (IBS) schemes from Baek, Newmarch, Safavi-Naini and 

Susilo (2004) paper.   

2.2.1.1  Identity-Based Encryption 

In an identity-based encryption (IBE) scheme, if Alice needs to send a 

ciphertext to Bob, she can encrypt it using Bob’s identity information such as his 
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email address or his IP address as well as a public key of a trusted third party called a 

private key generator. Upon receiving the ciphertext, Bob can decrypt it using his 

private key which is associated with Bob’s identity and generated by the private key 

generator as shown in Figure 2.1.   

  

 
 

Figure 2.1  Identity-Based Encryption 

 

We can describe an identity-based encryption scheme in four steps; 

setup, private key extraction, encryption and decryption as the following.  

1) Setup: The private key generator creates its private and 

public key pair denoted as skPKG and pkPKG respectively. 

2) Private Key Extraction: The receiver Bob authenticates 

himself to the private key generator and obtains his private key skBob which is 

associated with his identity IDBob. 

3) Encryption: Alice uses the receiver Bob’s identity IDBob and 

the public key of the private key generator pkPKG to encrypt a message. 

4) Decryption: the receiver, Bob, uses his private key skBob to 

decrypt the ciphertext.   

2.2.1.2  Identity-Based Signature 

In an identity-based signature (IBS) scheme, If Alice wants to sign a 

message to Bob, she can sign it using her private key which is associated with her 
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identifier information and obtained from a private key generator. Upon receiving the 

message Bob can verify it using Alice’s identifier information as well as a public key 

of the private key generator as shown in Figure 2.2. 

 

 
 

Figure 2.2  Identity-Based Signature 

 

We can describe an identity-based signature scheme in four steps; 

setup, private key extraction, encryption and decryption as the following.  

1) Setup: The private key generator creates its private and 

public key pair denoted as skPKG and pkPKG respectively. 

2) Private Key Extraction: The signer, Alice, authenticates 

herself to the private key generator and obtains her private key skAlice which is 

associated with her identity IDAlice. 

3) Signature Generation: Alice uses her private key skAlice to 

generate signature  and send it with a message. 

4) Signature Verification: the verifier, Bob, checks whether  

is a genuine signature on the message using Alice’s identity and the private key 

generator’s public key pkPKG. If it is, then accepts the message. Otherwise rejects the 

message. 
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2.2.2  Bilinear Pairing 

This subsection gives some preliminaries of bilinear pairing and its properties. 

Let G and G be two groups of prime order q and let P be a generator of G, where G is 

additively represented and G is multiplicatively. A map e: G × G  G is said to be a 

bilinear pairing and the group G is called a bilinear group, if the following three 

properties hold: 

2.2.2.1 Bilinearity: e(aP, bP) = e(P, P)ab = e(P, abP) = e(abP, P) for 

all  a, b  Zq
*; 

2.2.2.2 Non-degeneracy: this means that there exists P ∈ G such that            

e (P, P) ≠ 1 where 1 is an identity of G; 

2.2.2.3 Computability: this means that there exists an efficient 

algorithm to compute e (P, P) ∀ P ∈ G. 

 

2.2.3  Related Complexity Assumptions 

Consider the following problems in the group G1 of prime order q, generated 

by P.  

2.2.3.1 The Decisional Bilinear Diffie-Hellman problem (DBDHP) is, 

given a generator P of a group G1, (aP, bP, cP) and an element h ∈ G2, to decide 

whether    h = e(P, P)abc.  

2.2.3.2 Given a generator P of a group G1 and (aP, bP), the 

Computational Diffie-Hellman problem (CDHP) is to compute abP. 

 

2.2.4  An Example of Identity-Based Encryption 

This subsection gives an example of an identity-based encryption scheme 

using pairings on elliptic curves. This overview comes from Hoffstein, Pipher, and 

Silverman (2008). When Bob wants to send Alice a message, he uses private key 

generator’s public key pkPKG and Alice’s identity information IDAlice to encrypt his 

message. In the meantime, private key generator uses its private key skPKG and Alice’s 

identity information IDAlice to create a private key of Alice skAlice. Alice then uses 

skAlice to decrypt and read Bob’s message. 

This example is explained in four steps; setup, private key extraction, 

encryption and decryption as the following.  
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2.2.4.1 Setup: In this step the private key generator prepares public 

parameters and creates its private and public keys. There are some public parameters 

such as; a finite field Fq, an elliptic curve E, a point on the elliptic curve P  E(Fq) of 

prime order l. There are also two hash functions H1 and H2 where H1: {IDs}  E(Fq) 

and H2: Fq*  {0,1}B. The first hash function maps a user identity to a point on E. 

The second hash function maps each element in Fq* to a binary string of length B. 

The private key generator chooses a secret integer s modulo m and 

publishes the point PPKG = sP  E(Fq). The PPKG is a public key of private key 

generator and s is its private key. 

2.2.4.2 Private Key Extraction: Alice chooses identity information. 

The private key generator computes the point PAlice = H1(IDAlice)  E(Fq) where PAlice 

is Alice’s public key. The private key generator sends the point QAlice = s PAlice  

E(Fq) to Alice. This QAlice is Alice’s private key. 

2.2.4.3 Encryption: Bob chooses a plaintext M and a random number r 

modulo q-1. Bob computes the point PAlice = H1(IDAlice)  E(Fq). Bob’s ciphertext is 

the pair C = (rP, M  H2(êl(PAlice , PPKG)r )). 

2.2.4.4 Decryption: Alice decrypts the ciphertext (C1, C2) by computing 

C2 H2(êl(QAlice , C1)). 

The correctness of this scheme can be shown as the following. 

  êl(QAlice , C1) = êl(sPAlice , rP) = êl(PAlice , P)rs 

         = êl(PAlice , sP)r = êl(PAlice , PPKG)r 

 

2.3  Braid Groups 

  

 The braid group was first introduced by Artin (1947). It is a “non-commutative” 

group which can be used in cryptography because its computations can be performed 

efficiently, but it is strong enough against attacks. For the geometric presentation of 

the braid group, a braid Bn is a set of disjoint n strands all of which are attached to two 

horizontal bars at the top and the bottom, and between the top and the bottom bars, 

one strand crosses any one horizontal line only once. We call n is the braid index. A 

braid can be represented by a sequence of generator σn which is called the Artin 
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generator as proposed by Artin. If the strand   i th   passes under the strand i+1 th, it 

denotes σi. Corresponding if the strand i th passes over the strand i+1 th it denotes σi
-1 

as shown in Figure 2.3. The multiplication of two braids with the same braid index, xy 

comes from concatenating the ends of the strands of the first braid with the beginnings 

of the strands of the second braid, e.g., x = σ1
-1and y = σ2σ1,   so xy = σ1

-1σ2σ1 as shown 

in Figure 2.4. The identity braid is the braid consisting of strands with no crossings as 

shown in Figure 2.5. The inverse of a braid is the mirror image of that braid with 

respect to the horizontal line, e.g. from the previous example, y -1= (σ2
 σ1) - 1 = σ1

-1σ2
-1. 

 

 
 

Figure 2.3  Artin Generator of σi and σi 
-1 

 

 As we have seen that any braid Bn can be expressed as a braid word which is a 

sequence of generator, e.g., σ1
-1σ2σ1, and it has the following relation; 

 

 (1) σiσj  =  σjσi  where | i – j| > 1  
e.g., σ1σ3 = σ3σ1 
 
(2) σiσjσi  =  σjσiσj where | i – j| = 1  
e.g., σ1σ2 σ1 = σ2σ1σ2 
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Figure 2.4  Artin Generator for Some Braids 

 

 
 

Figure 2.5  Identity Braid 

 

 
 

Figure 2.6  Fundamental Braid of B4 
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2.3.1  Properties of Braid Groups 

This subsection reviews some notations as well as properties of braid groups 

as mentioned in Cha, Ko, Lee, Han and Cheon (2001).  

2.3.1.1 Elements in Bn
+ are called positive braids or positive words in 

which every generator in the braid word has no negative power.  

2.3.1.2 There is a fundamental braid D or  where  = (1…n-1) 

(1…n-2) …1 in the Artin presentation as shown in Figure 2.6. In the fundamental 

braid, each pair of strand crosses exactly once. The fundamental braid D can be 

written in many different ways as a positive word. It has two properties: 

1) For each generator a, D = aA = Ba for some A, B  Bn
+. 

2) For each generator a, aD = D(a) and Da =  -1(a)D where 

 (tau) is the automorphism of Bn defined by (i) = i-1 for Artin presentation  . 

2.3.1.3 There are partial orders ‘’, ‘L’ and ‘R’ in Bn. For two words 

V and W in Bn, we say that V  W (respectively V L W, V R W) if V = PWQ (resp. V 

= WP, V = PW) for some P,Q  Bn
+. If a word is compared against either an empty 

word e or a power of D, all three orders are equivalent due to the property 2) above. 

Note that the partial orders depend on a presentation of Bn and W is a positive word if 

and only if W  e.  

2.3.1.4 For two elements V and W in a partial order set, the meet V W 

(resp. join VW) denotes the largest (resp. smallest) element among all elements 

smaller (resp. larger) than V and W. When we want to distinguish the meet and join 

for left and right versions, we will use ‘L’, ‘R’, ‘L’ and ‘L’. 

2.3.1.5 A braid satisfying e  A  D is called a canonical factor and     

[0, 1]n denotes the set of all canonical factors in Bn. The cardinality of [0, 1]n is n! for 

the Artin presentation. 

2.3.1.6 For a positive braid P, a decomposition P = A0P0 is left-

weighted if A0 [0, 1]n, P0  e, and A0 has the maximal length (or maximal in ‘L’) 

among all such decompositions. A left-weighted decomposition P = A0P0 is unique. 

A0 is called the maximal head of P. The notion ‘right-weighted’ can be also defined 

similarly. 

2.3.1.7 Any braid W given as a word can be decomposed uniquely 

into W = DuA1A2…Ak, where e < Ai < D, u  Z, where the decomposition AiAi+1 is left-
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weighted for each 1  i  k - 1. This decomposition, called the left canonical form of 

W, is unique and so it solves the word problem. The right canonical form of W can be 

also defined similarly. 

  

2.3.2  Operations in Braid Groups 

This subsection give an overview of braid groups operations as mentioned in 

the paper entitled “An Efficient Implementation of Braid Groups” by Cha, Ko, Lee, 

Han, and Cheon (2001). First they write a given braid in the form as  = DqA1A2 …Al, 

where q is an integer and each Ai is a canonical factor, they represent the braid as a 

pair  = (q, (Ai)) of an integer q and a list of l canonical factors (Ai). They note that 

this representation is not necessarily the left canonical form of , and hence l may be 

greater than the canonical length of .  

A braid given as a word in generators can converted into the above form by 

rewriting each negative power  -1 of generators as a product of D-1 and a canonical 

factor D-1 and collecting every power of D at the left end using the fact        

(Ai)D+/-1 = D+/-1(+/-1(Ai)) for any sequence of canonical factors Ai.  

2.3.2.1  Multiplication 

The multiplication of two braids is just the juxtaposition of two lists of 

permutation and applying  as the following equation.  

(DpA1…Al)(DqB1…Bl ) = Dp+q q(A1)… q (Al)B1…Bl  

The inverse of a braid can be computed using the following equation.  

(DqA1 …Al)-1 = D - q-l  - q- l(Bl)…  - q-1(B1) where Bi = Ai
-1D, viewing 

Ai and D as permutations.  

2.3.2.2  Left Canonical Form 

Given a positive braid P = A1 …Al, where Ai is a canonical factor, the 

algorithm computes the maximal heads of Al-1Al, Al-2Al-1Al, …, A1… Al = P 

sequentially using the following facts.   

1) For any positive braid A and P, the maximal head of AP is 

the maximal head of the product of A and the maximal head of P. 

2)  For two canonical factors A and B, the maximal head of AB 

is A((DA -1)LB), where the inverse is taken in the permutation group.  
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2.3.2.3  Left Canonical Form by Hands 

Given a positive braid P, it can be easy to use visual approach 

suggested by ElriFai and Morton (1994) to convert to its left canonical form as the 

following. We can partition a braid words into permutation braids (or canonical 

braids) by scanning a braid words from the highest to the lowest braid words and 

partition it if a pair of strings are about to cross for the second time, and then start a 

new permutation braid. Then look at adjacent pairs of permutation braids, and see if 

any adjacent pair of strings crosses in the lower but not the upper braid. If so, move it 

up and continue, otherwise stop. 

