

A DYNAMIC ASYMMETRIC KEY AGREEMENT FOR

BROADCAST ENCRYPTION BASED ON

BRAID GROUPS

Norranut Saguansakdiyotin

A Dissertation Submitted in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Computer Science)

School of Applied Statistics

National Institute of Development Administration

2012

ABSTRACT

Title of Dissertation A Dynamic Asymmetric Key Agreement for Broadcast

Encryption Based on Braid Groups

Author Norranut Saguansakdiyotin

Degree Doctor of Philosophy (Computer Science)

Year 2012

Broadcast encryption is the scheme that a sender encrypts messages for a

designated group of receivers, and sends the ciphertexts by broadcasting over the

networks. Many research papers have done it using elliptic curve cryptosystem. This

research proposes a dynamic asymmetric key agreement protocols for the broadcast

encryption which is based on braid groups cryptosystem, an alternative method in the

public key cryptography in which it can reduce the computational cost. The proposed

scheme is also used the concept of an identity-based cryptosystem in order to reduce a

system complexity and cost for establishing and managing a public key authentication

framework. The scheme has some advantages over the other scheme in that the

proposed scheme does not require a center for group key management, thus it is

suitable for dynamic networks like mobile ad hoc networks in which group members

can be dynamically changed all the time. The scheme also has a low computation cost

in encryption and decryption processes and it makes a constant ciphertext.

ACKNOWLEDGEMENTS

 First of all, I would like to express my very great appriciation to my advisor,

Associate Professor Dr. Pipat Hiranvanichakorn for providing me with very valuable

advice in this research dissertation. I also would like to extend my thanks to all of the

committee members; Assistant Professor Dr. Pramote Kuacharoen, Assistant

Professor Dr. Ohm Sornil and Dr. Kanchana Silawarawet for their comments and

suggestions. Finally thanks are for my wife for supporting me during my study.

 Norranut Saguansakdiyotin

 November 2012

TABLE OF CONTENTS

Page

ABSTRACT iii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Related Works 2

1.3 Motivation 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Broadcast Encryption 5

2.2 Identity-Based Cryptosystem 6

2.3 Braid Groups 10

2.4 Asymmetric Group Key Agreement Schemes 18

2.5 Identity-Based Broadcast Encryption Scheme 26

CHAPTER 3 BROADCAST ENCRYPTION BASED ON BRAID 30

 GROUPS

3.1 Key Tree Notation 30

3.2 Setup 31

3.3 Encryption 35

3.4 Decryption 36

3.5 Correctness 36

3.6 Key Secrecy 37

3.7 Join Protocol 37

3.8 Leave Protocol 40

vi

3.9 Collude Attack 42

3.10 Complexity 42

CHAPTER 4 IDENTITY BASED BROADCAST ENCRYPTION BASED 46

 ON BRAID GROUPS

4.1 Identity Based Encryption Based on Braid Groups 46

4.2 Identity Based Broadcast Encryption Based on Braid Groups 55

4.3 Key Secrecy 62

4.4 Join Protocol 62

4.5 Leave Protocol 63

4.6 Complexity 64

CHAPTER 5 IMPLEMENTATION 68

5.1 Program Design 68

5.2 Key Tree Calculation 75

5.3 Encryption and Decryption 76

CHAPTER 6 CONCLUSION 77

6.1 Conclusion 77

6.2 Future Works 78

BIBLIOGRAPHY 79

BIOGRAPHY 82

LIST OF TABLES

Tables Page

3.1 Communication Cost of Broadcast Encryption Schemes 44

3.2 Computation Cost of Broadcast Encryption Schemes 45

4.1 Mapping of an Octet in IPv4 into a Braid Word 48

4.2 Communication Cost of Identity Based Encryption Schemes 53

4.3 Computation Cost of Identity Based Encryption Schemes 54

4.4 Communication Cost of Identity Based Broadcast Encryption 65

 Schemes

4.5 Computation Cost of Identity Based Broadcast Encryption 66

 Schemes

LIST OF FIGURES

Figures Page

2.1 Identity-Based Encryption 7

2.2 Identity-Based Signature 8

2.3 Artin Generator of σi and σi
-1 11

2.4 Artin Generator for Some Braids 12

2.5 Identity Braid 12

2.6 Fundamental Braid of B4 12

2.7 An Example of Permutation Braids 16

3.1 Notation of Key Tree 31

3.2 Group Key at Setup Phase Computed by User A 33

3.3 Key Tree after User D Joins the Group 38

3.4 Key Tree after User C Leaves the Group 41

4.1 Setup and Private Key Extraction Phases for An Identity Based 50

 Encryption Based on Braid Groups

4.2 Encryption Key Computed by Braiding Program 52

4.3 Decryption Key Computed by Braiding Program 52

4.4 Setup and Private Key Extraction Phases for An Identity Based 56

 Broadcast Encryption Based on Braid Groups

4.5 Eve’s Encryption Key Computed by Braiding Program 60

4.6 Alice’s Decryption Key Computed by Braiding Program 61

4.7 Bob’s Decryption Key Computed by Braiding Program 61

5.1 Flowchart for Main Program 69

5.2 Flowchart for New Thread 70

5.3 Flowchart in Handling Sender Time Out 71

5.4 Flowchart for recv_JREQ Function 72

5.5 Flowchart in Handling Receiver Time Out 73

5.6 Flowchart for recv_LREQ Function 74

5.7 Flowchart for recv_UPDATE Function 74

CHAPTER 1

INTRODUCTION

1.1 Background

Broadcast encryption is a scheme that allows a sender to send a ciphertext to

some designated groups whose members of the group can decrypt it with his or her

private key. However, nobody outside the group can decrypt the message. Broadcast

encryption is widely used in the present day in many aspects, such as VoIP, TV

subscription services over the Internet, communication among group members or

from someone outside the group to the group members. This type of scheme also can

be extended in networks like mobile multi-hop networks, which each node in these

networks has limitation in computing and storage resources. The broadcast encryption

can be divided into two categories from a relation of receivers. In the first category, a

sender can randomly designate several receivers. Users in this category may be no

relation between each other. For the second category, a sender can encrypt a message

to a designated group in which each user in the group can use his private key

independently to decrypt the ciphertext. Users can contact with other users in the

group and all users in the group are listening on a broadcast channel. Usually the first

category has lots of advantages. It is more flexible than the second category and

sender can randomly designated a subset of receivers. However, these advantages

make the first category much more complicated. It is very difficult to make the

scheme satisfy so many advantages while keep the ciphertext and keys constant size.

For a network like a mobile ad hoc network, the complex in computation and the need

for large memory make it inefficient. The proposed scheme for broadcast encryption

is in the second category.

 There are several group key management protocols, and typically they are

divided into three categories; centralized group key distribution, decentralized group

2

key management, and contributory group key agreement. In the centralized group key

distribution, there is a group controller. This group controller is responsible for

distributing a group key. The advantages in this category are that it minimizes storage

requirements, computational power on both client and server sides, and bandwidth

utilization. There exist some drawbacks in this category such as the performance

bottleneck, the central point of failure, and the requirement of trusted authority. In the

decentralized group key management, a group is divided into several subgroups. Each

subgroup has a subgroup controller and it is responsible for key management. There

exist the same problems as in the centralized group key distribution. The last category

is the contributory group key agreement. In this category, a shared group key is

generated via the cooperation of all members and there is no central management, so

it is more suitable for ad hoc networks and a group which has small group members.

1.2 Related Works

Fiat and Naor (1993) proposed the concept of broadcast encryption. In this

scheme, sender allows to send a ciphertext to a designated group whose members of

the group can decrypt it with his or her private key. However, nobody outside the

group can decrypt the message. Their solution was secure against m collusion users

and the length of the ciphertext is (mlog2mlog n), where n is the number of users and

m is the number of colluders. Further research by Naor, Naor, and Lotspiech (2001)

proposed a solution with ciphertext and keys do not rely on the m. The scheme has

private key size of (log2 n). There also are many research papers about broadcast

group-oriented encryption as in Ma, Wu, and Li (2006) and Ma and Ao (2009). The

former proposes a novel broadcast encryption used in the group communication. It is

an asymmetric group key agreement scheme achieved a broadcast message with

constant ciphertexts and private keys. The later proposes the improved version by

including the identity of users to the previous scheme, and it is secure against chosen

ciphertext attack and the key generation withstands collude attack from the users of

the group. Both schemes are the centralized group key agreement schemes, because

they need a private key generator for generating member’s private keys. These

3

schemes as mentioned before are implemented using bilinear pairing in elliptic curve

cryptosystem.

 There are also some research papers in doing asymmetric group key

agreement as in Wu, Mu, Susilo, Qin, and Domingo-Ferrer (2009) and Zhao, Zhang

and Tian (2011). Both schemes are the contributory group key agreement schemes.

The former scheme is constructed on one round asymmetric group key agreement

(ASGKA) based on the concept of aggregatable signature based broadcast (ASBB) by

using bilinear pairings. Typically in an ASGKA protocol, it has two keys; one is a

public group key, which is used as an encryption key for a message to a group and

another is a private key, which a group member can use it individually as a decryption

key. An ASBB is the scheme that the public key can be used to verify signatures as

well as to encrypt messages, and any valid signature can be used to decrypt the

ciphertexts. As mentioned in Wu, Mu, Susilo, Qin, and Domingo-Ferrer (2009), their

scheme does not improve in communication overhead for one-time group applications

in which the members of the group are about fully dynamic as in ad hoc networks,

because their scheme has heavy communication overhead in key establishment. The

later scheme is a dynamic asymmetric group key agreement (DASGKA) combining a

conventional authenticated group key agreement, a public key encryption and a multi-

signature. This scheme is implemented using elliptic curve cryptosystem. In the

dynamic asymmetric group key agreement, a group of users can form a temporary

group and agree to share a public encryption key. Users can join or leave the group

without running a completely new key agreement protocol.

 The concept of an identity-based cryptosystem was proposed by Shamir

(1984). An idea of this new paradigm is to use user’s identifier information such as

email address or IP address as a public key for encryption or signature verification.

An identity-based cryptosystem can reduce a system complexity and cost for

establishing and managing a public key authentication framework known as the

public key infrastructure (PKI). The first identity-based cryptosystem scheme which

was proposed by Shamir is an identity-based signature scheme (IBS). An identity-

based encryption scheme (IBE) became an opening problem until 2001. In 2001,

Shamir’s open problem was solved by Boneh and Franklin (2001) as well as Cook (2001).