 

2.3.3  Example in Braid Groups Operation 

This subsection gives an example of how to convert a braid word into the left 

canonical form by hands. For example a braid word 321
-13

-121 in B4 can be 

converted into the left canonical form as the following steps.  

First change a negative braid into a positive braid, for this example, change  

1
-1 and 3

-1 to positive braid word as the following. 

1
-1 = D-1D1

-1 = D-1(123)(12)(1)1
-1 = D-1(123)(12) and 

3
-1 = D-1D3

-1 = D-1(123)(12)(1)3
-1 = D-1(123)(21)(2)3

-1 

= D-1(132)(31)(2)3
-1 = D-1(132)(13)(2)3

-1 

= D-1(312)(13)(2)3
-1 = D-1(321)(23)(2)3

-1 

= D-1(321)(32)(3)3
-1 

= D-1(321)(32) 

Thus 321
-13

-121 = 32D-1(123)(12)D-1(321)(32)21, Now 

use the fact (Ai)D+/-1 = D+/-1(+/-1(Ai)) for any sequence of canonical factors Ai 

321
-13

-121 = (32D-1)(12312D-1) 3213221 

= D-1(32) D-1(12312) 3213221 

= D-1(12) D-1(12312) 3213221 

= D-1(12) D-1(32132) 3213221 

= D-1(12D-1)321323213221 

= D-1D-1(12) 321323213221 

= D-2(12) 321323213221 
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= D-2(32) 321323213221 

= D-2(32) (321) (32) (321) (32) (21) 

From this point, we can use algorithm proposed by ElriFai and Morton (1994) 
in subsection 2.3.2.3 to partition the braid words above into permutation braids as the 
following and Figure 2.7. 

D-2(32) (321) (32) (321) (32) (21) 

= D-2(323)(21323)(2132)(21) 

Use algorithm proposed by ElriFai and Morton (1994) again to move up an 
adjacent pairs of permutation braids, which no crossing in the above as in Figure 2.7 
and we got the sequence of a permutation braids as the following. 

D-2(323)(21323)(2132)(21) 

= D-2(3231)(2132)(2132)(21)  

 

 
 

Figure 2.7  An Example of Permutation Braids 
 

Continue with the braid words above, we can find the left canonical form as 
the following. 

D-2(3231)(2132)(2132)(21) 

= D-2(123121)(12)(2132)(21) 

= D-2D(12)(2132)(21) 

= D-1(12)(2132)(21) 
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The left canonical form of the braid word 321
-13

-121 is D-1(12) 

(2132)(21) 

 

2.3.4  Implementation 

There have to be efficient ways to represent and perform operations on braid 

groups in a computer in order to do cryptography based on them. Because a braid has 

a unique decomposition, this decomposition provides a nice way to store a particular 

braid in the memory of a computer.  In order to store a braid in a computer’s memory, 

the power of the fundamental braid u as in 2.3.1.7 must be stored, as well as the 

sequence of canonical factors following it (Ai).  The power of the fundamental braid 

can be stored as an integer. The canonical factors are the permutation braids.  Thus to 

store a canonical factor, an array representing the permutation can be used. Let A be 

an array representing a permutation table.  If a permutation sends i to π(i), then       

A(i) = π(i). For example braid y  B3 in Figure 2.4 can be written in permutation as 

(2,3,1). 

For example braid words x and y  B3 in Figure 2.4, when they are putted into 

a program, they can be kept in memory as the sign integer like x = 10000001 and        

y = 0000001000000001. When the program wants to multiply them together, it can 

read and then concatenate them as a braid word “-1 2 1”. Then the program performs 

a left-canonical form operation. The result is as the following. 

x = 1
-1 = D-1D1

-1 = D-1(12)(1)1
-1 = D-1(12) 

y = 21 

xy = D-1(12) 21 

Then keeps u = -1, A1 = (12), and A2 = (21) for the braid xy. 

 

2.3.5  Hard Problems in Braid Groups 

 Recently there are some mathematically hard problems in braid groups as a 

candidate for cryptographic one way function, but the famous one is the generalized 

conjugacy search problem (GCSP) which we apply it in our protocol  to maximize 

strength of the key. In the generalized conjugacy search problem, it states that x and y 

are conjugate if there exist an element a such that y = a x a-1 for m < n, where Bm is a 

subgroup of Bn generated by σ1,σ2 ,…, σm-1.  The hardness in GCSP is as following;  
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 Given a pair (x,y)  Bn  Bn such that y = a x a-1 for some a  Bm 

 The objective is to find b  Bm such that y = b x b-1 for m ≤ n. 

 Thus we can conclude that x and y are conjugate. It is able to compute y easily 
when we are known both a and x, but needs exponential time to compute b from bxb-1 
when known x and y. 

 
 2.3.6  Public key Cryptography Based on Braid Groups 

 This section gives an example in using the braid groups in public key 
cryptography. We show a simple example protocol, according to Dehornoy (2004). 

 Here we say that Alice needs to send message mA to Bob. Alice uses her 
private key and Bob’s public key to encrypt the message and Bob can use his private 
key and Alice’s public key to decrypt it. 

1) Alice computes the conjugate p = sps−1, s is Alice’s private key 

and (p,p) is her public key; 

2)  Bob computes the conjugate p = rpr−1, r is Bob’s private key and   

(p, p) is his public key; 

3)  Alice sends a ciphertext m  = mA  H(sps-1)  together with her   

public key p to Bob;  
4) Bob computes  

mA = m  H(r p r−1)      

= m  H(r sps−1 r−1) 

= m  H(srpr-1s−1)      

= m  H(s p s−1)      
= mA 

As shown above, braid r and s commutes with each other, thus sr = rs. This 
property of the braid groups is true when we carefully select the braids. Suppose we 
have n subgroups Bg1, Bg2, Bg3, …, Bgn of g-braid groups where g = g1 + g2 + g3 + … 

+gn. For any braid sl  Bgl and sm  Bgm with l ≠ m, It is true that sl sm = sm sl. 
 

2.4  Asymmetric Group Key Agreement Schemes 

 
 This section gives an overview of related researches on broadcast encryption 

using asymmetric group key agreement such as proposed by 1) Ma and Ao (2009),   
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2) Wu, Mu, Susilo, Qin, and Domingo-Ferrer (2009) and 3) Zhao, Zhang and Tian 

(2011).  
 

2.4.1  Improved Group-Oriented Encryption for Group Communication 

This scheme was proposed by Ma and Ao (2009) and improved from the 

scheme proposed by Ma, Wu, and Li (2006). They improve the security of Ma et al.’s 

encryption scheme and make it withstand collude attack by using the identities of the 

users in designing the group–oriented encryption scheme. In this scheme a sender is 

allowed to encrypt a message using a group’s public key. Any user in the group can 

independently decrypt the ciphertext using his private key.   

This subsection describes the group oriented encryption scheme as the 

following. There are five phases in this scheme; Initialize, KeyGen, KeyVer, Encrypt, 

and Decrypt. 

2.4.1.1  Initialize 

Let G1 be a cyclic multiplicative group generated by g, whose order is 

a prime q and G2 be a cyclic multiplicative group of the same order q. A bilinear 

pairing is a map: e: G2G1  G2 which can be efficiently computed. There are three 

cryptographic hash functions: 1) H:{0,1}*  Zq 2) G: G2  {0,1}l 3) H1: G1  Zq
* . 

A private key generator chooses a  Zq
* and g2G1 uniformly at random, and 

computes g1=ga. The master private key is a, and the master public keys are (g1,g2).   

2.4.1.2  KeyGen 

The private key generator chooses k  Zq
* uniformly at random for a 

group A, and then publishes PKA = gk and VKA=ga2k as group A’s public key. The 

member pi’s private key can be generated as follows: 

1)  The private key generator chooses ri  Zq
* uniformly at 

random. 

2)  Computes and outputs di1 = gH(IDi)rig2
ari, di2 = gari, and        

di3 = gakgH(IDi)ri.  

The member pi’s private key is di = {di1, di2, di3}, where IDi denotes the 

identity of member pi. 
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2.4.1.3  KeyVer 

  After receiving the private key distributed from the private key 

generator, the member pi verifies the validity of the key by the following equation. 

  e(di3,ga) = e(VKA, g)e(gH(IDi), di2) or not 

  If above equation holds, pi accepts the private keys, otherwise outputs 

ERROR message. They say the member pi can verify the key because 

  e(di3,ga) = e(gakgH(IDi)ri, ga) 

     = e(g,ga2k)e(gH(IDi), gari) 

     = e(VKA, g)e(gH(IDi), di2) 

2.4.1.4  Encryption 

  In order to encrypt a message M{0,1}l for the group A, the sender 

first chooses s Zq
* uniformly at random, and computes the ciphertext 

  c1 = G(e(g1,PKA)s)  M 

  c2 = gs 

  c3 = g2
s 

  c4 = H1(gks) 

  c5 = g(s+h)-1 

  The ciphertext for message M is c = (c1,c2,c3,c4,c5),  where                    

h = H(c1||c2||c3||c4). The sender sends the ciphertext to all the members in the group A 

by broadcasting over the Internet. 

2.4.1.5  Decrypt 

  After receiving the ciphertext c = (c1,c2,c3,c4,c5), a user pi  A can 

decrypt it as follows: 

   1)  Computes T = e(c2,di3)e(c3,di2) / e(c2,di1). 

   2)  Computes M = c1  G(T). 

  The Decrypt is correct, because 

  T = e(c2,di3)e(c3,di2) / e(c2,di1) 

     = e(gs, gakgH(IDi)ri)e(g2
s, gari) / e(gs, gH(IDi)rig2

ari ) 

     = e(g, g)aks 

  Then pi gets the message M = c1  G(T). 
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This scheme is an asymmetric group key agreement scheme. The scheme has 

advantage in that it can withstand adaptively chosen ciphertext and colluded attacks, 

but it has some drawbacks in computation complexity, and no supported protocol for 

dynamic group. 

 

2.4.2  Asymmetric Group Key Agreement 

This scheme was proposed by Wu, Mu, Susilo, Qin, and Domingo-Ferrer 

(2009). This scheme is an asymmetric group key agreement (ASGKA) protocol. They 

proposed a generic construction of one-round asymmetric group key agreement 

protocol based on a new primitive referred to as aggregatable signature based 

broadcast (ASBB), in which the public key can be simultaneously used to verify 

signatures and encrypt messages and signature can be used to decrypt ciphertext. A 

round means that each party sends one message and can broadcast simultaneously. 

This scheme was also implemented using bilinear pairings.  

From a generic construction, to realize one-round ASGKA protocol, they need 

only to implement a secure ASBB scheme. They construct an ASBB scheme secure in 

the random oracle model using bilinear pairing techniques. 

2.4.2.1  An Efficient ASBB Scheme 

Let PairGen be an algorithm taking on input a security parameter 1, 

and outputs a tuple  = (p, G, G , e) where G and G have the same prime order p, 

and e: G  G G is an efficient non- degenerate bilinear map such that e(g, g)  1 

for any generator g of G, and for all u, v  Z, it holds that e(gu, gv) = e(g, g)uv. 

1)  Public parameters: Let  = (p,G,G ,e)  PairGen (1), 

G=g. Let H:{0,1}*  G be a cryptographic hash function. The system parameters 

are  = (,g,H). 

2)  Public/secret keys: Select at random rZp
*. XG \ {1}. 

Compute R = g –r, A = e(X, g). The public key is pk = (R,A) and the secret key is       

sk = (r,X). 

3)  Sign: The signature of any string s  {0,1}* under the 

public key pk is  = X H(s)r. 
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4)  Verify: Given a message-signature pair (s,), the verification 

equation is e(,g)e(H(s),R) = A. If the output is 1, it means that purported signature is 

valid.  

5)  Encryption: For a plaintext m  G, randomly select   t  

Zp
*and compute c1 = gt, c2 = Rt, c3 = mAt. 

6)  Decryption: After receiving a ciphertext (c1, c2, c3), anyone 

who has a valid message-signature pair (s,) can extract m = c3 / e(,c1)e(H(s), c2). 

2.4.2.2  Concrete One-Round ASGKA Protocol 

The following is a concrete one-round ASGKA protocol which using 

the instantiated ASBB scheme. 

1)  Public parameters generation: It is the same as ASBB 

scheme.  

2)  Group setup: Decide a group of players P = {U1,…, Un} 

Randomly select hi  G for i = 1,…,n. hi can map to Ui in a natural way, e.g., 

according to the dictionary order in their binary representation.  

3)  Group key agreement: Ui randomly select Xi  G, ri  Zp
* 

and publishes {i,j, Ri, Ai}ij, where i,j = Xi hj
ri, Ri = g -ri, Ai = e(Xi, g).  

4)  Group encryption key derivation: The player share the same 

group encryption key(R,A); R =  n
j=1 Rj = g -

n
j=1 rj, A =  n

j=1 Aj = e(n
j=1 Xj, g). 

5)  Decryption key derivation: Using the private input (Xi ,ri ) 

during the protocol execution phase, player Ui can calculate its secret decryption key 

from the public communication;  

i = Xi hj
ri  n

j=1 
,ji j,i = n

j=1 Xj hi
rj = ( n

j=1 Xj) hi 
n
j=1 rj . 

6)  Encryption: For a plaintext m  G, anyone who knows the 

public parameters and the group encryption key can produce the ciphertext                 

c = (c1, c2, c3), where t  Zp, c1 = gt, c2 = Rt, and c3 = mAt. 

7)  Decryption: e(i,g)e(hi, R) = A, each player Ui can decrypt  

m = c3 / e(i,c1)e(hi, c2). 

This scheme is an asymmetric group key agreement scheme. The 

scheme has advantage in that it uses an aggregatable signature based broadcast in 
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which a public key can be used to verify a message, but it also has some drawbacks in 

computation complexity, and no supported protocol for dynamic group. 

 

2.4.3  Dynamic Asymmetric Group Key Agreement 

This scheme was proposed by Zhao, Zhang and Tian (2011). They describe a 

dynamic asymmetric group key agreement (DASGKA) protocol. The protocol is not 

required central management. The protocol combines the concepts of a conventional 

group key agreement, a public key encryption and a multi-signature. Their 

construction is similar to an authenticated group key agreement for dynamic group. 

After a shared private key is computed, a corresponding public key is published to 

outsiders. In order for outsiders to trust the public key, a multi-signature is attached. 

Their scheme is an asymmetric group key agreement, and it is a dynamic scheme in 

which it allows users to join or leave a group efficiently without triggering a 

completely new key agreement protocol. 

2.4.3.1  An Instance 

This subsection gives an overview of an instance for the dynamic 

asymmetric group key agreement.  

Definition A prime order group G is a group Diffie-Hellman (GDH) if 

there exists an efficient algorithm VDDH( ) which solves the Decisional Diffie-

Hellman problem in G and there is no polynomial-time algorithm which solves the 

Computational Diffie-Hellman problem.   

1)   DASGKA.Setup 

On input a security parameter 1, a cyclic GDH group G = <g> 

of some large prime order q is chosen. Two cryptographic hash functions H: {0, 1}* 

 Zp
* and F: {0, 1}*  G are needed.  

2)   DASGKA.KeyGen 

User Ui chooses randomly xi  Zq
* and computes PKi = gxi. Ui 

keeps SKi = xi secret as the private key, and publishes PKi as public key. 

3)   DASGKA.KeyAgree 

A group of players S = {U1,..., Un} agree to trigger the protocol 

on time T. They require that there exists only one session for the same group and the 

same T. All players form a circle structure, with Un+1 = U1 and U0 = Un. 
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(1)  Round 1 

Each Ui chooses ai  Zq
* and computes Ki = gai. Ui sets Mi 

= Ui || T || H(S) || Ki, and signs it as i(Mi) = MS.Sign(SKi,Mi) = F(Mi)xi where MS 

denoted as multi-signature scheme functions. Ui broadcasts (Mi,i(Mi)) to others.  

(2)  Round 2 

Each Ui checks the validation of data from his neighbors, 

namely (M i-1,i-1(M i-1)) and (M i+1,i+1(M i+1)). For instance, he checks the structure of 

M i-1 and runs VDDH(g,F(M i-1),PK i-1, i-1(M i-1)) to see if (g,F(Mi-1),PK i-1, i-1(M i-1) 

form a valid DDH tuple. If both are valid, Ui calculates his shared key with neighbors 

Ki,i+1 and Ki-1, i, and circle calculations Xi as follows.  

Ki, i+1 = (Ki+1)ai = gai ai+1, Ki-1, i = (Ki-1)ai = gai-1ai , 

Xi = H(Ki,i+1)  H(Ki-1,i), 

M i = Ui || T || H(S) || Xi; 

i(M i) = MS.Sign (SKi,M i) = F(Mi)xi. 

Ui broadcasts the message and the signature (M i, i(M i)) 

to others. 

(3)  Key computing 

After receiving all the messages, Ui checks the validation of 

all (M j, j(M j)), j  {1,. . .,n}, ji. If valid, Ui obtains all the circle calculations Xj 

and checks whether X1. . . Xn= 0. If so, the handshake is accepted and shared 

session key is SK = H(H(K1,2),. . .,H(Ki,i+1),. . .,H(Kn,1),T), where H(Ki-j,i-j+1) = H(Ki,i+1) 

 Xi-1. . . Xi-j, with j = 1,. . .,n - 1.  

4)  DASGKA.PkGen 

With the shared secret key SKZq
* , anyone in the group can 

generate a common public key PK = gSK. If the group wants to publish the public key 

to outsiders, each player needs additional round for generating a multi-signature as 

follows. Each player Ui sets M = T || H(S) || PK, i(M) = F(M)xi and broadcasts i(M) 

to others, which can be verified by using VDDH( ). Then 1,. . .,n(M) =  n
i=1 i(M) = 

F(M) 
n
i=1 xi  is a multi-signature for PK and the group descriptions S. It can be 

verified by using VDDH( ) to decide whether                                                         form (g, F(M), 1, …, n (M)) 
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a valid DDH tuple. The public key PK, time stamp T, group description S and the 

signature 1,. . .,n(M) are made public. 

5)  DASGKA.Enc 

Anyone who wants to send message mG to the group, can 

select randomly kZq
* and compute c = (c1,c2) = (gk,m  PKk). The ciphertext c is 

sent to the group. 

6)  DASGKA.Dec 

On receiving the ciphertext c, any group member with the 

shared private key SK can calculate m = c2  c1
SK to recover the message. 

7)  DASGKA.Join 

We suppose S = {U1, ..., Un} to be the current group and J = 

{Un+1, ..., Un+n} (n1) to be a set of outsiders hoping to join the group. The agreed 

joining time is T. They form a new circle structure among the members S = {U1,..., 

Un+n}, with Un+n+1 = U1. The neighborhood changing concerns only U1 and Un among 

the old members. 

(1) U1, Un and {Un+1, ..., Un+n} interacts as Round 1 of 

DASGKA.KeyAgree on the new time stamp T and the new group S. U1 uses the 

previous K1 and Un uses previous Kn. 

(2) U1, Un and {Un+1, ..., Un+n} interacts as Round 2 of 

DASGKA.KeyAgree. The shared key between U1 and U2, as well as the shared key 

between Un-1 and Un, remains unchanged. Ui broadcasts its previous circle calculation 

value Xi,2  i  n -1. If anyone finds that some player outputs a value different from 

the previous one, he alerts all players and returns reject. 

(3) All players in S run as Key Computing of 

DASGKA.KeyAgree to obtain a new shared private key, except for that they only 

need to check the validation of n+ 2 messages from U1, Un and {Un+1, ..., Un+n} 

(4) All players in S  run DASGKA.PkGen to refresh the 

public key and the multi-signature. 

8)  DASGKA.Leave 

For convenience of explanation, we assume that only a member 

Ui  S leaves the group S. Member leaving in bulk can be done simultaneously. The 
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remainders form a new circle structure among the members S= {U1, . . . , Ui-1, Ui+1, . . 

. , Un}. The neighborhood changing concerns only Ui-1 and Ui+1. New time stamp T 

and the new group S are used during the protocol. 

(1) Ui-1 and Ui+1 interact as Round 1 of DASGKA.Key-
Agree, using the previous Ki-1 and Ki+1. 

(2) Ui-1 and Ui+1 interact as Round 2 of DASGKA.Key-
Agree. The shared key between Ui-2 and Ui-1, as well as the shared key between Ui+1 
and Ui+2, remains unchanged. 

(3) All players in S run as Key Computing of 

DASGKA.KeyAgree to obtain a new shared private key, except for that they only 
need to check the validation of two messages from Ui-1 and Ui+1. 

(4) All players in S  run DASGKA.PkGen to refresh the 

public key and the multi-signature. 
This scheme is an asymmetric group key agreement scheme. The 

scheme has advantage in that it has protocols; join and leave protocols in which they 
support for a dynamic group, but it also has some drawbacks in computation complexity.  

 

2.5  Identity-Based Broadcast Encryption Scheme  
 
 This section gives an overview of a research in an identity-based broadcast 
encryption scheme as proposed by Du, Wang, Ge, and Wang (2005). In this scheme, 
an identity-based broadcast encryption is used to distribute a key over a network, so that 
each member can compute a specified key. Then a conventional private key cryptosystem 
such as data encryption standard (DES) can be used to encrypt subsequent messages.  
 Their scheme consists of a center and a set of users U = {IDi | i = {1,…,n}), 
where IDi is a unique identifier of user i. Each user has a public/private key pair 
(Qi,Si). The broadcast encryption is as the following. 
 

2.5.1  Algorithms  
2.5.1.1 Setup 

 A private key generator chooses a random number s  Zq
* and set   

Ppub = sP. Then the private key generator publishes system parameters params = {G1, 
G2, q, P, Ppub, H1, H2}, and keep s as a master key. 
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2.5.1.2  Private Key Extraction 

 A user submits his identity information ID to private key generator. 

Then private key generator computes the user’s public key as QID = H1(ID), and 

returns his private key   SID = sQID.  

 2.5.1.3  Encryption 

 The center computes                   and a (n-1  n) matrix which is 

defined as the following. 

  
 The center also form n-1 auxiliary keys 

 QVi = (Q1,Q2,…,Qn)  ai where 2  i  n which means that  

 QV2= Q1 + Q2 

 QV3= Q1 + Q3 

 QVn= Q1 + Qn. 

 The cryptogram is then formed by computing,for some random r  Zq
* 

 U1 = rP, Ui = r QVi where 2  i  n 

 V = k  H2(e(Ppub, r QV1)) 

 The center outputs the ciphertext (Ui, 1  i  n, V) and broadcast it to 

the set of users U. 

 2.5.1.4  Decryption 

 The recipient IDi set a vector a1 = (0,…0,1,0,…0) with n elements, and 

only the ith element is 1. Then A is a n  n matrix 

                 
 The recipient IDi can solve the following system of equations 

(x1,x2,…,xn)  A =  ( 1  1  …  1). With (x1,x2,…,xn) they can get 

QV1
 = Σ    Qi 

n 

i=1 
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 To decrypt the ciphertext, the recipient IDi needs to compute       

e(Ppub, r QV1) , which with knowledge of the private key Si it can do via: 

 e(Ppub, r QV1) 

 = e(Ppub, r(x1Qi + x1 QV2 + … + xn QVn)) 

 = e(Ppub, rx1Qi) e(Ppub, r(x2 QV2+ … + xn QVn)) 

 = e(rP, x1sQi) e(Ppub, x2rQV2+ … + xn rQVn) 

 = e(U1, x1Si) e(Ppub, x2U2 + … + xn Un) 

 

 Then the recipient can compute 

 K = V  H2(e(U1, x1Si) e(Ppub, n i=2 xiUi )) 

 

2.5.2  Analysis 

In that paper, the authors also gives analyze of the identity-based broadcast 

encryption scheme both in computation and communication costs. 

2.5.2.1  The computation cost for encryption by the center is as the 

following 

1)  2n-2 additions in the group G1. 

2)  n +1 scalar multiplications in the group G1. 

3)  One pairing computation. 

4)  One hashing computation. 

5)  One XOR operation.  

2.5.2.2  The computation cost for decryption per user is as the 

following 

1)  Solving a set of linear equations with n variables using 

Cramer’s Rule. 

2)  n-1 additions in the group G1. 
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3)  n scalar multiplications in the group G1. 