An identity-based cryptosystem has mostly been implemented using bilinear pairing

which has exponential cost in pairing operation.

4

1.3 Motivation

Braid groups were introduced by Artin (1947) and first used to construct a

Diffie-Hellman type key agreement protocol and a public key encryption scheme by

Ko , Lee , Cheon , Han , Kang , Park (2000). In Karu and Loikkanen work (2000), the

comparison of fast public key cryptosystems; elliptic curve cryptography (ECC),

NTRU, and braid groups has been made. The result shown that the braid groups based

efficient cryptosystem can be implemented, and it is faster than RSA and elliptic

curve cryptography. For very limited environments like personal digital assistant

(PDA)’s, smart cards, and mobile phones they require faster cryptosystem, therefore

braid groups based cryptosystem can be one of the choices. The braid groups can be

used in a symmetric group key agreement protocol as in Thanongsak Aneksrup and

Pipat Hiranvanichakorn (2011). The motivation for this research is to create an

asymmetric broadcast encryption scheme based on an identity-based cryptosystem

and braid group concepts in contributory group key agreement manner. The proposed

scheme starts with building an asymmetric broadcast encryption scheme based on

braid groups and then applies the identity-based cryptosystem to it.

CHAPTER 2

LITERATURE REVIEW

 This chapter gives an overview of the concepts relating in the proposed

scheme on a dynamic asymmetric key agreement for broadcast encryption such as the

concept of broadcast encryption, identity-based cryptosystem, braid groups based

cryptosystem, some related researches in asymmetric group key agreement scheme

for broadcast encryption, and identity-based broadcast encryption.

2.1 Broadcast Encryption

 Fiat and Naor (1993) proposed the concept of broadcast encryption in 1993. In

this scheme, sender allows to send a ciphertext to a designated group whose members

of the group can decrypt it with his or her private key. However, nobody outside the

group can decrypt the message. Broadcast encryption is widely used in the present

day in many aspects, such as VoIP, TV subscription services over the Internet,

communication among group members or from someone outside the group to the

group members. This type of scheme also can be extended in networks like mobile

multi-hop networks, which each node in these networks has limitation in computing

and storage resources.

The original scheme which is proposed by Fiat and Naor was to prove that two

devices which were not known each other could agree on a common key for secure

communications over a one-way communication. This is different from a traditional

secure transmission of information using public key cryptography in which devices

must know about each other and agree on encryption keys before transmission.

Broadcast encryption allows devices which may not have existed, when a group was

firstly formed, can join into the group and communicate securely.

In the original broadcast encryption scheme proposed by Fiat and Naor, there

exists a key distribution center. The center allocates predefined keys for all of the

6

users in a group. It was also a zero-message scheme in which the broadcast center did

not have to broadcast a message for the members to be able to compute the key. It

could be computed from information that the members receives from the center, and

from other members. The scheme is a k-resilient broadcast encryption scheme in

which it is secure against a coalition of at most k non-privileged users.

There are many research papers about broadcast group-oriented encryption as

in Ma, Wu, and Li (2006) and Ma and Ao (2009). The former proposes a novel

broadcast encryption used in the group communication. It is an asymmetric group key

agreement scheme achieved a broadcast message with constant ciphertexts and private

keys. The later proposes the improved version by including the identity of users to the

previous scheme, and it is secure against chosen ciphertext attack and the key

generation withstands collude attack from the users of the group. Because a member’s

identity is included in a private key generation, two or more members cannot forge a

new private key to the other. The review of these papers can be found in related works

section in this chapter.

2.2 Identity-Based Cryptosystem

The concept of an identity-based cryptosystem was proposed by Shamir

(1984). There are two schemes in an identity-based cryptosystem. The first one is an

identity-based encryption scheme (IBE) and the second one is an identity-based

signature scheme (IBS). This section reviews a concept of both the identity-based

encryption scheme (IBE) and the identity-based signature scheme (IBS). It also gives

an example of an identity-based cryptosystem using bilinear paring.

2.2.1 Basic Concept of Identity-Based Encryption and Signature

This subsection describes the concept of identity-based encryption (IBE) and

identity-based Signature (IBS) schemes from Baek, Newmarch, Safavi-Naini and

Susilo (2004) paper.

2.2.1.1 Identity-Based Encryption

In an identity-based encryption (IBE) scheme, if Alice needs to send a

ciphertext to Bob, she can encrypt it using Bob’s identity information such as his

7

email address or his IP address as well as a public key of a trusted third party called a

private key generator. Upon receiving the ciphertext, Bob can decrypt it using his

private key which is associated with Bob’s identity and generated by the private key

generator as shown in Figure 2.1.

Figure 2.1 Identity-Based Encryption

We can describe an identity-based encryption scheme in four steps;

setup, private key extraction, encryption and decryption as the following.

1) Setup: The private key generator creates its private and

public key pair denoted as skPKG and pkPKG respectively.

2) Private Key Extraction: The receiver Bob authenticates

himself to the private key generator and obtains his private key skBob which is

associated with his identity IDBob.

3) Encryption: Alice uses the receiver Bob’s identity IDBob and

the public key of the private key generator pkPKG to encrypt a message.

4) Decryption: the receiver, Bob, uses his private key skBob to

decrypt the ciphertext.

2.2.1.2 Identity-Based Signature

In an identity-based signature (IBS) scheme, If Alice wants to sign a

message to Bob, she can sign it using her private key which is associated with her

8

identifier information and obtained from a private key generator. Upon receiving the

message Bob can verify it using Alice’s identifier information as well as a public key

of the private key generator as shown in Figure 2.2.

Figure 2.2 Identity-Based Signature

We can describe an identity-based signature scheme in four steps;

setup, private key extraction, encryption and decryption as the following.

1) Setup: The private key generator creates its private and

public key pair denoted as skPKG and pkPKG respectively.

2) Private Key Extraction: The signer, Alice, authenticates

herself to the private key generator and obtains her private key skAlice which is

associated with her identity IDAlice.

3) Signature Generation: Alice uses her private key skAlice to

generate signature  and send it with a message.

4) Signature Verification: the verifier, Bob, checks whether 

is a genuine signature on the message using Alice’s identity and the private key

generator’s public key pkPKG. If it is, then accepts the message. Otherwise rejects the

message.

9

2.2.2 Bilinear Pairing

This subsection gives some preliminaries of bilinear pairing and its properties.

Let G and G be two groups of prime order q and let P be a generator of G, where G is

additively represented and G is multiplicatively. A map e: G × G  G is said to be a

bilinear pairing and the group G is called a bilinear group, if the following three

properties hold:

2.2.2.1 Bilinearity: e(aP, bP) = e(P, P)ab = e(P, abP) = e(abP, P) for

all a, b  Zq
*;

2.2.2.2 Non-degeneracy: this means that there exists P ∈ G such that

e (P, P) ≠ 1 where 1 is an identity of G;

2.2.2.3 Computability: this means that there exists an efficient

algorithm to compute e (P, P) ∀ P ∈ G.

2.2.3 Related Complexity Assumptions

Consider the following problems in the group G1 of prime order q, generated

by P.

2.2.3.1 The Decisional Bilinear Diffie-Hellman problem (DBDHP) is,

given a generator P of a group G1, (aP, bP, cP) and an element h ∈ G2, to decide

whether h = e(P, P)abc.

2.2.3.2 Given a generator P of a group G1 and (aP, bP), the

Computational Diffie-Hellman problem (CDHP) is to compute abP.

2.2.4 An Example of Identity-Based Encryption

This subsection gives an example of an identity-based encryption scheme

using pairings on elliptic curves. This overview comes from Hoffstein, Pipher, and

Silverman (2008). When Bob wants to send Alice a message, he uses private key

generator’s public key pkPKG and Alice’s identity information IDAlice to encrypt his

message. In the meantime, private key generator uses its private key skPKG and Alice’s

identity information IDAlice to create a private key of Alice skAlice. Alice then uses

skAlice to decrypt and read Bob’s message.

This example is explained in four steps; setup, private key extraction,

encryption and decryption as the following.

10

2.2.4.1 Setup: In this step the private key generator prepares public

parameters and creates its private and public keys. There are some public parameters

such as; a finite field Fq, an elliptic curve E, a point on the elliptic curve P  E(Fq) of

prime order l. There are also two hash functions H1 and H2 where H1: {IDs}  E(Fq)

and H2: Fq*  {0,1}B. The first hash function maps a user identity to a point on E.

The second hash function maps each element in Fq* to a binary string of length B.

The private key generator chooses a secret integer s modulo m and

publishes the point PPKG = sP  E(Fq). The PPKG is a public key of private key

generator and s is its private key.

2.2.4.2 Private Key Extraction: Alice chooses identity information.

The private key generator computes the point PAlice = H1(IDAlice)  E(Fq) where PAlice

is Alice’s public key. The private key generator sends the point QAlice = s PAlice 

E(Fq) to Alice. This QAlice is Alice’s private key.

2.2.4.3 Encryption: Bob chooses a plaintext M and a random number r

modulo q-1. Bob computes the point PAlice = H1(IDAlice)  E(Fq). Bob’s ciphertext is

the pair C = (rP, M  H2(êl(PAlice , PPKG)r)).

2.2.4.4 Decryption: Alice decrypts the ciphertext (C1, C2) by computing

C2 H2(êl(QAlice , C1)).

The correctness of this scheme can be shown as the following.

 êl(QAlice , C1) = êl(sPAlice , rP) = êl(PAlice , P)rs

 = êl(PAlice , sP)r = êl(PAlice , PPKG)r

2.3 Braid Groups

 The braid group was first introduced by Artin (1947). It is a “non-commutative”

group which can be used in cryptography because its computations can be performed

efficiently, but it is strong enough against attacks. For the geometric presentation of

the braid group, a braid Bn is a set of disjoint n strands all of which are attached to two

horizontal bars at the top and the bottom, and between the top and the bottom bars,

one strand crosses any one horizontal line only once. We call n is the braid index. A

braid can be represented by a sequence of generator σn which is called the Artin

11

generator as proposed by Artin. If the strand i th passes under the strand i+1 th, it

denotes σi. Corresponding if the strand i th passes over the strand i+1 th it denotes σi
-1

as shown in Figure 2.3. The multiplication of two braids with the same braid index, xy

comes from concatenating the ends of the strands of the first braid with the beginnings

of the strands of the second braid, e.g., x = σ1
-1and y = σ2σ1, so xy = σ1

-1σ2σ1 as shown

in Figure 2.4. The identity braid is the braid consisting of strands with no crossings as

shown in Figure 2.5. The inverse of a braid is the mirror image of that braid with

respect to the horizontal line, e.g. from the previous example, y -1= (σ2
 σ1) - 1 = σ1

-1σ2
-1.

Figure 2.3 Artin Generator of σi and σi
-1

 As we have seen that any braid Bn can be expressed as a braid word which is a

sequence of generator, e.g., σ1
-1σ2σ1, and it has the following relation;

 (1) σiσj = σjσi where | i – j| > 1
e.g., σ1σ3 = σ3σ1

(2) σiσjσi = σjσiσj where | i – j| = 1
e.g., σ1σ2 σ1 = σ2σ1σ2

12

Figure 2.4 Artin Generator for Some Braids

Figure 2.5 Identity Braid

Figure 2.6 Fundamental Braid of B4

13

2.3.1 Properties of Braid Groups

This subsection reviews some notations as well as properties of braid groups

as mentioned in Cha, Ko, Lee, Han and Cheon (2001).

2.3.1.1 Elements in Bn
+ are called positive braids or positive words in

which every generator in the braid word has no negative power.

2.3.1.2 There is a fundamental braid D or  where  = (1…n-1)

(1…n-2) …1 in the Artin presentation as shown in Figure 2.6. In the fundamental

braid, each pair of strand crosses exactly once. The fundamental braid D can be

written in many different ways as a positive word. It has two properties:

1) For each generator a, D = aA = Ba for some A, B  Bn
+.

2) For each generator a, aD = D(a) and Da =  -1(a)D where

 (tau) is the automorphism of Bn defined by (i) = i-1 for Artin presentation .

2.3.1.3 There are partial orders ‘’, ‘L’ and ‘R’ in Bn. For two words

V and W in Bn, we say that V  W (respectively V L W, V R W) if V = PWQ (resp. V

= WP, V = PW) for some P,Q  Bn
+. If a word is compared against either an empty

word e or a power of D, all three orders are equivalent due to the property 2) above.

Note that the partial orders depend on a presentation of Bn and W is a positive word if

and only if W  e.

2.3.1.4 For two elements V and W in a partial order set, the meet V W

(resp. join VW) denotes the largest (resp. smallest) element among all elements

smaller (resp. larger) than V and W. When we want to distinguish the meet and join

for left and right versions, we will use ‘L’, ‘R’, ‘L’ and ‘L’.

2.3.1.5 A braid satisfying e  A  D is called a canonical factor and

[0, 1]n denotes the set of all canonical factors in Bn. The cardinality of [0, 1]n is n! for

the Artin presentation.

2.3.1.6 For a positive braid P, a decomposition P = A0P0 is left-

weighted if A0 [0, 1]n, P0  e, and A0 has the maximal length (or maximal in ‘L’)

among all such decompositions. A left-weighted decomposition P = A0P0 is unique.

A0 is called the maximal head of P. The notion ‘right-weighted’ can be also defined

similarly.

2.3.1.7 Any braid W given as a word can be decomposed uniquely

into W = DuA1A2…Ak, where e < Ai < D, u  Z, where the decomposition AiAi+1 is left-

14

weighted for each 1  i  k - 1. This decomposition, called the left canonical form of

W, is unique and so it solves the word problem. The right canonical form of W can be

also defined similarly.

2.3.2 Operations in Braid Groups

This subsection give an overview of braid groups operations as mentioned in

the paper entitled “An Efficient Implementation of Braid Groups” by Cha, Ko, Lee,

Han, and Cheon (2001). First they write a given braid in the form as  = DqA1A2 …Al,

where q is an integer and each Ai is a canonical factor, they represent the braid as a

pair  = (q, (Ai)) of an integer q and a list of l canonical factors (Ai). They note that

this representation is not necessarily the left canonical form of , and hence l may be

greater than the canonical length of .

A braid given as a word in generators can converted into the above form by

rewriting each negative power  -1 of generators as a product of D-1 and a canonical

factor D-1 and collecting every power of D at the left end using the fact

(Ai)D+/-1 = D+/-1(+/-1(Ai)) for any sequence of canonical factors Ai.

2.3.2.1 Multiplication

The multiplication of two braids is just the juxtaposition of two lists of

permutation and applying  as the following equation.

(DpA1…Al)(DqB1…Bl ) = Dp+q q(A1)… q (Al)B1…Bl 

The inverse of a braid can be computed using the following equation.

(DqA1 …Al)-1 = D - q-l  - q- l(Bl)…  - q-1(B1) where Bi = Ai
-1D, viewing

Ai and D as permutations.

2.3.2.2 Left Canonical Form

Given a positive braid P = A1 …Al, where Ai is a canonical factor, the

algorithm computes the maximal heads of Al-1Al, Al-2Al-1Al, …, A1… Al = P

sequentially using the following facts.

1) For any positive braid A and P, the maximal head of AP is

the maximal head of the product of A and the maximal head of P.

2) For two canonical factors A and B, the maximal head of AB

is A((DA -1)LB), where the inverse is taken in the permutation group.

15

2.3.2.3 Left Canonical Form by Hands

Given a positive braid P, it can be easy to use visual approach

suggested by ElriFai and Morton (1994) to convert to its left canonical form as the

following. We can partition a braid words into permutation braids (or canonical

braids) by scanning a braid words from the highest to the lowest braid words and

partition it if a pair of strings are about to cross for the second time, and then start a

new permutation braid. Then look at adjacent pairs of permutation braids, and see if

any adjacent pair of strings crosses in the lower but not the upper braid. If so, move it

up and continue, otherwise stop.

2.3.3 Example in Braid Groups Operation

This subsection gives an example of how to convert a braid word into the left

canonical form by hands. For example a braid word 321
-13

-121 in B4 can be

converted into the left canonical form as the following steps.

First change a negative braid into a positive braid, for this example, change

1
-1 and 3

-1 to positive braid word as the following.

1
-1 = D-1D1

-1 = D-1(123)(12)(1)1
-1 = D-1(123)(12) and

3
-1 = D-1D3

-1 = D-1(123)(12)(1)3
-1 = D-1(123)(21)(2)3

-1

= D-1(132)(31)(2)3
-1 = D-1(132)(13)(2)3

-1

= D-1(312)(13)(2)3
-1 = D-1(321)(23)(2)3

-1

= D-1(321)(32)(3)3
-1

= D-1(321)(32)

Thus 321
-13

-121 = 32D-1(123)(12)D-1(321)(32)21, Now

use the fact (Ai)D+/-1 = D+/-1(+/-1(Ai)) for any sequence of canonical factors Ai

321
-13

-121 = (32D-1)(12312D-1) 3213221

= D-1(32) D-1(12312) 3213221

= D-1(12) D-1(12312) 3213221

= D-1(12) D-1(32132) 3213221

= D-1(12D-1)321323213221

= D-1D-1(12) 321323213221

= D-2(12) 321323213221

16

= D-2(32) 321323213221

= D-2(32) (321) (32) (321) (32) (21)

From this point, we can use algorithm proposed by ElriFai and Morton (1994)
in subsection 2.3.2.3 to partition the braid words above into permutation braids as the
following and Figure 2.7.

D-2(32) (321) (32) (321) (32) (21)

= D-2(323)(21323)(2132)(21)

Use algorithm proposed by ElriFai and Morton (1994) again to move up an
adjacent pairs of permutation braids, which no crossing in the above as in Figure 2.7
and we got the sequence of a permutation braids as the following.

D-2(323)(21323)(2132)(21)

= D-2(3231)(2132)(2132)(21)

Figure 2.7 An Example of Permutation Braids

Continue with the braid words above, we can find the left canonical form as
the following.

D-2(3231)(2132)(2132)(21)

= D-2(123121)(12)(2132)(21)

= D-2D(12)(2132)(21)

= D-1(12)(2132)(21)

17

The left canonical form of the braid word 321
-13

-121 is D-1(12)

(2132)(21)

2.3.4 Implementation

There have to be efficient ways to represent and perform operations on braid

groups in a computer in order to do cryptography based on them. Because a braid has

a unique decomposition, this decomposition provides a nice way to store a particular

braid in the memory of a computer. In order to store a braid in a computer’s memory,

the power of the fundamental braid u as in 2.3.1.7 must be stored, as well as the

sequence of canonical factors following it (Ai). The power of the fundamental braid

can be stored as an integer. The canonical factors are the permutation braids. Thus to

store a canonical factor, an array representing the permutation can be used. Let A be

an array representing a permutation table. If a permutation sends i to π(i), then

A(i) = π(i). For example braid y  B3 in Figure 2.4 can be written in permutation as

(2,3,1).

For example braid words x and y  B3 in Figure 2.4, when they are putted into

a program, they can be kept in memory as the sign integer like x = 10000001 and

y = 0000001000000001. When the program wants to multiply them together, it can

read and then concatenate them as a braid word “-1 2 1”. Then the program performs

a left-canonical form operation. The result is as the following.

x = 1
-1 = D-1D1

-1 = D-1(12)(1)1
-1 = D-1(12)

y = 21

xy = D-1(12) 21

Then keeps u = -1, A1 = (12), and A2 = (21) for the braid xy.

2.3.5 Hard Problems in Braid Groups

 Recently there are some mathematically hard problems in braid groups as a

candidate for cryptographic one way function, but the famous one is the generalized

conjugacy search problem (GCSP) which we apply it in our protocol to maximize

strength of the key. In the generalized conjugacy search problem, it states that x and y

are conjugate if there exist an element a such that y = a x a-1 for m < n, where Bm is a

subgroup of Bn generated by σ1,σ2 ,…, σm-1. The hardness in GCSP is as following;

18

 Given a pair (x,y)  Bn  Bn such that y = a x a-1 for some a  Bm

 The objective is to find b  Bm such that y = b x b-1 for m ≤ n.

 Thus we can conclude that x and y are conjugate. It is able to compute y easily
when we are known both a and x, but needs exponential time to compute b from bxb-1
when known x and y.

 2.3.6 Public key Cryptography Based on Braid Groups

 This section gives an example in using the braid groups in public key
cryptography. We show a simple example protocol, according to Dehornoy (2004).

 Here we say that Alice needs to send message mA to Bob. Alice uses her
private key and Bob’s public key to encrypt the message and Bob can use his private
key and Alice’s public key to decrypt it.