4)  Two pairing computations. 

5)  One hashing computation. 

6)  One XOR operation.  

The communication cost of this scheme is one broadcast, which includes n   

elements in the group G1 and a message V  {0,1}*. 

This paper proposes an identity-based broadcast encryption scheme for       

distributing a group key. Members can use this group key in symmetric way to            

encrypting or decrypting a message. The scheme itself is an asymmetric key           

distribution. The disadvantage in this scheme is that it needs a trust centralized      

management. When group members are changed, the center must compute a new   

series of member’s public keys. This can be occurred when a new member needs to 

join a group or an existing member has left the group. 

 



 

CHAPTER 3 

 

BROADCAST ENCRYPTION BASED ON BRAID GROUPS 

 

 A proposed broadcast encryption scheme is made up of three phases; setup, 

encryption, and decryption. In the setup phase, when any user needs to join a group, 

he sends a join request message to a director. The director is one of the group 

members and everyone knows published braids denoted as gi of others. Each user can 

compute his own public keys PKi from his private key Ki, the published braid go of 

another node at the same level in a key tree and his published braid gi. The proposed 

scheme uses the key tree, mentioned in Norranut Saguansakdiyotin and Pipat 

Hiranvanichakorn (2012), to construct a public group key. The public group key 

PKGroup can be computed individually from a user private key Ki and other public key 

according to ith position of the user node in the tree. This chapter first mentions the 

notation of key tree and then states the detail of algorithms. In the encryption phase, it 

shows that anyone outside a group can send encrypted message to the group members. 

This chapter also demonstrates the decryption method in the decryption phase. At the 

end of this chapter, it states complexity of the proposed scheme by comparing with 

other schemes in broadcast encryption. 

 

3.1  Key Tree Notation 

 

 A key tree was earliest proposed by Wallner, Harder, and Agee (1997) as a 

tool in centralized group key distribution systems and was adapted by Kim, Perrig, 

and Tsudik (2000) for using in fully distributed, contributory key agreement. Figure 

3.1 shows an example of key tree mentioned in Norranut Saguansakdiyotin and Pipat 

Hiranvanichakorn (2012). It is a binary tree which has only left subtree. The tree 

composes of both intermediate and leaf nodes. The root node is located at level 0 and 

the lowest leaf is at level h. Each node is represented as <l,v> where l and v are 
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denoted as vth node at level l in a tree. As shown in Figure 3.1, a member node Mi 

where i  (1…N) is located only at a leaf of the tree. Each member node is associated 

with a private keys pair (K<l,v>, K-1
<l,v>) and a published braid g<l,v>.  A public key of 

each member node PK<l,v> = K<l,v> g<l,v' > g<l,v> K-1
<l,v> where v' is another node at the 

same level. For an intermediate node, which is not a member node K<l,v> = K<l+1, 2v> 

PK<l+1, 2v+1> K-1
<l+1, 2v> or K<l,v> = K<l+1, 2v+1> PK<l+1, 2v> K-1

<l+1, 2v+1>. A key K<l,v> and a 

public key PK<l,v> of an intermediate node is computed independently from the values 

of key and public key of child nodes to achieve a subgroup key.  

 

 

Figure 3.1  Notation of Key Tree 

 

3.2  Setup 

 

 Assume that users A, B, and C join a group simultaneously. These users can 

be ordered according to some criteria such as MAC address or IP address. The first 

member of a group is the director and is located at the left highest level node in a key 

tree. Each user has his private key Ki, which is a braid in the different braid groups of 

each other. In order to setup a group each user needs to compute their own public 

keys PKi. The public key of user ith is Ki gogi Ki 
-1 where go is a published braid of 
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another node at the same level in a key tree and gi is his own published braid. The 

published braid gi must be in the same braid group of Ki. The following shows an 

example of how to compute a public group key in setup phase; 

 

 User A:  KA = a where a  Ba    (A’s private key) 

   g
A
  Ba     (A’s published braid) 

            PKA = ag
B
g

A
a-1  (A’s public key) 

 User B:  KB = b where b  Bb    (B’s private key) 

    g
B
  Bb             (B’s published braid) 

    PKB = bg
A
g

B
b-1  (B’s public key) 

 User C:  KC = c where c  Bc    (C’s private key) 

   g
C
  Bc              (C’s published braid) 

   PKC = cg
A
g

B
g

C
c-1  (C’s public key) 

 

 Assume that the order of a group member is users A, B, and C respectively, so 

user A is the director of the group. At this time a key tree is formed as shown in 

Figure 3.2. The director can compute key tree consisting of member public keys PKi 

and public group keys PKGroup. In a key tree, a member node has public key and 

published braid, but an intermediate node has only public subgroup key. In this case, 

the key tree consisting of the values of PKA, PKB, PKAB, PKC, and PKABC as well as 

published braids of the members. The director, user A, must broadcast this key tree to 

all members. 

 When every member in the group receives the key tree, they can use this key 

tree information in the future in order to compute a new public group key PKGroup if 

they are selected to be a director. This is because every member can also compute a 

group key KGroup by using information in a key tree. From the previous scenario, user 

B and C can also compute the group key KABC as the following; 

For user B’s point of view; 

  KABC    = KAB PKC (KAB) -1  where   

  KAB      = b PKA b -1  
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  For user C’s point of view; 

  KABC = c PKAB c -1  

 

 

 

Figure 3.2  Group Key at Setup Phase Computed by User A 

  

 Next is an example of how to define values of braids for each user. In this 

scenario, there are four users; A, B, C, and D, so the braid group B20 can be used. 

Each user’s private key must be on different braid groups, so the braid indexing 1 to 5 

can be defined for user A, braid index 6 to 10 for user B, and so on. The published 

braid gi must be in the same braid group with Ki. The following gives an example of 

how to compute key tree. 

 Published braids: 

gA: σ2σ2 gB: σ9σ6 gC: σ11σ14 

 

 For user A: 

 A’s private key: σ1σ4σ3 

 A’s public key: (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1 
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 For user B: 

 B’s private key: σ8σ7σ9 

 B’s public key: (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1 

 

 For user C: 

 C’s private key: σ11σ12σ13 

 C’s public key: (σ11σ12σ13) σ2σ2σ9σ6σ11σ14 (σ11σ12σ13)
-1 

 

 The director, user A, can compute key tree as the following; 

 KAB = a PKB a
-1 

        = (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1                (1) 

 

 PKAB = KAB gAgBgC KAB
-1 

           = (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ2σ2σ9σ6σ11σ14 (σ1σ4σ3) 

(σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 

 

 The value of KAB can also be computed by user B as the following; 

 KAB = b PKA b-1 

        = (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1 (σ8σ7σ9)

-1               (2) 

 We can see that (1) = (2) 

  

 KABC = KAB PKC KAB -1 

          = (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13) σ2σ2σ9σ6σ11 

σ14 (σ11σ12σ13)
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1(σ8σ7σ9)

-1(σ1σ4σ3)
-1               (3) 

  

 PKABC = KABC gAgBgC KABC
-1 

  = (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13) σ2σ2σ9σ6σ11 

σ14 (σ11σ12σ13)
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1 (σ8σ7σ9)

-1(σ1σ4σ3)
-1 σ2σ2σ9σ6σ11σ14 

(σ1σ4σ3)(σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13) σ14
-1σ11

-1σ6
-1σ9

-1σ2
-1σ2

-1 

(σ11σ12σ13)
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1 (σ8σ7σ9)

-1(σ1σ4σ3)
-1 

 The value of KABC can be computed by user B and C as the following; 
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 For user B: 

 KABC = KAB PKC KAB -1 

          = (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1

 (σ8σ7σ9)
-1(σ11σ12σ13) σ2σ2σ9σ6 

σ11σ14 (σ11σ12σ13)
-1 (σ8σ7σ9) (σ1σ4σ3) σ2

-1σ2
-1σ6

-1σ9
-1 (σ1σ4σ3)

-1(σ8σ7σ9)
-1             (4) 

 

 For user C: 

 KABC = c PKAB c-1 

       = (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ2σ2σ9σ6σ11σ14 

(σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 (σ11σ12σ13)
-1              (5) 

 We can see that (3) = (4) = (5) 

 

 In the proposed scheme, each user needs to send his or her join request 

message to the group. These users know the order among them in a tree, so they can 

compute their public keys and send them to a director. Then the director computes a 

public group key and broadcasts it to all members, thus the total communication 

messages in key agreement and public group key generation are n+1 multicast and n 

unicast messages. The n multicast messages are from sending join request, and one 

multicast message is from sending updated key tree. The n unicast messages are from 

sending user’s public keys. The total computation costs are n + (n-1) serial numbers 

of braid group multiplication. The n serial numbers of braid group multiplication are 

for the public key computation of the n members, and the n-1 serial numbers of braid 

group multiplication are for the public group key computation by director. 

 

3.3  Encryption 

 

 In this phase, a user outside the group can send a ciphertext to the group 

members by encrypting it with the sender private key and the group public key.  The 

receivers, which are the group members, can decrypt it using their own private keys 

and the sender’s public key.  
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 The following example occurs when user D, which is not the group member 

referred from the previous subsection, sends a ciphertext to the group members. In 

order to encrypt the message mD, user D computes the ciphertext m by encrypting it 

with user D’s private key and the group public key, then he sends m  together with 

his public key PKD to the group members as the following; 

 PKD = d gAgBgC d -1 

 m = mD  H (R d PKABC d -1) and sends m , a random braid R and PKD to 

members of the group. The random braid R can be changed in every message that 

sent. 

 

3.4  Decryption 

 

 Each member of the group can decrypt the ciphertext with the group key. For 

short, this section gives an example of user A that is the group member wants to 

decrypt the message as the following; 

 

 mD = m   H (R KABC PKD
  (KABC)-1

 )   

 mD = m   H (R ((a PKB a -1)PKC (a PKB a -1) -1) PKD
 ((a PKB a -1) PKC  

  (aPKB a -1 ) -1 )-1
 ) 

 

 From the above example, user A can use his private key a in the term KABC 

and (KABC)-1
 as in the user A’s view as mentioned in the previous subsection. 

 

3.5  Correctness 

 

 This section shows the correctness of the proposed algorithms as the 

following;  

 

 Theorem: ab = ba where a  Bg1
, and b  Bg2  

 mD = m   H (R KABC PKD
  (KABC)-1

 )  
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      = m   H (R KABC d gAgBgC  d -1 (KABC)-1)  

       = m   H (R d KABC gAgBgC
 (KABC)-1

 d
-1)  

         = m   H (R d PKABC  d
 -1) 

  As examples shown above, any user which is not the group member cannot 

decrypt the ciphertext because he does not know the value of KABC. 

 

3.6  Key Secrecy 

 

 The key secrecy is the concept related to the membership changes. Typically 

there are two types of the key secrecy; backward and forward secrecy. The backward 

secrecy prevents a new member joining the group to know the previous ciphertext of 

the group. A new group key distributing to the group members when a new member 

joins the group cannot be used to decrypt the previous ciphertext. The forward secrecy 

is used to prevent a left member to use the previous key to decrypt a ciphertext. The 

proposed scheme fulfils the concept of both backward secrecy and forward secrecy. It 

is shown by using two protocols; join and leave protocols. The join protocol is 

operated when a new member needs to join a group, on the other hand the leave 

protocol is operated when a member needs to leave the group. 

 

3.7   Join Protocol 

 

 In the proposed scheme, when a new member needs to join a group, he will 

send a request to join a group message containing his published braid to a director. 

The director can be anyone in the existing group members. After the director receives 

the join request message, he sends a sequence of published braids of all members to 

the new member. Then the new member computes his public key and sends it back to 

the director. The director can generate a new key tree including the new member’s 

public key and new public group key in the tree and then broadcasts this new key tree 

to all members. The insertion point of a new member in a key tree is at a new root 

node. From section 3.2, the setup phase, an example is continued with the scenario 

when user D needs to join the group as shown in Figure 3.3. User C as a director 
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sends a sequence of published braids of all existing members gAgBgC to a new 

member. User D can compute his public key and then send it back to the director. The 

director can compute a new group key KABCD = KABC PKD KABC
 -1and a new public 

group key PKABCD. The new member can also compute the new public group key after 

getting an updated key tree but he cannot compute the previous group key KABC or KAB 

because he does not know each user’s private key. Thus the proposed scheme 

complies with the concept of backward secrecy. 