1) Alice computes the conjugate p = sps−1, s is Alice’s private key

and (p,p) is her public key;

2) Bob computes the conjugate p = rpr−1, r is Bob’s private key and

(p, p) is his public key;

3) Alice sends a ciphertext m = mA  H(sps-1) together with her

public key p to Bob;
4) Bob computes

mA = m  H(r p r−1)

= m  H(r sps−1 r−1)

= m  H(srpr-1s−1)

= m  H(s p s−1)
= mA

As shown above, braid r and s commutes with each other, thus sr = rs. This
property of the braid groups is true when we carefully select the braids. Suppose we
have n subgroups Bg1, Bg2, Bg3, …, Bgn of g-braid groups where g = g1 + g2 + g3 + …

+gn. For any braid sl  Bgl and sm  Bgm with l ≠ m, It is true that sl sm = sm sl.

2.4 Asymmetric Group Key Agreement Schemes

 This section gives an overview of related researches on broadcast encryption

using asymmetric group key agreement such as proposed by 1) Ma and Ao (2009),

19

2) Wu, Mu, Susilo, Qin, and Domingo-Ferrer (2009) and 3) Zhao, Zhang and Tian

(2011).

2.4.1 Improved Group-Oriented Encryption for Group Communication

This scheme was proposed by Ma and Ao (2009) and improved from the

scheme proposed by Ma, Wu, and Li (2006). They improve the security of Ma et al.’s

encryption scheme and make it withstand collude attack by using the identities of the

users in designing the group–oriented encryption scheme. In this scheme a sender is

allowed to encrypt a message using a group’s public key. Any user in the group can

independently decrypt the ciphertext using his private key.

This subsection describes the group oriented encryption scheme as the

following. There are five phases in this scheme; Initialize, KeyGen, KeyVer, Encrypt,

and Decrypt.

2.4.1.1 Initialize

Let G1 be a cyclic multiplicative group generated by g, whose order is

a prime q and G2 be a cyclic multiplicative group of the same order q. A bilinear

pairing is a map: e: G2G1  G2 which can be efficiently computed. There are three

cryptographic hash functions: 1) H:{0,1}*  Zq 2) G: G2  {0,1}l 3) H1: G1  Zq
* .

A private key generator chooses a  Zq
* and g2G1 uniformly at random, and

computes g1=ga. The master private key is a, and the master public keys are (g1,g2).

2.4.1.2 KeyGen

The private key generator chooses k  Zq
* uniformly at random for a

group A, and then publishes PKA = gk and VKA=ga2k as group A’s public key. The

member pi’s private key can be generated as follows:

1) The private key generator chooses ri  Zq
* uniformly at

random.

2) Computes and outputs di1 = gH(IDi)rig2
ari, di2 = gari, and

di3 = gakgH(IDi)ri.

The member pi’s private key is di = {di1, di2, di3}, where IDi denotes the

identity of member pi.

20

2.4.1.3 KeyVer

 After receiving the private key distributed from the private key

generator, the member pi verifies the validity of the key by the following equation.

 e(di3,ga) = e(VKA, g)e(gH(IDi), di2) or not

 If above equation holds, pi accepts the private keys, otherwise outputs

ERROR message. They say the member pi can verify the key because

 e(di3,ga) = e(gakgH(IDi)ri, ga)

 = e(g,ga2k)e(gH(IDi), gari)

 = e(VKA, g)e(gH(IDi), di2)

2.4.1.4 Encryption

 In order to encrypt a message M{0,1}l for the group A, the sender

first chooses s Zq
* uniformly at random, and computes the ciphertext

 c1 = G(e(g1,PKA)s)  M

 c2 = gs

 c3 = g2
s

 c4 = H1(gks)

 c5 = g(s+h)-1

 The ciphertext for message M is c = (c1,c2,c3,c4,c5), where

h = H(c1||c2||c3||c4). The sender sends the ciphertext to all the members in the group A

by broadcasting over the Internet.

2.4.1.5 Decrypt

 After receiving the ciphertext c = (c1,c2,c3,c4,c5), a user pi  A can

decrypt it as follows:

 1) Computes T = e(c2,di3)e(c3,di2) / e(c2,di1).

 2) Computes M = c1  G(T).

 The Decrypt is correct, because

 T = e(c2,di3)e(c3,di2) / e(c2,di1)

 = e(gs, gakgH(IDi)ri)e(g2
s, gari) / e(gs, gH(IDi)rig2

ari)

 = e(g, g)aks

 Then pi gets the message M = c1  G(T).

21

This scheme is an asymmetric group key agreement scheme. The scheme has

advantage in that it can withstand adaptively chosen ciphertext and colluded attacks,

but it has some drawbacks in computation complexity, and no supported protocol for

dynamic group.

2.4.2 Asymmetric Group Key Agreement

This scheme was proposed by Wu, Mu, Susilo, Qin, and Domingo-Ferrer

(2009). This scheme is an asymmetric group key agreement (ASGKA) protocol. They

proposed a generic construction of one-round asymmetric group key agreement

protocol based on a new primitive referred to as aggregatable signature based

broadcast (ASBB), in which the public key can be simultaneously used to verify

signatures and encrypt messages and signature can be used to decrypt ciphertext. A

round means that each party sends one message and can broadcast simultaneously.

This scheme was also implemented using bilinear pairings.

From a generic construction, to realize one-round ASGKA protocol, they need

only to implement a secure ASBB scheme. They construct an ASBB scheme secure in

the random oracle model using bilinear pairing techniques.

2.4.2.1 An Efficient ASBB Scheme

Let PairGen be an algorithm taking on input a security parameter 1,

and outputs a tuple  = (p, G, G , e) where G and G have the same prime order p,

and e: G  G G is an efficient non- degenerate bilinear map such that e(g, g)  1

for any generator g of G, and for all u, v  Z, it holds that e(gu, gv) = e(g, g)uv.

1) Public parameters: Let  = (p,G,G ,e)  PairGen (1),

G=g. Let H:{0,1}*  G be a cryptographic hash function. The system parameters

are  = (,g,H).

2) Public/secret keys: Select at random rZp
*. XG \ {1}.

Compute R = g –r, A = e(X, g). The public key is pk = (R,A) and the secret key is

sk = (r,X).

3) Sign: The signature of any string s  {0,1}* under the

public key pk is  = X H(s)r.

22

4) Verify: Given a message-signature pair (s,), the verification

equation is e(,g)e(H(s),R) = A. If the output is 1, it means that purported signature is

valid.

5) Encryption: For a plaintext m  G, randomly select t 

Zp
*and compute c1 = gt, c2 = Rt, c3 = mAt.

6) Decryption: After receiving a ciphertext (c1, c2, c3), anyone

who has a valid message-signature pair (s,) can extract m = c3 / e(,c1)e(H(s), c2).

2.4.2.2 Concrete One-Round ASGKA Protocol

The following is a concrete one-round ASGKA protocol which using

the instantiated ASBB scheme.

1) Public parameters generation: It is the same as ASBB

scheme.

2) Group setup: Decide a group of players P = {U1,…, Un}

Randomly select hi  G for i = 1,…,n. hi can map to Ui in a natural way, e.g.,

according to the dictionary order in their binary representation.

3) Group key agreement: Ui randomly select Xi  G, ri  Zp
*

and publishes {i,j, Ri, Ai}ij, where i,j = Xi hj
ri, Ri = g -ri, Ai = e(Xi, g).

4) Group encryption key derivation: The player share the same

group encryption key(R,A); R =  n
j=1 Rj = g -

n
j=1 rj, A =  n

j=1 Aj = e(n
j=1 Xj, g).

5) Decryption key derivation: Using the private input (Xi ,ri)

during the protocol execution phase, player Ui can calculate its secret decryption key

from the public communication;

i = Xi hj
ri  n

j=1
,ji j,i = n

j=1 Xj hi
rj = (n

j=1 Xj) hi 
n
j=1 rj .

6) Encryption: For a plaintext m  G, anyone who knows the

public parameters and the group encryption key can produce the ciphertext

c = (c1, c2, c3), where t  Zp, c1 = gt, c2 = Rt, and c3 = mAt.

7) Decryption: e(i,g)e(hi, R) = A, each player Ui can decrypt

m = c3 / e(i,c1)e(hi, c2).

This scheme is an asymmetric group key agreement scheme. The

scheme has advantage in that it uses an aggregatable signature based broadcast in

23

which a public key can be used to verify a message, but it also has some drawbacks in

computation complexity, and no supported protocol for dynamic group.

2.4.3 Dynamic Asymmetric Group Key Agreement

This scheme was proposed by Zhao, Zhang and Tian (2011). They describe a

dynamic asymmetric group key agreement (DASGKA) protocol. The protocol is not

required central management. The protocol combines the concepts of a conventional

group key agreement, a public key encryption and a multi-signature. Their

construction is similar to an authenticated group key agreement for dynamic group.

After a shared private key is computed, a corresponding public key is published to

outsiders. In order for outsiders to trust the public key, a multi-signature is attached.

Their scheme is an asymmetric group key agreement, and it is a dynamic scheme in

which it allows users to join or leave a group efficiently without triggering a

completely new key agreement protocol.

2.4.3.1 An Instance

This subsection gives an overview of an instance for the dynamic

asymmetric group key agreement.

Definition A prime order group G is a group Diffie-Hellman (GDH) if

there exists an efficient algorithm VDDH() which solves the Decisional Diffie-

Hellman problem in G and there is no polynomial-time algorithm which solves the

Computational Diffie-Hellman problem.

1) DASGKA.Setup

On input a security parameter 1, a cyclic GDH group G = <g>

of some large prime order q is chosen. Two cryptographic hash functions H: {0, 1}*

 Zp
* and F: {0, 1}*  G are needed.

2) DASGKA.KeyGen

User Ui chooses randomly xi  Zq
* and computes PKi = gxi. Ui

keeps SKi = xi secret as the private key, and publishes PKi as public key.

3) DASGKA.KeyAgree

A group of players S = {U1,..., Un} agree to trigger the protocol

on time T. They require that there exists only one session for the same group and the

same T. All players form a circle structure, with Un+1 = U1 and U0 = Un.

24

(1) Round 1

Each Ui chooses ai  Zq
* and computes Ki = gai. Ui sets Mi

= Ui || T || H(S) || Ki, and signs it as i(Mi) = MS.Sign(SKi,Mi) = F(Mi)xi where MS

denoted as multi-signature scheme functions. Ui broadcasts (Mi,i(Mi)) to others.

(2) Round 2

Each Ui checks the validation of data from his neighbors,

namely (M i-1,i-1(M i-1)) and (M i+1,i+1(M i+1)). For instance, he checks the structure of

M i-1 and runs VDDH(g,F(M i-1),PK i-1, i-1(M i-1)) to see if (g,F(Mi-1),PK i-1, i-1(M i-1)

form a valid DDH tuple. If both are valid, Ui calculates his shared key with neighbors

Ki,i+1 and Ki-1, i, and circle calculations Xi as follows.

Ki, i+1 = (Ki+1)ai = gai ai+1, Ki-1, i = (Ki-1)ai = gai-1ai ,

Xi = H(Ki,i+1)  H(Ki-1,i),

M i = Ui || T || H(S) || Xi;

i(M i) = MS.Sign (SKi,M i) = F(Mi)xi.

Ui broadcasts the message and the signature (M i, i(M i))

to others.

(3) Key computing

After receiving all the messages, Ui checks the validation of

all (M j, j(M j)), j  {1,. . .,n}, ji. If valid, Ui obtains all the circle calculations Xj

and checks whether X1. . . Xn= 0. If so, the handshake is accepted and shared

session key is SK = H(H(K1,2),. . .,H(Ki,i+1),. . .,H(Kn,1),T), where H(Ki-j,i-j+1) = H(Ki,i+1)

 Xi-1. . . Xi-j, with j = 1,. . .,n - 1.

4) DASGKA.PkGen

With the shared secret key SKZq
* , anyone in the group can

generate a common public key PK = gSK. If the group wants to publish the public key

to outsiders, each player needs additional round for generating a multi-signature as

follows. Each player Ui sets M = T || H(S) || PK, i(M) = F(M)xi and broadcasts i(M)

to others, which can be verified by using VDDH(). Then 1,. . .,n(M) =  n
i=1 i(M) =

F(M) 
n
i=1 xi is a multi-signature for PK and the group descriptions S. It can be

verified by using VDDH() to decide whether form (g, F(M), 1, …, n (M))

25

a valid DDH tuple. The public key PK, time stamp T, group description S and the

signature 1,. . .,n(M) are made public.

5) DASGKA.Enc

Anyone who wants to send message mG to the group, can

select randomly kZq
* and compute c = (c1,c2) = (gk,m  PKk). The ciphertext c is

sent to the group.

6) DASGKA.Dec

On receiving the ciphertext c, any group member with the

shared private key SK can calculate m = c2  c1
SK to recover the message.

7) DASGKA.Join

We suppose S = {U1, ..., Un} to be the current group and J =

{Un+1, ..., Un+n} (n1) to be a set of outsiders hoping to join the group. The agreed

joining time is T. They form a new circle structure among the members S = {U1,...,

Un+n}, with Un+n+1 = U1. The neighborhood changing concerns only U1 and Un among

the old members.

(1) U1, Un and {Un+1, ..., Un+n} interacts as Round 1 of

DASGKA.KeyAgree on the new time stamp T and the new group S. U1 uses the

previous K1 and Un uses previous Kn.

(2) U1, Un and {Un+1, ..., Un+n} interacts as Round 2 of

DASGKA.KeyAgree. The shared key between U1 and U2, as well as the shared key

between Un-1 and Un, remains unchanged. Ui broadcasts its previous circle calculation

value Xi,2  i  n -1. If anyone finds that some player outputs a value different from

the previous one, he alerts all players and returns reject.

(3) All players in S run as Key Computing of

DASGKA.KeyAgree to obtain a new shared private key, except for that they only

need to check the validation of n+ 2 messages from U1, Un and {Un+1, ..., Un+n}

(4) All players in S run DASGKA.PkGen to refresh the

public key and the multi-signature.

8) DASGKA.Leave

For convenience of explanation, we assume that only a member

Ui  S leaves the group S. Member leaving in bulk can be done simultaneously. The

26

remainders form a new circle structure among the members S= {U1, . . . , Ui-1, Ui+1, . .

. , Un}. The neighborhood changing concerns only Ui-1 and Ui+1. New time stamp T

and the new group S are used during the protocol.

(1) Ui-1 and Ui+1 interact as Round 1 of DASGKA.Key-
Agree, using the previous Ki-1 and Ki+1.

(2) Ui-1 and Ui+1 interact as Round 2 of DASGKA.Key-
Agree. The shared key between Ui-2 and Ui-1, as well as the shared key between Ui+1
and Ui+2, remains unchanged.

(3) All players in S run as Key Computing of

DASGKA.KeyAgree to obtain a new shared private key, except for that they only
need to check the validation of two messages from Ui-1 and Ui+1.

(4) All players in S run DASGKA.PkGen to refresh the

public key and the multi-signature.
This scheme is an asymmetric group key agreement scheme. The

scheme has advantage in that it has protocols; join and leave protocols in which they
support for a dynamic group, but it also has some drawbacks in computation complexity.

2.5 Identity-Based Broadcast Encryption Scheme

 This section gives an overview of a research in an identity-based broadcast
encryption scheme as proposed by Du, Wang, Ge, and Wang (2005). In this scheme,
an identity-based broadcast encryption is used to distribute a key over a network, so that
each member can compute a specified key. Then a conventional private key cryptosystem
such as data encryption standard (DES) can be used to encrypt subsequent messages.
 Their scheme consists of a center and a set of users U = {IDi | i = {1,…,n}),
where IDi is a unique identifier of user i. Each user has a public/private key pair
(Qi,Si). The broadcast encryption is as the following.

2.5.1 Algorithms
2.5.1.1 Setup

 A private key generator chooses a random number s  Zq
* and set

Ppub = sP. Then the private key generator publishes system parameters params = {G1,
G2, q, P, Ppub, H1, H2}, and keep s as a master key.

27

2.5.1.2 Private Key Extraction

 A user submits his identity information ID to private key generator.

Then private key generator computes the user’s public key as QID = H1(ID), and

returns his private key SID = sQID.

 2.5.1.3 Encryption

 The center computes and a (n-1  n) matrix which is

defined as the following.

 The center also form n-1 auxiliary keys

 QVi = (Q1,Q2,…,Qn)  ai where 2  i  n which means that

 QV2= Q1 + Q2

 QV3= Q1 + Q3

 QVn= Q1 + Qn.

 The cryptogram is then formed by computing,for some random r  Zq
*

 U1 = rP, Ui = r QVi where 2  i  n

 V = k  H2(e(Ppub, r QV1))

 The center outputs the ciphertext (Ui, 1  i  n, V) and broadcast it to

the set of users U.

 2.5.1.4 Decryption

 The recipient IDi set a vector a1 = (0,…0,1,0,…0) with n elements, and

only the ith element is 1. Then A is a n  n matrix

 The recipient IDi can solve the following system of equations

(x1,x2,…,xn)  A = (1 1 … 1). With (x1,x2,…,xn) they can get

QV1
 = Σ Qi

n

i=1

28

 To decrypt the ciphertext, the recipient IDi needs to compute

e(Ppub, r QV1) , which with knowledge of the private key Si it can do via:

 e(Ppub, r QV1)

 = e(Ppub, r(x1Qi + x1 QV2 + … + xn QVn))

 = e(Ppub, rx1Qi) e(Ppub, r(x2 QV2+ … + xn QVn))

 = e(rP, x1sQi) e(Ppub, x2rQV2+ … + xn rQVn)

 = e(U1, x1Si) e(Ppub, x2U2 + … + xn Un)

 Then the recipient can compute

 K = V  H2(e(U1, x1Si) e(Ppub, n i=2 xiUi))

2.5.2 Analysis

In that paper, the authors also gives analyze of the identity-based broadcast

encryption scheme both in computation and communication costs.

2.5.2.1 The computation cost for encryption by the center is as the

following

1) 2n-2 additions in the group G1.

2) n +1 scalar multiplications in the group G1.

3) One pairing computation.

4) One hashing computation.

5) One XOR operation.

2.5.2.2 The computation cost for decryption per user is as the

following

1) Solving a set of linear equations with n variables using

Cramer’s Rule.

2) n-1 additions in the group G1.

29

3) n scalar multiplications in the group G1.

4) Two pairing computations.

5) One hashing computation.

6) One XOR operation.

The communication cost of this scheme is one broadcast, which includes n

elements in the group G1 and a message V  {0,1}*.

This paper proposes an identity-based broadcast encryption scheme for

distributing a group key. Members can use this group key in symmetric way to

encrypting or decrypting a message. The scheme itself is an asymmetric key

distribution. The disadvantage in this scheme is that it needs a trust centralized

management. When group members are changed, the center must compute a new

series of member’s public keys. This can be occurred when a new member needs to

join a group or an existing member has left the group.

CHAPTER 3

BROADCAST ENCRYPTION BASED ON BRAID GROUPS

 A proposed broadcast encryption scheme is made up of three phases; setup,

encryption, and decryption. In the setup phase, when any user needs to join a group,

he sends a join request message to a director. The director is one of the group

members and everyone knows published braids denoted as gi of others. Each user can

compute his own public keys PKi from his private key Ki, the published braid go of

another node at the same level in a key tree and his published braid gi. The proposed

scheme uses the key tree, mentioned in Norranut Saguansakdiyotin and Pipat

Hiranvanichakorn (2012), to construct a public group key. The public group key

PKGroup can be computed individually from a user private key Ki and other public key

according to ith position of the user node in the tree. This chapter first mentions the

notation of key tree and then states the detail of algorithms. In the encryption phase, it

shows that anyone outside a group can send encrypted message to the group members.

This chapter also demonstrates the decryption method in the decryption phase. At the

end of this chapter, it states complexity of the proposed scheme by comparing with

other schemes in broadcast encryption.

3.1 Key Tree Notation

 A key tree was earliest proposed by Wallner, Harder, and Agee (1997) as a

tool in centralized group key distribution systems and was adapted by Kim, Perrig,

and Tsudik (2000) for using in fully distributed, contributory key agreement. Figure

3.1 shows an example of key tree mentioned in Norranut Saguansakdiyotin and Pipat

Hiranvanichakorn (2012). It is a binary tree which has only left subtree. The tree

composes of both intermediate and leaf nodes. The root node is located at level 0 and

the lowest leaf is at level h. Each node is represented as <l,v> where l and v are

31

denoted as vth node at level l in a tree. As shown in Figure 3.1, a member node Mi

where i  (1…N) is located only at a leaf of the tree. Each member node is associated

with a private keys pair (K<l,v>, K-1
<l,v>) and a published braid g<l,v>. A public key of

each member node PK<l,v> = K<l,v> g<l,v' > g<l,v> K-1
<l,v> where v' is another node at the

same level. For an intermediate node, which is not a member node K<l,v> = K<l+1, 2v>

PK<l+1, 2v+1> K-1
<l+1, 2v> or K<l,v> = K<l+1, 2v+1> PK<l+1, 2v> K-1

<l+1, 2v+1>. A key K<l,v> and a

public key PK<l,v> of an intermediate node is computed independently from the values

of key and public key of child nodes to achieve a subgroup key.