 Next is an example of join protocol that continued from the setup phase as the 

following.  

 For user D: 

 D’s private key: σ19σ17 

  D’s published braids: σ18σ16 

 D’s public key: (σ19σ17) σ2σ2σ9σ6σ11σ14σ18σ16 (σ19σ17)
-1 

  

 

 

Figure 3.3  Key Tree After User D Joins the Group 
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The director, user C, can compute key tree as the following; 

 KABCD = KABC PKD KABC -1 

 = (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ2σ2σ9σ6σ11σ14 

(σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 (σ11σ12σ13)
-1 (σ19σ17) σ2σ2σ9σ6σ11 

σ14σ18σ16 (σ19σ17)
-1 (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)

-1(σ1σ4σ3)
-1 σ14

-1 

σ11
-1σ6

-1σ9
-1σ2

-1σ2
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1 (σ8σ7σ9)

-1(σ1σ4σ3)
-1(σ11σ12σ13)

-1

                       (6) 

 PKABCD = KABCD gAgBgCgD KABCD
-1 

            = (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ2σ2σ9σ6 

σ11σ14(σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 (σ11σ12σ13)
-1(σ19σ17) σ2σ2 

σ9σ6σ11σ14σ18σ16 (σ19σ17)
-1 (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)

-1(σ1σ4σ3)
-1  

σ14
-1σ11

-1σ6
-1σ9

-1σ2
-1σ2

-1(σ1σ4σ3)(σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13)
-1  

σ2σ2σ9σ6σ11σ14σ18σ16 (σ11σ12σ13) (σ1σ4σ3)
 (σ8σ7σ9)

 σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 

 σ2σ2σ9σ6σ11σ14 (σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1(σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13)
-1  

(σ19σ17) σ16
-1σ18

-1σ14
-1σ11

-1σ6
-1σ9

-1σ2
-1σ2

-1 (σ19σ17)
-1(σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) 

 σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ14
-1σ11

-1σ6
-1σ9

-1σ2
-1σ2

-1 (σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1  

(σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13)
-1 

 

 The value of KABCD can be computed by user D as the following; 

 KABCD = d PKABC d-1 

        = (σ19σ17) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13)  

σ2σ2σ9σ6σ11σ14 (σ11σ12σ13)
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1 (σ8σ7σ9)

-1(σ1σ4σ3)
-1 

σ2σ2σ9σ6σ11σ14 σ18σ16 (σ1σ4σ3)(σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13) σ14
-1 

σ11
-1σ6

-1σ9
-1σ2

-1σ2
-1(σ11σ12σ13)

-1(σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1
 

(σ19σ17)
-1                      (7) 

 We can see that (6) = (7) 

 

 The total communication messages for join protocol are two multicast and two 

unicast messages. The first multicast message is a join request message from new 

member to a group.  The second multicast message is an updated key tree message 

sending by a director. Two unicast messages are from sending a sequence of 
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published braids of all existing members by a director and sending a new member’s 

public key. The total computation costs are three serial numbers of braid group 

multiplications. One braid multiplication is at new member to compute his public key, 

and two braid multiplications are at director to compute new subgroup key and new 

public group key. 

 The multiple join occurs when any m users want to join a group 

simultaneously. In this case, the joining users can know the order among them, so the 

total communication messages are m+2 multicast and m unicast messages. The m 

multicast messages are from sending join request by m joining users. Two multicast 

messages are from sending a sequence of published braids of all members and 

sending updated key tree by a director.  The m unicast messages are from sending 

each user’s public key. The total computation cost is 2m+1 serial numbers of braid 

group multiplication. 

 

3.8  Leave Protocol 

 

 The leave protocol operates when any user needs to leave the group. A leaving 

member sends a leave request message to a director. For the proposed scheme, the 

director is designed to be a member below the leaving node in a tree in order to 

minimize the computation. In a case that the leaving node is the first member in an 

existing tree, the director can be the second member in the tree. The director has to 

compute a new key tree, and then broadcasts it to all members. The next example is 

continued with the scenario from the join protocol in section 3.7. In this leave 

protocol scenario, it is assumed that user C is going to leave the group. User B is 

going to be a director of the group and responsible to compute a new key tree as 

shown in Figure 3.4. In this case, user B computes a new public key PKAB, a new 

group key KABD = KAB PKD KAB
 -1, and a new public group key PKABD. Then user B 

broadcasts new key tree to all members. The proposed scheme designed to comply 

with the concept of forward secrecy as stated above. For example, the leaving user C 

cannot know the value of the new group key KABD and he cannot use his private key to 

decrypt messages. 
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 Next is an example that continued from the join operation as the following.  

 The director, user B can compute key tree as the following; 

 KABD = KAB PKD KAB
 -1 

        = (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1 (σ8σ7σ9)

-1 (σ19σ17) σ2σ2σ9σ6σ18σ16 

(σ19σ17)
-1(σ8σ7σ9) (σ1σ4σ3) σ2

-1σ2
-1σ6

-1σ9
-1 (σ1σ4σ3)

-1 (σ8σ7σ9)
-1               (8) 

  

 PKABD = KABD gAgBgD KABD
-1 

           = (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1 (σ8σ7σ9)

-1 (σ19σ17) σ2σ2σ9σ6σ18σ16 

(σ19σ17)
-1(σ8σ7σ9) (σ1σ4σ3) σ2

-1σ2
-1σ6

-1σ9
-1 (σ1σ4σ3)

-1 (σ8σ7σ9)
-1 σ2σ2σ9σ6 σ18σ16 (σ8σ7σ9) 

(σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1(σ8σ7σ9)

-1(σ19σ17) σ16
-1σ18

-1σ6
-1σ9

-1σ2
-1σ2

-1(σ19σ17)
-1(σ8σ7σ9) 

(σ1σ4σ3) σ2
-1σ2

-1σ6
-1σ9

-1(σ1σ4σ3)
-1 (σ8σ7σ9)

-1 

 

 The value of KABD can be computed by user D as the following; 

 KABD = d PKAB d-1 

        = (σ19σ17) (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1(σ8σ7σ9)

-1 σ2σ2σ9σ6σ18σ16 

(σ8σ7σ9) (σ1σ4σ3) σ2
-1σ2

-1σ6
-1σ9

-1(σ1σ4σ3)
-1(σ8σ7σ9)

-1(σ19σ17)
-1               (9) 

 We can see that (8) = (9) 

 

 

Figure 3.4  Key Tree After User C Leaves the Group 
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 The total communication messages for leave protocol are ≤ (n-1) + 1 unicast 

and one multicast messages. One unicast message comes from sending leave request 

to the director. In worse case, the remaining members must compute their new public 

keys and send them to a director, so this requires (n-1) unicast messages. The one 

multicast message is for sending updated key tree by the director. In worse case, the 

number of computation costs in this protocol is equal to (n-1) + (n-2) when the 

leaving user is the first one that has joined the group. 

 The multiple leave occurs when any m users want to leave a group 

simultaneously. In this case the total communication messages are m + (n-m) unicast 

in worse case and one multicast messages. The m unicast messages are from m living 

member in sending leave request and (n-m) unicast messages are from the remaining 

member in sending new public keys to a director as in worse case. The only one 

multicast message is for sending updated key tree by a director. The total computation 

cost is (n-m) + (n-m-1) serial numbers of braid group multiplication. 

 

3.9  Collude Attack 

 

 A collude attack can be occurred when two or more users work together and 

they can forge a valid private key which it will be given to anyone. The proposed 

scheme can resist a collude attack like this. The first reason is that in the proposed 

scheme a private key of user comes from user itself, so it is not distributed from 

private key generator. Users can produce their own private keys and then publish 

public keys to others. The second is that public and private keys of user are related 

together e.g. PKA = (KA)gOgA(KA)-1. If someone forges a private key of anyone, so his 

private and public keys are not related then he can know it. 

 

3.10  Complexity 

 

 This section gives the comparison on the proposed broadcast group-oriented 

encryption scheme with the scheme proposed by Ma et al., Wu et al. and Zhao et al. in 

both communication and computation costs.  
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 3.10.1  Communication Cost 

 The communication cost is shown in Table 3.1. The communication costs are 

analyzed by comparing both unicast and multicast messages for every member in the 

system. For join and leave operations, the assumptions that there are n existing 

members in a group and m members need to join or leave the group are used. For Ma 

et al., they do not state how to publish the public group key and send private key to 

each member, so it supposes to used unicast message and is written down with 

remark. Another notation in this table is that the join and leave operations were not 

proposed in Ma et al. and Wu et al. scheme. For Zhao et al. (2011) the process for 

generating a multi-signature is omitted because the comparison in the same condition 

with the others is needed. 

 

3.10.2  Computation Cost 

 The computation cost is shown in Table 3.2. The values in the table are 

measured in Big-O notation. The proposed scheme has only multiplication in braid 

groups while the others have both multiplication in G or Gτ (where Gτ comes from    

e: G × G  G), and also exponentiation. 
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Table 3.1  Communication Cost of Broadcast Encryption Schemes 

 

Scheme Operation Message 
Unicast 
Message 

Multicast 
Message 

Ma, Wu, Li 

KeyAgree and PKgen n * n * - 

Join - - - 

Leave - - - 

Wu, Mu, Susilo, 
Qin, Domingo-

Ferrer 

KeyAgree and PKgen n - n 

Join - - - 

Leave - - - 

Zhao, Zhang, Tian 

KeyAgree and PKgen 2n - 2n 

Join 2m+4 - 2(m+2) 

Leave 2m - 2m 

Proposed Scheme 

KeyAgree and PKgen 2n+1 n n+1 

Join 2m+2 m m+2 

Leave n+1 n 1 

 

Note:  * Does not Mention Clearly 
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Table 3.2  Computation Cost of Broadcast Encryption Schemes 

 

Scheme Operation Computation 

Ma, Wu, Li 

KeyAgree and PKgen O(n)E 

Join - 

Leave - 

Wu, Mu, Susilo, 
Qin, Domingo-

Ferrer 

KeyAgree and PKgen O(n)M + O(n)Mτ +O(n2)E + O(n)Eτ 

Join - 

Leave - 

Zhao, Zhang, Tian 

KeyAgree and PKgen O(n)E 

Join O(n+m)E 

Leave O(n+m)E 

Proposed Scheme 

KeyAgree and PKgen O(n)Mul 

Join O(m)Mul 

Leave O(n-m)Mul 

 

Note:   n: the total number of members in the protocol, 

m: the number of members who want to join/leave the group, 

G: element in G, Gτ: element in Gτ ,  

M: multiplication (or division) in G, 

E: exponentiation in G, 

Mτ: multiplication (or division) in Gτ,  

Mul: multiplication in braid groups. 



 

CHAPTER 4 

 

IDENTITY BASED BROADCAST ENCRYPTION  

BASED ON BRAID GROUPS 

 

 This chapter shows the way to apply the concept of the identity based 

encryption scheme to the proposed scheme in broadcast encryption based on braid 

groups mentioned in chapter 3 and it is called an identity based broadcast encryption 

scheme. First of all, an idea of how to apply the concept of braid groups to the identity 

based encryption is expressed. The reason in applying braid groups to the identity 

based encryption is to reduce the exponential cost in bilinear pairing operation. This 

chapter also gives an example in applying braid group to the identity based 

encryption, then gives an example of identity based broadcast encryption scheme 

based on braid groups. The proposed scheme is designed to support for a dynamic 

group, which new users can join the group or existing members can leave the group. 

The final section shows the comparison result with another scheme on an identity 

based broadcast encryption. The proposed scheme needs a private key generator only 

in private key extraction operation in the beginning, but for group operations such as 

in setup, join and leave phases it does not require the private key generator. 