Figure 3.1 Notation of Key Tree

3.2 Setup

 Assume that users A, B, and C join a group simultaneously. These users can

be ordered according to some criteria such as MAC address or IP address. The first

member of a group is the director and is located at the left highest level node in a key

tree. Each user has his private key Ki, which is a braid in the different braid groups of

each other. In order to setup a group each user needs to compute their own public

keys PKi. The public key of user ith is Ki gogi Ki
-1 where go is a published braid of

32

another node at the same level in a key tree and gi is his own published braid. The

published braid gi must be in the same braid group of Ki. The following shows an

example of how to compute a public group key in setup phase;

 User A: KA = a where a  Ba (A’s private key)

 g
A
  Ba (A’s published braid)

 PKA = ag
B
g

A
a-1 (A’s public key)

 User B: KB = b where b  Bb (B’s private key)

 g
B
  Bb (B’s published braid)

 PKB = bg
A
g

B
b-1 (B’s public key)

 User C: KC = c where c  Bc (C’s private key)

 g
C
  Bc (C’s published braid)

 PKC = cg
A
g

B
g

C
c-1 (C’s public key)

 Assume that the order of a group member is users A, B, and C respectively, so

user A is the director of the group. At this time a key tree is formed as shown in

Figure 3.2. The director can compute key tree consisting of member public keys PKi

and public group keys PKGroup. In a key tree, a member node has public key and

published braid, but an intermediate node has only public subgroup key. In this case,

the key tree consisting of the values of PKA, PKB, PKAB, PKC, and PKABC as well as

published braids of the members. The director, user A, must broadcast this key tree to

all members.

 When every member in the group receives the key tree, they can use this key

tree information in the future in order to compute a new public group key PKGroup if

they are selected to be a director. This is because every member can also compute a

group key KGroup by using information in a key tree. From the previous scenario, user

B and C can also compute the group key KABC as the following;

For user B’s point of view;

 KABC = KAB PKC (KAB) -1 where

 KAB = b PKA b -1

33

 For user C’s point of view;

 KABC = c PKAB c -1

Figure 3.2 Group Key at Setup Phase Computed by User A

 Next is an example of how to define values of braids for each user. In this

scenario, there are four users; A, B, C, and D, so the braid group B20 can be used.

Each user’s private key must be on different braid groups, so the braid indexing 1 to 5

can be defined for user A, braid index 6 to 10 for user B, and so on. The published

braid gi must be in the same braid group with Ki. The following gives an example of

how to compute key tree.

 Published braids:

gA: σ2σ2 gB: σ9σ6 gC: σ11σ14

 For user A:

 A’s private key: σ1σ4σ3

 A’s public key: (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1

34

 For user B:

 B’s private key: σ8σ7σ9

 B’s public key: (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1

 For user C:

 C’s private key: σ11σ12σ13

 C’s public key: (σ11σ12σ13) σ2σ2σ9σ6σ11σ14 (σ11σ12σ13)
-1

 The director, user A, can compute key tree as the following;

 KAB = a PKB a
-1

 = (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 (1)

 PKAB = KAB gAgBgC KAB
-1

 = (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ2σ2σ9σ6σ11σ14 (σ1σ4σ3)

(σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1

 The value of KAB can also be computed by user B as the following;

 KAB = b PKA b-1

 = (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1 (σ8σ7σ9)

-1 (2)

 We can see that (1) = (2)

 KABC = KAB PKC KAB -1

 = (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13) σ2σ2σ9σ6σ11

σ14 (σ11σ12σ13)
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1(σ8σ7σ9)

-1(σ1σ4σ3)
-1 (3)

 PKABC = KABC gAgBgC KABC
-1

 = (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13) σ2σ2σ9σ6σ11

σ14 (σ11σ12σ13)
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1 (σ8σ7σ9)

-1(σ1σ4σ3)
-1 σ2σ2σ9σ6σ11σ14

(σ1σ4σ3)(σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13) σ14
-1σ11

-1σ6
-1σ9

-1σ2
-1σ2

-1

(σ11σ12σ13)
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1 (σ8σ7σ9)

-1(σ1σ4σ3)
-1

 The value of KABC can be computed by user B and C as the following;

35

 For user B:

 KABC = KAB PKC KAB -1

 = (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1

 (σ8σ7σ9)
-1(σ11σ12σ13) σ2σ2σ9σ6

σ11σ14 (σ11σ12σ13)
-1 (σ8σ7σ9) (σ1σ4σ3) σ2

-1σ2
-1σ6

-1σ9
-1 (σ1σ4σ3)

-1(σ8σ7σ9)
-1 (4)

 For user C:

 KABC = c PKAB c-1

 = (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ2σ2σ9σ6σ11σ14

(σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 (σ11σ12σ13)
-1 (5)

 We can see that (3) = (4) = (5)

 In the proposed scheme, each user needs to send his or her join request

message to the group. These users know the order among them in a tree, so they can

compute their public keys and send them to a director. Then the director computes a

public group key and broadcasts it to all members, thus the total communication

messages in key agreement and public group key generation are n+1 multicast and n

unicast messages. The n multicast messages are from sending join request, and one

multicast message is from sending updated key tree. The n unicast messages are from

sending user’s public keys. The total computation costs are n + (n-1) serial numbers

of braid group multiplication. The n serial numbers of braid group multiplication are

for the public key computation of the n members, and the n-1 serial numbers of braid

group multiplication are for the public group key computation by director.

3.3 Encryption

 In this phase, a user outside the group can send a ciphertext to the group

members by encrypting it with the sender private key and the group public key. The

receivers, which are the group members, can decrypt it using their own private keys

and the sender’s public key.

36

 The following example occurs when user D, which is not the group member

referred from the previous subsection, sends a ciphertext to the group members. In

order to encrypt the message mD, user D computes the ciphertext m by encrypting it

with user D’s private key and the group public key, then he sends m together with

his public key PKD to the group members as the following;

 PKD = d gAgBgC d -1

 m = mD H (R d PKABC d -1) and sends m , a random braid R and PKD to

members of the group. The random braid R can be changed in every message that

sent.

3.4 Decryption

 Each member of the group can decrypt the ciphertext with the group key. For

short, this section gives an example of user A that is the group member wants to

decrypt the message as the following;

 mD = m H (R KABC PKD
 (KABC)-1

)

 mD = m H (R ((a PKB a -1)PKC (a PKB a -1) -1) PKD
 ((a PKB a -1) PKC

 (aPKB a -1) -1)-1
)

 From the above example, user A can use his private key a in the term KABC

and (KABC)-1
 as in the user A’s view as mentioned in the previous subsection.

3.5 Correctness

 This section shows the correctness of the proposed algorithms as the

following;

 Theorem: ab = ba where a  Bg1
, and b  Bg2

 mD = m H (R KABC PKD
 (KABC)-1

)

37

 = m H (R KABC d gAgBgC d -1 (KABC)-1)

 = m H (R d KABC gAgBgC
 (KABC)-1

 d
-1)

 = m H (R d PKABC d
 -1)

 As examples shown above, any user which is not the group member cannot

decrypt the ciphertext because he does not know the value of KABC.

3.6 Key Secrecy

 The key secrecy is the concept related to the membership changes. Typically

there are two types of the key secrecy; backward and forward secrecy. The backward

secrecy prevents a new member joining the group to know the previous ciphertext of

the group. A new group key distributing to the group members when a new member

joins the group cannot be used to decrypt the previous ciphertext. The forward secrecy

is used to prevent a left member to use the previous key to decrypt a ciphertext. The

proposed scheme fulfils the concept of both backward secrecy and forward secrecy. It

is shown by using two protocols; join and leave protocols. The join protocol is

operated when a new member needs to join a group, on the other hand the leave

protocol is operated when a member needs to leave the group.

3.7 Join Protocol

 In the proposed scheme, when a new member needs to join a group, he will

send a request to join a group message containing his published braid to a director.

The director can be anyone in the existing group members. After the director receives

the join request message, he sends a sequence of published braids of all members to

the new member. Then the new member computes his public key and sends it back to

the director. The director can generate a new key tree including the new member’s

public key and new public group key in the tree and then broadcasts this new key tree

to all members. The insertion point of a new member in a key tree is at a new root

node. From section 3.2, the setup phase, an example is continued with the scenario

when user D needs to join the group as shown in Figure 3.3. User C as a director

38

sends a sequence of published braids of all existing members gAgBgC to a new

member. User D can compute his public key and then send it back to the director. The

director can compute a new group key KABCD = KABC PKD KABC
 -1and a new public

group key PKABCD. The new member can also compute the new public group key after

getting an updated key tree but he cannot compute the previous group key KABC or KAB

because he does not know each user’s private key. Thus the proposed scheme

complies with the concept of backward secrecy.

 Next is an example of join protocol that continued from the setup phase as the

following.

 For user D:

 D’s private key: σ19σ17

 D’s published braids: σ18σ16

 D’s public key: (σ19σ17) σ2σ2σ9σ6σ11σ14σ18σ16 (σ19σ17)
-1

Figure 3.3 Key Tree After User D Joins the Group

39

The director, user C, can compute key tree as the following;

 KABCD = KABC PKD KABC -1

 = (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ2σ2σ9σ6σ11σ14

(σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 (σ11σ12σ13)
-1 (σ19σ17) σ2σ2σ9σ6σ11

σ14σ18σ16 (σ19σ17)
-1 (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)

-1(σ1σ4σ3)
-1 σ14

-1

σ11
-1σ6

-1σ9
-1σ2

-1σ2
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1 (σ8σ7σ9)

-1(σ1σ4σ3)
-1(σ11σ12σ13)

-1

 (6)

 PKABCD = KABCD gAgBgCgD KABCD
-1

 = (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ2σ2σ9σ6

σ11σ14(σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 (σ11σ12σ13)
-1(σ19σ17) σ2σ2

σ9σ6σ11σ14σ18σ16 (σ19σ17)
-1 (σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)

-1(σ1σ4σ3)
-1

σ14
-1σ11

-1σ6
-1σ9

-1σ2
-1σ2

-1(σ1σ4σ3)(σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13)
-1

σ2σ2σ9σ6σ11σ14σ18σ16 (σ11σ12σ13) (σ1σ4σ3)
 (σ8σ7σ9)

 σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1

 σ2σ2σ9σ6σ11σ14 (σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1(σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13)
-1

(σ19σ17) σ16
-1σ18

-1σ14
-1σ11

-1σ6
-1σ9

-1σ2
-1σ2

-1 (σ19σ17)
-1(σ11σ12σ13) (σ1σ4σ3) (σ8σ7σ9)

 σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1 σ14
-1σ11

-1σ6
-1σ9

-1σ2
-1σ2

-1 (σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1

(σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13)
-1

 The value of KABCD can be computed by user D as the following;

 KABCD = d PKABC d-1

 = (σ19σ17) (σ1σ4σ3) (σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13)

σ2σ2σ9σ6σ11σ14 (σ11σ12σ13)
-1(σ1σ4σ3) (σ8σ7σ9) σ6

-1σ9
-1σ2

-1σ2
-1 (σ8σ7σ9)

-1(σ1σ4σ3)
-1

σ2σ2σ9σ6σ11σ14 σ18σ16 (σ1σ4σ3)(σ8σ7σ9) σ2σ2σ9σ6 (σ8σ7σ9)
-1(σ1σ4σ3)

-1(σ11σ12σ13) σ14
-1

σ11
-1σ6

-1σ9
-1σ2

-1σ2
-1(σ11σ12σ13)

-1(σ1σ4σ3) (σ8σ7σ9) σ6
-1σ9

-1σ2
-1σ2

-1 (σ8σ7σ9)
-1(σ1σ4σ3)

-1

(σ19σ17)
-1 (7)

 We can see that (6) = (7)

 The total communication messages for join protocol are two multicast and two

unicast messages. The first multicast message is a join request message from new

member to a group. The second multicast message is an updated key tree message

sending by a director. Two unicast messages are from sending a sequence of

40

published braids of all existing members by a director and sending a new member’s

public key. The total computation costs are three serial numbers of braid group

multiplications. One braid multiplication is at new member to compute his public key,

and two braid multiplications are at director to compute new subgroup key and new

public group key.

 The multiple join occurs when any m users want to join a group

simultaneously. In this case, the joining users can know the order among them, so the

total communication messages are m+2 multicast and m unicast messages. The m

multicast messages are from sending join request by m joining users. Two multicast

messages are from sending a sequence of published braids of all members and

sending updated key tree by a director. The m unicast messages are from sending

each user’s public key. The total computation cost is 2m+1 serial numbers of braid

group multiplication.

3.8 Leave Protocol

 The leave protocol operates when any user needs to leave the group. A leaving

member sends a leave request message to a director. For the proposed scheme, the

director is designed to be a member below the leaving node in a tree in order to

minimize the computation. In a case that the leaving node is the first member in an

existing tree, the director can be the second member in the tree. The director has to

compute a new key tree, and then broadcasts it to all members. The next example is

continued with the scenario from the join protocol in section 3.7. In this leave

protocol scenario, it is assumed that user C is going to leave the group. User B is

going to be a director of the group and responsible to compute a new key tree as

shown in Figure 3.4. In this case, user B computes a new public key PKAB, a new

group key KABD = KAB PKD KAB
 -1, and a new public group key PKABD. Then user B

broadcasts new key tree to all members. The proposed scheme designed to comply

with the concept of forward secrecy as stated above. For example, the leaving user C

cannot know the value of the new group key KABD and he cannot use his private key to

decrypt messages.

41

 Next is an example that continued from the join operation as the following.

 The director, user B can compute key tree as the following;

 KABD = KAB PKD KAB
 -1

 = (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1 (σ8σ7σ9)

-1 (σ19σ17) σ2σ2σ9σ6σ18σ16

(σ19σ17)
-1(σ8σ7σ9) (σ1σ4σ3) σ2

-1σ2
-1σ6

-1σ9
-1 (σ1σ4σ3)

-1 (σ8σ7σ9)
-1 (8)

 PKABD = KABD gAgBgD KABD
-1

 = (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1 (σ8σ7σ9)

-1 (σ19σ17) σ2σ2σ9σ6σ18σ16

(σ19σ17)
-1(σ8σ7σ9) (σ1σ4σ3) σ2

-1σ2
-1σ6

-1σ9
-1 (σ1σ4σ3)

-1 (σ8σ7σ9)
-1 σ2σ2σ9σ6 σ18σ16 (σ8σ7σ9)

(σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1(σ8σ7σ9)

-1(σ19σ17) σ16
-1σ18

-1σ6
-1σ9

-1σ2
-1σ2

-1(σ19σ17)
-1(σ8σ7σ9)

(σ1σ4σ3) σ2
-1σ2

-1σ6
-1σ9

-1(σ1σ4σ3)
-1 (σ8σ7σ9)

-1

 The value of KABD can be computed by user D as the following;

 KABD = d PKAB d-1

 = (σ19σ17) (σ8σ7σ9) (σ1σ4σ3) σ9σ6σ2σ2 (σ1σ4σ3)
-1(σ8σ7σ9)

-1 σ2σ2σ9σ6σ18σ16

(σ8σ7σ9) (σ1σ4σ3) σ2
-1σ2

-1σ6
-1σ9

-1(σ1σ4σ3)
-1(σ8σ7σ9)

-1(σ19σ17)
-1 (9)

 We can see that (8) = (9)

Figure 3.4 Key Tree After User C Leaves the Group

42

 The total communication messages for leave protocol are ≤ (n-1) + 1 unicast

and one multicast messages. One unicast message comes from sending leave request

to the director. In worse case, the remaining members must compute their new public

keys and send them to a director, so this requires (n-1) unicast messages. The one

multicast message is for sending updated key tree by the director. In worse case, the

number of computation costs in this protocol is equal to (n-1) + (n-2) when the

leaving user is the first one that has joined the group.

 The multiple leave occurs when any m users want to leave a group

simultaneously. In this case the total communication messages are m + (n-m) unicast

in worse case and one multicast messages. The m unicast messages are from m living

member in sending leave request and (n-m) unicast messages are from the remaining

member in sending new public keys to a director as in worse case. The only one

multicast message is for sending updated key tree by a director. The total computation

cost is (n-m) + (n-m-1) serial numbers of braid group multiplication.

3.9 Collude Attack

 A collude attack can be occurred when two or more users work together and

they can forge a valid private key which it will be given to anyone. The proposed

scheme can resist a collude attack like this. The first reason is that in the proposed

scheme a private key of user comes from user itself, so it is not distributed from

private key generator. Users can produce their own private keys and then publish

public keys to others. The second is that public and private keys of user are related

together e.g. PKA = (KA)gOgA(KA)-1. If someone forges a private key of anyone, so his

private and public keys are not related then he can know it.

3.10 Complexity

 This section gives the comparison on the proposed broadcast group-oriented

encryption scheme with the scheme proposed by Ma et al., Wu et al. and Zhao et al. in

both communication and computation costs.

43

 3.10.1 Communication Cost

 The communication cost is shown in Table 3.1. The communication costs are

analyzed by comparing both unicast and multicast messages for every member in the

system. For join and leave operations, the assumptions that there are n existing

members in a group and m members need to join or leave the group are used. For Ma

et al., they do not state how to publish the public group key and send private key to

each member, so it supposes to used unicast message and is written down with

remark. Another notation in this table is that the join and leave operations were not

proposed in Ma et al. and Wu et al. scheme. For Zhao et al. (2011) the process for

generating a multi-signature is omitted because the comparison in the same condition

with the others is needed.

3.10.2 Computation Cost

 The computation cost is shown in Table 3.2. The values in the table are

measured in Big-O notation. The proposed scheme has only multiplication in braid

groups while the others have both multiplication in G or Gτ (where Gτ comes from

e: G × G  G), and also exponentiation.

44

Table 3.1 Communication Cost of Broadcast Encryption Schemes

Scheme Operation Message
Unicast
Message

Multicast
Message

Ma, Wu, Li

KeyAgree and PKgen n * n * -

Join - - -

Leave - - -

Wu, Mu, Susilo,
Qin, Domingo-

Ferrer

KeyAgree and PKgen n - n

Join - - -

Leave - - -

Zhao, Zhang, Tian

KeyAgree and PKgen 2n - 2n

Join 2m+4 - 2(m+2)

Leave 2m - 2m

Proposed Scheme

KeyAgree and PKgen 2n+1 n n+1

Join 2m+2 m m+2

Leave n+1 n 1

Note: * Does not Mention Clearly

45

Table 3.2 Computation Cost of Broadcast Encryption Schemes

Scheme Operation Computation

Ma, Wu, Li

KeyAgree and PKgen O(n)E

Join -

Leave -

Wu, Mu, Susilo,
Qin, Domingo-

Ferrer

KeyAgree and PKgen O(n)M + O(n)Mτ +O(n2)E + O(n)Eτ

Join -

Leave -

Zhao, Zhang, Tian

KeyAgree and PKgen O(n)E

Join O(n+m)E

Leave O(n+m)E

Proposed Scheme

KeyAgree and PKgen O(n)Mul

Join O(m)Mul

Leave O(n-m)Mul

Note: n: the total number of members in the protocol,

m: the number of members who want to join/leave the group,

G: element in G, Gτ: element in Gτ ,

M: multiplication (or division) in G,

E: exponentiation in G,

Mτ: multiplication (or division) in Gτ,

Mul: multiplication in braid groups.

CHAPTER 4

IDENTITY BASED BROADCAST ENCRYPTION

BASED ON BRAID GROUPS

 This chapter shows the way to apply the concept of the identity based

encryption scheme to the proposed scheme in broadcast encryption based on braid

groups mentioned in chapter 3 and it is called an identity based broadcast encryption

scheme. First of all, an idea of how to apply the concept of braid groups to the identity

based encryption is expressed. The reason in applying braid groups to the identity

based encryption is to reduce the exponential cost in bilinear pairing operation. This

chapter also gives an example in applying braid group to the identity based

encryption, then gives an example of identity based broadcast encryption scheme

based on braid groups. The proposed scheme is designed to support for a dynamic

group, which new users can join the group or existing members can leave the group.