 

4.1  Identity Based Encryption Based on Braid Groups 

 

 The braid groups concept can be applied to the identity based encryption 

scheme, but some hard problems such as conjugacy search problem in braid groups 

makes it to be nontrivial problem. This section gives an example that Alice, Bob and 

Charlie need to send ciphertext to each other using the identity based encryption 

based on braid groups. The identity based encryption based on braid group also has 

four steps; setup, private key extraction, encryption and decryption as stated in the 

following. 
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 4.1.1  Setup 

 In the proposed scheme on the identity based encryption based on braid 

groups, each user needs to send their identities to a private key generator. The private 

key generator encodes their identities into braids, and then divides each braid of each 

user into two braids. For example an identity of a user ith can be encoded into a braid 

gi, then this braid is divided into left and right braids; gil , gir. The private key 

generator then prepares private braid groups; g, z1, z2, z3, and z4. Each user has two 

private keys; SK1i and SK2i where SK1i is equal z1 gil 
z2 and SK2i is equal z4 gir

 z3. The 

braid groups g, g1,…, gn have to be on different braid groups. The braid z1, z2, z3 and z4 

must have the index expanded on all braid groups; g1 to gn. Because braids g1,…, gn, 

z1, z2, z3 and z4 are also in the same group, the conjugacy search problem can be 

applied. The private key generator also computes public braids; Z1= z2
-1g, and           

Z2 = gz4
-1 and publishes them for using in an encryption and decryption phases. These 

two values, Z1 and Z2 are secure because braid z2, z4, and g are secret braids. 

 

 4.1.2  Encoding Method 

 An identity can be written as an IP address which is 32 bits long. A number in 

each octet ranges from 0 to 255. These 256 numbers must be mapped into braid words 

for each octet.  

 Normally a braid a  Bn can be written in at most (n-1)1 + … + (n-1)n-1 

positive braids as shown in the following; 

 1-word long; (n-1)1 words, for example; {1, 2, 3, 4} 

 2-word long; < (n-1)2 words, for example; {11, 12, 13, 14, 21, 22, 

23, 24, 32, 33, 34, 43, 44} 

 3-word long; < (n-1)3 words, for example; {111, 112, 113, …, 444} 

 4-word long; < (n-1)4 words, for example; {1111, 1112, 1113, …, 

4444} 

 But using the above method, care must be concerned in that two braid words 

can produce the same value such as 121 = 212 or 13 = 31. 

 For ease of implementation, my suggestion is that each octet in an IP address 

can be mapped by using B5 which has 8-word long as shown in Table 4.1. 
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 For example IP address in the following can be mapped into braid words; 

IP address 10.5.32.255 mapped into 44441414. 44444141. 

44144444. 11111111.  

Thus gil = 44441414 44444141 and gir
 = 44144444 

11111111. 

In the Table 4.1, a braid word representing each octet contains only 1 and 4 

in it. In case of the proposed scheme, the private key gi of each user is in the different 

braid groups, so it must be mapped into the different braid groups. 

 

Table 4.1  Mapping of an Octet in IPv4 into a Braid Word 

 

Number in Each Octet in Binary Braid Words 

0000 0000 4444 4444 

0000 0001 4444 4441 

0000 0010 4444 4414 

0000 0011 4444 4411 

1111 1111 1111 1111 

 

 4.1.3  Private Key Extraction 

 Each user obtains the private keys; SK1i and SK2i from a private key 

generator. Figure 4.1 shows the value of braids in the setup and private key extraction 

phases. The detail of the values prepared by the private key generator for Alice, Bob, 

and Charlie is shown in the following. 

 For Alice: 

1) The private key generator encodes Alice’s identity IDA into a braid 

in group g1, then divides this braid into left and right braids; g1l
 and g1r
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2) The private key generator prepares private keys SK1A and SK2A for 

Alice where SK1A = z1 g1l
 z2 and SK2A = z4 g1r

z3     

 For Bob: 

1) The private key generator encodes Bob’s identity IDB into a braid 

in group g2, then divides this braid into left and right braids; g2l
 and g2r

     

2) The private key generator prepares private keys SK1B and SK2B for 

Bob where SK1B = z1 g2l
 z2 and SK2B = z4 g2r

z3 

     For Charlie: 

1) The private key generator encodes Charlie’s identity IDC into a 

braid in group g3, then divides this braid into left and right braids; g3l
 and g3r

    

2) The private key generator prepares private keys SK1C and SK2C for 

Bob where SK1C = z1 g3l
 z2 and SK2C = z4 g3r

 z3 

For the private key generator: 

1) The private braid groups; g, z1, z2, z3, and z4     

2) The public braid groups; g1, g2, g3, …, gn are for users 1st to nth 

where g, g1, g2, g3, …, gn must be on different braid groups. 

3) The private key generator prepares public braids; Z1 = z2
-1g, and         

Z2 = gz4
-1 

 

4.1.4  Encryption 

 This subsection gives an example that Alice needs to send a message M to 

Bob. She can encrypt it with her private key; SK1A, SK2A and an identity of Bob, IDB 

as the following. The value of Z1 and Z2 are given from the setup phase. 

 

 M = M  H{ SK1A Z1(g2)
 Z2 SK2A

 } 

 

4.1.5  Decryption 

 Bob can decrypt the message sent from Alice by using his private key; SK1B, 

SK2B and an identity of Alice, IDA as the following. 

 

 M = M  H{ SK1B Z1 (g1)
 Z2SK2B } 
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Figure 4.1  Setup and Private Key Extraction Phases for an Identity Based Encryption  

                   Based on Braid Groups 

 

 4.1.6  Correctness 

 This subsection shows the correctness of encryption and decryption processes 

as in the following. The property of commutation braids in different braid groups is 

used for example braid a and b commutes with each other, thus ab = ba. This 

property of the braid groups is true, when a and b are on different braid groups. 

 

 Theorem: ab = ba where a  Bg1
, and b  Bg2 

 

Thus:  M = M  H{ SK1B Z1 (g1)
 Z2 SK2B}

 

  = M H{(z1g2l
 z2)( z2

-1g) (g1) (gz4
-1)( z4g2r

z3)} 

  = M  H{(z1g2l
 z2)( z2

-1g) (g1l
 g1r

) (gz4
-1)( z4g2r

z3)} 

  = M  H{(z1g2l
)( g) (g1l

 g1r
)(g)(g2r

z3)} 

  = M  H{(z1g1l
)(g) (g2l

g2r
) (g)(g1r

z3)} 

  = M  H{(z1g1l
z2)( z2

-1g) (g2l
g2r

) (gz4
-1)( z4g1r

z3) } 

  = M  H{ SK1A Z1 (g2)
 Z2 SK2A} 

  = M 
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 We can see that the ciphertext, sent by Alice to Bob, cannot decrypt it by 

Charlie or anybody because they do not know a value of SK1B and SK2B. 

 

 4.1.7  Example 

 This subsection shows an example of the identity based encryption based on 

braid groups. This example is tested by braiding program implemented by Cha, Ko, 

Lee, Han, and Cheon (2001).   

 Given: 

    g  123  

z1  71217,  z2  61119  

z3  91518,   z4  81318  

For Alice:  g1  9786 so g1l  97 and g1r  86    

For Bob:  g2  11141412 so g2l   1114 and g2r  1412    

For Charlie:  g3  18191617 so g3l  1819 and g3r  1617    

 

A key that Alice encrypts a message M to Bob is SK1A Z1(g2)
 Z2 SK2A

 as 

shown in Figure 4.2 in the left normal form. 

 

In this case: 

SK1A = z1 g1l
 z2 = (71217)(97)(61119) 

Z1 = z2
-1g = (61119)

-1(123) 

g2 = (11141412) 

Z2 = gz4
-1= (123)(81318)

-1 

SK2A = z4 g1r
z3 = (81318)(86)(91518)    

 



52 

 

 

Figure 4.2  Encryption Key Computed by Braiding Program 

 

 

 

Figure 4.3  Decryption Key Computed by Braiding Program 

 

A key that Bob decrypts a ciphertext M  is SK1B Z1 (g1)
 Z2SK2B as shown in 

Figure 4.3 in the left normal form. 

In this case: 

SK1B = z1 g2l
 z2 = (71217)(1114)(61119) 

Z1 = z2
-1g = (61119)

-1(123) 

g1 = (9786) 
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Z2 = gz4
-1= (123)(81318)

-1 

SK2A = z4 g2r
z3 = (81318)(1412)(91518)    

We can see that SK1A Z1(g2)
 Z2 SK2A = SK1B Z1 (g1)

 Z2SK2B. 

 

 4.1.8  Complexity 

 This section expresses complexity in both communication and computation 

costs and compares them with the identity-based encryption scheme used bilinear 

pairing as in the following. 

4.1.8.1  Communication Cost 

For communication cost, the proposed scheme has the same cost as an 

identity-based encryption (IBE) scheme using bilinear pairing. Both schemes use two 

unicast messages in setup and private key extraction phases; one is for sending an 

identity from a user to a private key generator and another is for the private key 

generator to send a private key to user.  Only one unicast message is in the encryption 

phase for both schemes. Table 4.2 is a summarization of these costs. 

 

Table 4.2  Communication Cost of Identity Based Encryption Schemes 

 

Scheme Operation Unicast Message 

IBE 

Bilinear pairing 

Setup and Private Key 
Extraction 2 

Encryption 1 

Decryption - 

IBE 

Braid groups 

Setup and Private Key 
Extraction 2 

Encryption 1 

Decryption - 
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Table 4.3 Computation Cost of Identity Based Encryption Schemes 

 

Scheme Operation Computation 

IBE 

Bilinear pairing 

Setup 1M 

Private Key Extraction 1H + 1M 

Encryption 1M + 1P + 1H + 1XOR 

Decryption 1P + 1H + 1XOR 

IBE 

Braid groups 

Setup 2Mul 

Private Key Extraction 1Enc + 2Mul 

Encryption 1H + 1Mul + 1XOR 

Decryption 1H + 1Mul + 1XOR 

 

Note:   M: scalar multiplication (point multiplication) in G, H: hashing operation,  

P: pairing operation, XOR: XOR operation, Mul: serial multiplication in braid 

groups, Enc: encoding operation {ID}braid. 

4.1.8.2  Computation Cost 

For the identity-based encryption scheme using bilinear pairing, there 

are some operations involved such as scalar multiplication or point multiplication in 

G, pairing operation, hashing operation and XOR operation, but the pairing operation 

is the most dominating an execution time. For IBE using bilinear pairing, one point 

multiplication is from generating the private key generator’s public key at setup 

phase. One hashing operation and one point multiplication are from generating a 

user’s private key at the private key extraction phase. In the encryption phase, one 

point multiplication, one pairing operation, one hashing operation and one XOR 

operation are used. In the decryption phase, one pairing operation, one hashing 

operation and one XOR operation are used. For the identity-based encryption scheme 

using braid groups, there are two serial numbers of braid group multiplication in setup 

phase for generating public braids Z1 and Z2. One encoding operation is for converting 

string of an identity into two braids, and two serial numbers of braid multiplication for 

generating two private keys of a user at the private key extraction phase. In the both 

encryption and decryption phases, one serial number of braid multiplication, one 
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hashing operation and one XOR operation are used. Table 4.3 is a summarization of 

these costs. 

 

4.2  Identity Based Broadcast Encryption Based on Braid Groups 

 

  A concept of an identity based broadcast encryption comes from applying the 

concept of an identity based encryption based on braid groups scheme from the 

previous section to the broadcast encryption scheme, mentioned in the previous 

chapter. The previous section gives the example that Alice encrypts message to Bob 

using the identity based encryption scheme. For the identity based broadcast 

encryption scheme, we can change Bob to be any group and do the same procedures 

as an individual person. The group also can do the same thing as in the broadcast 

encryption scheme in that the group can form a group public key used by others to 

encrypt messages for that group. This group public key can be group identity 

containing each user identities. Anyone needing to send encrypted message to group 

members, can encrypt that message using a group identity, so group members can 

decrypt it using their own private key. By comparing the proposed scheme on 

broadcast encryption with this proposed scheme on the identity based broadcast 

encryption, we are going to see that the later scheme does not required to setup a key 

tree to manage a group public key. This can reduce the cost in group key 

management. This section gives an example that Eve wants to send a ciphertext to a 

group which has Alice, Bob and Charlie as group members. This section demonstrates 

how to build a group by using identity based encryption scheme. Demonstration is 

divided into three phases; setup, encryption, and decryption. 

 

 4.2.1  Setup 

 The setup phase continues with an example that a group has three members; 

Alice, Bob, and Charlie. This subsection shows how to build a group using the 

identity based cryptography. An operation starts from each member must contact to a 

private key generator to obtain their private keys. Each member identity is contained 

in the group identity. For ease of explanation, the following example gives a group 

public key as PKGroup = (g1)(g2)(g3) as shown in Figure 4.4.  



56 

 

 

 

Figure 4.4  Setup and Private Key Extraction Phases for an Identity Based Broadcast  

                   Encryption Based on Braid Groups 

 

 For this example, Eve can encrypt a message to group by using the group 

public key and every group member can decrypt it using his/her own private key. The 

total communication messages in key agreement and public group key generation are 

2n unicast messages where n is a number of users in the system. This comes from 

each user uses two unicast messages; one for a user to send identity information to a 

private key generator and another for private key generator to send back private keys. 

The value of the PKGroup needs to be known to all members in some ways depending 

on a situation; for example it can be sent together with a ciphertext to all members in 

case that a center needs to encrypt a secret shared key to the group members, or it can 

be delivered to all members during a process for creating a group. The computation 

cost is 2n + 3 serial numbers of braid group multiplication because three serial 

numbers of braid group multiplication are for creating public braids Z1, Z2 and 

PKGroup. The 2n comes from each user needs two private keys.  This phase also needs 

n encoding operations for converting string of identity information into braid.  
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 4.2.2  Encryption 

 This section gives an example that Eve wants to encrypt message to a group 

and the detail of this procedure is shown in the following.  

 For Eve: 

1) The private key generator encodes Eve’s identity IDE into a braid 

in group g5, then divides this braid into left and right braids; g5l
 and g5r

         

2) The private key generator prepares private keys SK1E and SK2E for 

Eve where SK1E = z1g5l
z2 and SK2E = z4g5r

z3     

 For Group: 

1) The group public key PKGroup = g1g2g3 

 When Eve sends a message M to the group, she can encrypt it with her private 

key; SK1E, SK2E and an group identity, IDGroup (or PKGroup ) as the following. The 

value of Z1 and Z2 are given from the setup phase. 

 

 M  = M  H{ SK1E Z1(PKGroup )
 Z2 SK2E

 } 

 

  4.2.3  Decryption 

 Group member can decrypt the message sent from Eve by using his/her private 

key as the following. 

 For Alice: 

 M = M   H{SK1A Z1(g2) (g3)( g5) Z2 SK2A } 

 

 For Bob: 

 M = M   H{SK1B Z1(g1) (g3)( g5) Z2 SK2B } 

 

 For Charlie: 

 M = M   H{SK1C Z1(g1) (g2)( g5) Z2 SK2C } 

 

 4.2.4  Correctness 

 This section shows the correctness of encryption and decryption processes as 

in the following. The property of commutation braids in different braid groups is used 
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for example braid a and b commutes with each other, thus ab = ba. This property of 

the braid groups is true, when a and b are on different braid groups. 

 Theorem: ab = ba where a  Bg1
, and b  Bg2

 

 

 Thus for Alice: 

 M = M  H{SK1A Z1(g2)(g3)( g5) Z2 SK2A} 

 = M   H{ (z1g1l
z2)( z2

-1g)(g2)(g3)( g5) (gz4
-1)( z4g1r

z3) } 

 = M   H{ (z1g1l
z2)( z2

-1g)(g2)(g3)( g5l
 g5r

) (gz4
-1)( z4g1r

z3) } 

 = M   H{ (z1g1l
)(g)(g2)(g3)( g5l

 g5r
)(g)(g1r

z3) } 

 = M   H{ (z1g5l
)(g)(g2)(g3)( g1l

 g1r
)(g)(g5r

z3) } 

 = M   H{ (z1g5l
)(g)(g2)(g3)(g1)(g)(g5r

z3) } 

 = M   H{ (z1g5l
z2)( z2

-1g)(g1)(g2)(g3)(gz4
-1)(z4g5r

z3) } 

 = M 

 

 Thus for Bob: 

 M = M  H{SK1B Z1(g1)(g3)( g5) Z2 SK2B} 

 = M   H{ (z1g2l
z2)( z2

-1g)(g1)(g3)(g5) (gz4
-1)( z4g2r

z3) } 

 = M   H{ (z1g2l
z2)( z2

-1g)(g1)(g3)( g5l
 g5r

) (gz4
-1)( z4g2r

z3) } 

 = M   H{ (z1g2l
)(g)(g1)(g3)( g5l

 g5r
)(g)(g2r

z3) } 

 = M   H{ (z1g5l
)(g)(g1)(g3)( g2l

 g2r
)(g)(g5r

z3) } 

 = M   H{ (z1g5l
)(g)(g1)(g2)(g3)(g)(g5r

z3) } 

 = M   H{ (z1g5l
z2)( z2

-1g)(g1)(g2)(g3)(gz4
-1)(z4g5r

z3) } 

 = M 

 

 Thus for Charlie: 

 M = M  H{SK1C Z1(g1)(g2)( g5) Z2 SK2C} 

 = M   H{ (z1g3l
z2)( z2

-1g)(g1)(g2)( g5) (gz4
-1)( z4g3r

z3) } 

 = M   H{ (z1g3l
z2)( z2

-1g)(g1)(g2)( g5l
 g5r

) (gz4
-1)( z4g3r

z3) } 

 = M   H{ (z1g3l
)(g)(g1)(g2)( g5l

 g5r
)(g)(g3r

z3) } 
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 = M   H{ (z1g5l
)(g)(g1)(g2)( g3l

 g3r
)(g)(g5r

z3) } 

 = M   H{ (z1g5l
)(g)(g1)(g2)(g3)(g)(g5r

z3) } 

 = M   H{ (z1g5l
z2)( z2

-1g)(g1)(g2)(g3)(gz4
-1)(z4g5r

z3) } 

 = M 

 We can see that the ciphertext, sent by Eve to the group, cannot decrypt it by 

others outside the group because they do not know any member private keys.  

 

4.2.5  Example 

 This subsection shows an example of the identity based broadcast encryption 

based on braid groups. This example is tested by braiding program implemented by 

Cha, Ko, Lee, Han, and Cheon (2001).   

 Given g  123  

z1  71217,  z2  61119  

z3  91518,  z4  81318  

For Alice:  g1  9786 

For Bob:  g2  11141412 

For Charlie:  g3  18191617 

For Eve:  g5  22212324 

For Group: PKGroup  g1g2g3 

 

The key that Eve encrypts a message M to group is SK1E Z1(PKGroup)
 Z2 SK2E

  

as shown in Figure 4.5 in the left normal form. 

 

In this case: 

SK1E = z1 g5l
 z2 = (71217)(2221)(61119) 

Z1 = z2
-1g = (61119)

-1(123) 

PKGroup  g1g2g3 = (9786)(11141412)(18191617) 

Z2 = gz4
-1= (123)(81318)

-1 

SK2E = z4 g5r
z3 = (81318)(2324)(91518)    
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Figure 4.5  Eve’s Encryption Key Computed by Braiding Program 

 

The key that Alice decrypts a ciphertext M  is SK1AZ1(g2)(g3)(g5)Z2SK2A as 

shown in Figure 4.6, and the key that Bob decrypt a ciphertext M  is SK1B Z1(g1)(g3) 

(g5)Z2 SK2B as shown in Figure 4.7. Both are in the left normal form.  

In Alice case: 

SK1A = z1 g1l
 z2 = (71217)(97)(61119) 

Z1 = z2
-1g = (61119)

-1(123) 

g2g3g5 = (11141412)(18191617)(22212324) 

Z2 = gz4
-1= (123)(81318)

-1 

SK2A = z4 g1r
z3 = (81318)(86)(91518)    

 

In Bob case: 

SK1B = z1 g2l
 z2 = (71217)(1114)(61119) 

Z1 = z2
-1g = (61119)

-1(123) 

g1g3g5 = (9786)(18191617)(22212324) 

Z2 = gz4
-1= (123)(81318)

-1 

SK2B = z4 g2r
z3 = (81318)(1412)(91518)    
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We can see that SK1E Z1(PKGroup)
 Z2 SK2E

  = SK1AZ1(g2)(g3)(g5)Z2SK2A  

              = SK1B Z1(g1)(g3) (g5)Z2 SK2B 

 

 

 

Figure 4.6  Alice’s Decryption Key Computed by Braiding Program 

 

 

 

Figure 4.7  Bob’s Decryption Key Computed by Braiding Program 
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4.3  Key Secrecy 

 

 For backward secrecy, a new member joining the group cannot use his private 

key to decrypt the previous ciphertext for that group. This is true because the previous 

public group key does not contain the new member’s identity. Only a way he can 

decrypt the ciphertext is to know one of the previous group member’s private key. For 

the forward secrecy, when one group member leaves a group, a group public key is 

changed, so a leaving member cannot use his private key to decrypt a ciphertext. The 

proposed scheme fulfils the concept of both backward secrecy and forward secrecy. 

This can be shown by using two protocols; join and leave protocols. The join protocol 

is operated when a new member needs to join a group, on the other hand the leave 

protocol is operated when a member needs to leave the group. 

 

4.4   Join Protocol 

 

 In the proposed scheme, we assume that each new member have already 

contacted a private key generator in order to get his private key. When the new 

member needs to join a group, he can send a request to join message to the group. 

This message contains the new member’s public key. Every member can compute a 

new group public key. From subsection 4.2.1, the setup phase, this example continues 

with the scenario when user named “Delta” needs to join the group as shown in the 

following.  

 

 For Delta: 

1) The private key generator encodes Delta’s identity IDD into a braid 

in group g4, then divides this braid into left and right braids; g4l
 and g4r

         

2) The private key generator prepares private keys SK1D and SK2D for 

Delta where SK1D = z1g4l
z2 and SK2D = z4g4r

z3     

 

 For Group: 

The group public key PKABCD = (g1) (g2) (g3) (g4) 
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 The total communication messages for join protocol are two unicast messages 

and one multicast message; these two unicast messages for obtaining a private key 

from private key generator, and one multicast message for sending a join request. The 

total computation cost are three serial numbers of braid group multiplication (one for 

generate new public group key and two for generate private keys for new member), 

and one encoding operation to convert identity into braid. 

The multiple join occurs when any m users want to join a group simultaneously. In 

this case the total communication messages are 2m unicast messages and m multicast 

messages, and the total computation cost is 2m+1 serial numbers of braid group 

multiplication, and m encoding operation. 

 

4.5  Leave Protocol 

 

 The leave protocol operates when an existing member needs to leave the 

group. A leaving member sends a leave request message to a group. All members can 

compute a new public group key by themselves. The next example continues with the 

scenario from the join protocol in section 4.4. In this leave protocol scenario, it is 

assumed that user Charlie is going to leave the group. In this case, all members can 

compute a new public group key PKABD == (g1) (g2) (g4). The proposed scheme 

designed to comply with the concept of forward secrecy as mentioned above. For 

example, the leaving user Chalie cannot decrypt a ciphertext intended for the current 

group because she does not know the value of any member’s private key. 

 The total communication message for leave protocol is one multicast message. 

The number of computation cost in this protocol is equal one serial number of braid 

group multiplication.  

 The multiple leave occurs when any m users want to leave a group 

simultaneously. In this case the total communication messages are m multicast messages, 

and the total computation cost is one serial numbers of braid group multiplication. 
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4.6  Complexity 

 

 This section gives a summarization in both communication and computation 

costs from comparing with the scheme proposed by Du, Wang, Ge, and Wang (2005) 

as in the following. In Du, Wang, Ge and Wang’s scheme, the center encrypts a key to 

group members and then group member can use this key as a symmetric group key. 

Their scheme also needs a center to manage member’s public keys, but the proposed 

scheme does not need a center to manage member’s public keys. The comparison 

takes on all operation; setup, private key extraction, encryption and decryption. The 

costs for join and leave operations also are expressed in the next subsection, but these 

operations do not state in the Du, Wang, Ge and Wang’s scheme. For the setup, 

private key extraction, join, and leave phases, the calculation of both costs are on per 

system, but for the encryption and decryption phases, the calculation are based on one 

sender (a center) and one recipient.  For the join and leave phases, the assumption is 

that there are n existing group members and m members need to join or leave a group 

simultaneously. The comment for this comparison is that in the proposed scheme, the 

communication and computation costs are included the costs in contacting a private 

key generator and computing at the private key generator in setup and private key 

extraction, and join phases. 

 

 4.6.1  Communication Cost 

 The communication cost is shown in Table 4.4. The communication cost is 

analyzed by expressing both unicast and multicast messages for every member in the 

system. The communication cost in setup and private key extraction phase is O(n) for 

both schemes. For the proposed scheme, the communication costs are O(m) in both 

join and leave phases. 

 4.6.2  Computation Cost 

 The computation cost is shown in Table 4.5. The computation cost in setup 

phase are O(1) on point multiplication for Du, Wang, Ge and Wang’s scheme, and 

O(1) on braid multiplication for the proposed scheme. The computation cost in private 

key extraction phase are O(n) on both point multiplication and hashing operations for 

Du, Wang, Ge and Wang’s scheme, and O(n) on both braid multiplication and 
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encoding operations for the proposed scheme. The computation cost in encryption 

phase are O(n) on both addition in G and point multiplication, and O(1) on pairing, 

hashing, and XOR operations for Du, Wang, Ge and Wang’s scheme, but O(1) on 

braid multiplication, hashing and XOR operations for the proposed scheme. The 

computation cost in decryption phase is the same as in encryption phase in term of 

Big-O notation. For the proposed scheme, the computation costs are O(m) on braid 

group multiplication and encoding operations in join phase and O(1) on braid group 

multiplication in leave phase. 

 

 4.6.3  Message Size 

 A ciphertext size of the Du, Wang, Ge and Wang’s scheme is depended on the 

number of group members. A reason for this is that the value of Ui  G where 2  i  

n is not identity information, thus they must be sent to all members. In the proposed 

scheme, a group identity, IDGroup or PKGroup, can be known by all group members, so 

no need to send it together with a ciphertext in some situation. Thus a ciphertext size 

in the proposed scheme is constant. 

 

Table 4.4  Communication Cost of Identity Based Broadcast Encryption Schemes 

 

Scheme Operation Message 
Unicast 
Message 

Multicast 
Message 

Du, Wang, Ge and 
Wang’s Scheme 

Setup and Private Key 
Extraction 

(per system) 

2n 2n - 

Encryption 

(one sender) 
1 - 1 

Decryption - - - 

Join - - - 

Leave - - -
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Table 4.4  (Continued) 

 

Scheme Operation Message 
Unicast 
Message 

Multicast 
Message 

The Proposed 
Scheme 

Setup and Private Key 
Extraction  

(per system) 

2n 2n - 

Encryption

(one sender)  
1 - 1 

Decryption - - -

Join 3m 2m m

Leave m - m

 

Note:   n: the total number of members in the protocol, 

m: the number of members who want to join/leave the group. 

 

Table 4.5  Computation Cost of Identity Based Broadcast Encryption Schemes 

 

Scheme Operation Computation 

Du, Wang, Ge and 
Wang’s Scheme 

Setup (per system) 1M 

Private Key Extraction

(per system) 
(n)H + (n)M 

Encryption

(one sender) 

(2n-2)A + (n+1)M + 1P + 1H + 
1XOR 

Decryption

(per member) 
(n-1)A + (n)M + 2P + 1H + 1XOR 

Join - 

Leave - 
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Table 4.5  (Continued) 

 

Scheme Operation Computation 

The Proposed 
Scheme 

Setup (per system) 3Mul 

Private Key Extraction
(per system) (n)Enc + (2n)Mul 

Encryption

(one sender) 
1H + 1Mul + 1XOR 

Decryption

(per member) 
1H + 1Mul + 1XOR 

Join (2m+1)Mul + (m)Enc 

Leave 1Mul 

 

Note:   n: the total number of members in the protocol, 

m: the number of members who want to join/leave the group, A: addition in G, 

M: scalar multiplication (point multiplication) in G, H: hashing operation, 

P: pairing operation, XOR: XOR operation, Mul: serial multiplication in braid  

    groups, 

Enc: encoding {ID} braid. 



 

CHAPTER 5 

 

IMPLEMENTAION 

 

This chapter shows how to implement the broadcast encryption scheme based 

on braid groups mention in chapter 3. The implementation is on Ubuntu 11.10 

operating systems. The program is developed in C++ programming language. The 

program also uses additional braiding libraries, developed by Cha, Ko, Lee, Han, and 

Cheon (2001). This chapter also states how to calculate public key for each user and 

the public group key. It also expresses the way to encrypt and decrypt message and 

how to build a hash function for braid group.  

 

5.1  Program Design 

 

 The program is implemented by using multi-threading concept. A main thread 

is responsible for receiving commands from user. The user commands can be join, 

leave or quit. The join command uses when user needs to join a group. The leave 

command uses when he needs to leave a group, and the quit command is used when 

he wants to quit a program.  

 

 5.1.1  Main Thread 

 The subsection shows a flowchart for main thread as in Figure 5.1. In this 

main thread, it creates a new thread used for receiving a packet. The broadcast socket 

in main thread is used for sending join request (JREQ) or leave request (LREQ) 

messages. The program also records node’s own IP address and joining group in a 

join request list which is implemented using link list data structure.  
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Figure 5.1  Flowchart for Main Program 

 

5.1.2  New Thread 

 This new thread is created to handle the receiving packets such as join request, 

leave request, or update key tree packets. A flowchart of this new thread is shown in 

Figure 5.2. The program also records a sender’s IP address and joining group of the 

sender in a join request list.   
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Figure 5.2  Flowchart for New Thread 

 

5.1.3  Sender Timer 

The sender timer is useful for a situation that there exists only one sender node 

broadcasting a join request message. No node replies for this request. The flowchart is 

shown in Figure 5.3. When a sender’s timer is expired, the sender checks whether it is 

the lowest IP address node. If it has the lowest IP address, it sets itself as a director of 

a group. Then it creates key tree.  
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Figure 5.3  Flowchart in Handling Sender Time Out  

 

5.1.4  Receive JREQ Function 

 This function handles a join request packet at a destination node. The 

flowchart is shown in Figure 5.4. First of all, it records a sender’s IP address and a 

group to join in join request list. If a receiving node is a director of the group, it 

updates key tree by adding a new member in the key tree and then broadcast an 

updated key tree to others. In case that the receiving node has no information about a 

director of the group and it also participates in the group, it starts a receiver timer, and 

then goes to a process for selecting a group director after timer is expired. 
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Figure 5.4  Flowchart for Recv_JREQ Function 

 

5.1.5  Receiver Timer 

The receiver timer is used to waiting for a while to correct join request 

messages from others. The flowchart is shown in Figure 5.5. When a receiver timer is 

expired, the receiver checks whether it is the lowest IP address node in join request 

list. If it has the lowest IP address, it sets itself as a director of a group. Then it create 

key tree and broadcast this keytree.  
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Figure 5.5  Flowchart in Handling Receiver Time Out  

 

5.1.6  Receive LREQ Function 

 This function handles a leave request packet at a destination node. The 

flowchart is shown in Figure 5.6. If a receiving node is a director of the group, it 

updates key tree by removing a requested member from the key tree and then 

broadcast key tree to others.  

 

5.1.7  Receive UPDATED_TREE Function 

 This function handles an updated key tree packet at a destination node. The 

flowchart is shown in Figure 5.7. First, it checks that it has sent join request message 

for this group or not. If a receiving node has sent a join request for this group, it stops 

a receiver timer and then updates new key tree.   
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Figure 5.6  Flowchart for Recv_LREQ Function 

 

 

 

Figure 5.7  Flowchart for Recv_UPDATED Function 
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5.2  Key Tree Calculation 

 

  The implementation in the proposed scheme uses only positive braid word. 

Each user has private key i and j, he/she needs to calculate his/her public key PKU. 

This PKU has value equal to i gogu j where gu is his/her published braid and go is the 

published braid of another node at the same level in a key tree. The steps for 

computing this public key PKU are as the following;  

1) Read the value of i and j in C++ string format. 

For example; an input string for i is 1 4 3, an input string for j is 2 1 1, 

and assume that gogu is 2 7 

2) Convert i and j to the Artin braid by using the function. 

WordToBraid(list<sint16> w, sint16 n) where w is a list of characters in string and n 

is braid index. This function returns an Artin braid object. 

  For example; a braid for i is σ1σ4σ3 and a braid for j is σ2σ1σ1 

1) Right multiply the braid i with the braid gogu and then make the 

value of this braid i gogu in left canonical form by using function MakeLCF( const 

Braid& ).  

For example; a left canonical form of braid i gogu is σ1σ4σ3σ2σ7 

2) Right multiply the braid i gogu with the braid j and then make the 

value of this braid in left canonical form. This is a braid PKU.  

For example; a left canonical form of braid PKU is σ1σ4σ3σ2σ7 .σ2σ1.σ1 

 Each member in a group can send his/her public key PKU in left canonical 

form to a director. In this case, user U sends a value 1 4 3 2 7 . 2 1 . 1 to the director. 

The director can use the function RightMultiply(const Factor<P>& ), got a canonical 

factor form as an argument to the function, and multiply with other braid to calculate 

a public group key. 

 In this case; P1 is 1 4 3 2 7, P2 is 2 1, and P3 is 1. This sequence of factor can 

be multiplied with other braids. 
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5.3  Encryption and Decryption 

 

  This subsection considers the braid cryptosystem proposed in chapter 3. The 

encryption and decryption scheme is as follows.  

 Encryption: 

 m = mU  H (R u PKGroup u
 -1) where m, mU  {0, 1}M, and sends m , R and 

PKU to members of the group. 

 Decryption: 

 mD = m   H (R KABC PKD
  (KABC)-1

 ) 

 

 In the above, the H: Bn  {0, 1}M is a collision-free hash function. The H can 

be obtained by composing a collision free hash function of bitstrings into {0, 1}M. 

This needs a function to convert braids into bitstrings. A braid written as left 

canonical form Du A1 … Al can be converted into a bitstring by dumping the integer u 

and permutation tables of Ai as binary digits for i = 1, …, l sequentially. Because 

different braids are converted into different bitstrings, this conversion can be used as a 

part of the hash H. 

 For example, consider B3 which have (3 = 6) possible numbers of canonical 

factors such as (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). Each 

possible canonical factor can be represented by using three binary digits from 000 to 

111.  If a key’s length is p bits, a message block can be made in p bit block and put 

both bit blocks into an exclusive-or operation.  



 

CHAPTER 6 

 

CONCLUSION 

 

6.1  Conclusion 

 

 The research proposes two schemes; the first scheme is the broadcast 

encryption based on braid groups and the second scheme is the identity based 

broadcast encryption based on braid groups. Both schemes are the dynamic 

asymmetric key agreement scheme for broadcast encryption. The braid group concept 

was applied in these schemes to reduce the computation complexity, and the identity-

based cryptosystem was applied to reduce a system complexity and cost for 

establishing and managing a public key authentication framework known as the 

public key infrastructure (PKI). By comparing the first proposed scheme and other 

schemes in an asymmetric broadcast encryption scheme, the first proposed scheme 

can support dynamic networks like mobile ad hoc networks. Comparing with another 

dynamic scheme as in Zhao, Zhang, and Tian (2011), the computation costs in the 

first proposed scheme are in braid multiplication, but the other are the exponentiation 

in G.  The communication costs for both schemes are not too different. 

 By comparing the second proposed scheme on the identity based broadcast 

encryption with the similar scheme as in Du, Wang, Ge and Wang’s scheme (2005), 

we can see that the second proposed scheme can support well in dynamic networks. 

This is because the second proposed scheme does not require a center for group key 

management. The communication cost of the second proposed scheme is the same as 

the other. This is O(n) unicast message in setup and private key extraction phases. The 

second proposed scheme also includes the join protocol which is taken O(m) in both 

unicast and multicast messages, and the leave protocol which is taken O(m) in 

multicast message . The computation cost in both encryption and decryption phases 

for the second proposed scheme is better than the other in which it uses O(1) in braid 

group multiplication while the other uses O(n) in both point addition and 
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multiplication as well as O(1) in paring operation. The second proposed scheme also 

has an advantage in that it produces a constant ciphertext. 

 The comparison also was taken between the first proposed scheme in 

broadcast encryption with the second proposed scheme in the identity based broadcast 

encryption. Both schemes are asymmetric contributory key agreement scheme. The 

former scheme requires a key tree for managing a group public key, but the later 

scheme does not. 

  

6.2  Future Works 

 

  There are some points to be concerned for the proposed scheme in the identity 

based broadcast encryption to make it more efficient. The first one is that the group 

public key is getting bigger when a group number are increased. The second comes 

from using the identity based cryptosystem. The identity based cryptosystem has 

disadvantage in the privacy in distributing user’s private key by a private key 

generator. This can be eliminated by applying the other schemes like a certificateless 

cryptosystem in the proposed scheme. 
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