The final section shows the comparison result with another scheme on an identity

based broadcast encryption. The proposed scheme needs a private key generator only

in private key extraction operation in the beginning, but for group operations such as

in setup, join and leave phases it does not require the private key generator.

4.1 Identity Based Encryption Based on Braid Groups

 The braid groups concept can be applied to the identity based encryption

scheme, but some hard problems such as conjugacy search problem in braid groups

makes it to be nontrivial problem. This section gives an example that Alice, Bob and

Charlie need to send ciphertext to each other using the identity based encryption

based on braid groups. The identity based encryption based on braid group also has

four steps; setup, private key extraction, encryption and decryption as stated in the

following.

47

 4.1.1 Setup

 In the proposed scheme on the identity based encryption based on braid

groups, each user needs to send their identities to a private key generator. The private

key generator encodes their identities into braids, and then divides each braid of each

user into two braids. For example an identity of a user ith can be encoded into a braid

gi, then this braid is divided into left and right braids; gil , gir. The private key

generator then prepares private braid groups; g, z1, z2, z3, and z4. Each user has two

private keys; SK1i and SK2i where SK1i is equal z1 gil
z2 and SK2i is equal z4 gir

 z3. The

braid groups g, g1,…, gn have to be on different braid groups. The braid z1, z2, z3 and z4

must have the index expanded on all braid groups; g1 to gn. Because braids g1,…, gn,

z1, z2, z3 and z4 are also in the same group, the conjugacy search problem can be

applied. The private key generator also computes public braids; Z1= z2
-1g, and

Z2 = gz4
-1 and publishes them for using in an encryption and decryption phases. These

two values, Z1 and Z2 are secure because braid z2, z4, and g are secret braids.

 4.1.2 Encoding Method

 An identity can be written as an IP address which is 32 bits long. A number in

each octet ranges from 0 to 255. These 256 numbers must be mapped into braid words

for each octet.

 Normally a braid a  Bn can be written in at most (n-1)1 + … + (n-1)n-1

positive braids as shown in the following;

 1-word long; (n-1)1 words, for example; {1, 2, 3, 4}

 2-word long; < (n-1)2 words, for example; {11, 12, 13, 14, 21, 22,

23, 24, 32, 33, 34, 43, 44}

 3-word long; < (n-1)3 words, for example; {111, 112, 113, …, 444}

 4-word long; < (n-1)4 words, for example; {1111, 1112, 1113, …,

4444}

 But using the above method, care must be concerned in that two braid words

can produce the same value such as 121 = 212 or 13 = 31.

 For ease of implementation, my suggestion is that each octet in an IP address

can be mapped by using B5 which has 8-word long as shown in Table 4.1.

48

 For example IP address in the following can be mapped into braid words;

IP address 10.5.32.255 mapped into 44441414. 44444141.

44144444. 11111111.

Thus gil = 44441414 44444141 and gir
 = 44144444

11111111.

In the Table 4.1, a braid word representing each octet contains only 1 and 4

in it. In case of the proposed scheme, the private key gi of each user is in the different

braid groups, so it must be mapped into the different braid groups.

Table 4.1 Mapping of an Octet in IPv4 into a Braid Word

Number in Each Octet in Binary Braid Words

0000 0000 4444 4444

0000 0001 4444 4441

0000 0010 4444 4414

0000 0011 4444 4411

1111 1111 1111 1111

 4.1.3 Private Key Extraction

 Each user obtains the private keys; SK1i and SK2i from a private key

generator. Figure 4.1 shows the value of braids in the setup and private key extraction

phases. The detail of the values prepared by the private key generator for Alice, Bob,

and Charlie is shown in the following.

 For Alice:

1) The private key generator encodes Alice’s identity IDA into a braid

in group g1, then divides this braid into left and right braids; g1l
 and g1r

49

2) The private key generator prepares private keys SK1A and SK2A for

Alice where SK1A = z1 g1l
 z2 and SK2A = z4 g1r

z3

 For Bob:

1) The private key generator encodes Bob’s identity IDB into a braid

in group g2, then divides this braid into left and right braids; g2l
 and g2r

2) The private key generator prepares private keys SK1B and SK2B for

Bob where SK1B = z1 g2l
 z2 and SK2B = z4 g2r

z3

 For Charlie:

1) The private key generator encodes Charlie’s identity IDC into a

braid in group g3, then divides this braid into left and right braids; g3l
 and g3r

2) The private key generator prepares private keys SK1C and SK2C for

Bob where SK1C = z1 g3l
 z2 and SK2C = z4 g3r

 z3

For the private key generator:

1) The private braid groups; g, z1, z2, z3, and z4

2) The public braid groups; g1, g2, g3, …, gn are for users 1st to nth

where g, g1, g2, g3, …, gn must be on different braid groups.

3) The private key generator prepares public braids; Z1 = z2
-1g, and

Z2 = gz4
-1

4.1.4 Encryption

 This subsection gives an example that Alice needs to send a message M to

Bob. She can encrypt it with her private key; SK1A, SK2A and an identity of Bob, IDB

as the following. The value of Z1 and Z2 are given from the setup phase.

 M = M  H{ SK1A Z1(g2)
 Z2 SK2A

 }

4.1.5 Decryption

 Bob can decrypt the message sent from Alice by using his private key; SK1B,

SK2B and an identity of Alice, IDA as the following.

 M = M  H{ SK1B Z1 (g1)
 Z2SK2B }

50

Figure 4.1 Setup and Private Key Extraction Phases for an Identity Based Encryption

 Based on Braid Groups

 4.1.6 Correctness

 This subsection shows the correctness of encryption and decryption processes

as in the following. The property of commutation braids in different braid groups is

used for example braid a and b commutes with each other, thus ab = ba. This

property of the braid groups is true, when a and b are on different braid groups.

 Theorem: ab = ba where a  Bg1
, and b  Bg2

Thus: M = M  H{ SK1B Z1 (g1)
 Z2 SK2B}

 = M H{(z1g2l
 z2)(z2

-1g) (g1) (gz4
-1)(z4g2r

z3)}

 = M  H{(z1g2l
 z2)(z2

-1g) (g1l
 g1r

) (gz4
-1)(z4g2r

z3)}

 = M  H{(z1g2l
)(g) (g1l

 g1r
)(g)(g2r

z3)}

 = M  H{(z1g1l
)(g) (g2l

g2r
) (g)(g1r

z3)}

 = M  H{(z1g1l
z2)(z2

-1g) (g2l
g2r

) (gz4
-1)(z4g1r

z3) }

 = M  H{ SK1A Z1 (g2)
 Z2 SK2A}

 = M

51

 We can see that the ciphertext, sent by Alice to Bob, cannot decrypt it by

Charlie or anybody because they do not know a value of SK1B and SK2B.

 4.1.7 Example

 This subsection shows an example of the identity based encryption based on

braid groups. This example is tested by braiding program implemented by Cha, Ko,

Lee, Han, and Cheon (2001).

 Given:

 g  123

z1  71217, z2  61119

z3  91518, z4  81318

For Alice: g1  9786 so g1l  97 and g1r  86

For Bob: g2  11141412 so g2l  1114 and g2r  1412

For Charlie: g3  18191617 so g3l  1819 and g3r  1617

A key that Alice encrypts a message M to Bob is SK1A Z1(g2)
 Z2 SK2A

 as

shown in Figure 4.2 in the left normal form.

In this case:

SK1A = z1 g1l
 z2 = (71217)(97)(61119)

Z1 = z2
-1g = (61119)

-1(123)

g2 = (11141412)

Z2 = gz4
-1= (123)(81318)

-1

SK2A = z4 g1r
z3 = (81318)(86)(91518)

52

Figure 4.2 Encryption Key Computed by Braiding Program

Figure 4.3 Decryption Key Computed by Braiding Program

A key that Bob decrypts a ciphertext M  is SK1B Z1 (g1)
 Z2SK2B as shown in

Figure 4.3 in the left normal form.

In this case:

SK1B = z1 g2l
 z2 = (71217)(1114)(61119)

Z1 = z2
-1g = (61119)

-1(123)

g1 = (9786)

53

Z2 = gz4
-1= (123)(81318)

-1

SK2A = z4 g2r
z3 = (81318)(1412)(91518)

We can see that SK1A Z1(g2)
 Z2 SK2A = SK1B Z1 (g1)

 Z2SK2B.

 4.1.8 Complexity

 This section expresses complexity in both communication and computation

costs and compares them with the identity-based encryption scheme used bilinear

pairing as in the following.

4.1.8.1 Communication Cost

For communication cost, the proposed scheme has the same cost as an

identity-based encryption (IBE) scheme using bilinear pairing. Both schemes use two

unicast messages in setup and private key extraction phases; one is for sending an

identity from a user to a private key generator and another is for the private key

generator to send a private key to user. Only one unicast message is in the encryption

phase for both schemes. Table 4.2 is a summarization of these costs.

Table 4.2 Communication Cost of Identity Based Encryption Schemes

Scheme Operation Unicast Message

IBE

Bilinear pairing

Setup and Private Key
Extraction 2

Encryption 1

Decryption -

IBE

Braid groups

Setup and Private Key
Extraction 2

Encryption 1

Decryption -

54

Table 4.3 Computation Cost of Identity Based Encryption Schemes

Scheme Operation Computation

IBE

Bilinear pairing

Setup 1M

Private Key Extraction 1H + 1M

Encryption 1M + 1P + 1H + 1XOR

Decryption 1P + 1H + 1XOR

IBE

Braid groups

Setup 2Mul

Private Key Extraction 1Enc + 2Mul

Encryption 1H + 1Mul + 1XOR

Decryption 1H + 1Mul + 1XOR

Note: M: scalar multiplication (point multiplication) in G, H: hashing operation,

P: pairing operation, XOR: XOR operation, Mul: serial multiplication in braid

groups, Enc: encoding operation {ID}braid.

4.1.8.2 Computation Cost

For the identity-based encryption scheme using bilinear pairing, there

are some operations involved such as scalar multiplication or point multiplication in

G, pairing operation, hashing operation and XOR operation, but the pairing operation

is the most dominating an execution time. For IBE using bilinear pairing, one point

multiplication is from generating the private key generator’s public key at setup

phase. One hashing operation and one point multiplication are from generating a

user’s private key at the private key extraction phase. In the encryption phase, one

point multiplication, one pairing operation, one hashing operation and one XOR

operation are used. In the decryption phase, one pairing operation, one hashing

operation and one XOR operation are used. For the identity-based encryption scheme

using braid groups, there are two serial numbers of braid group multiplication in setup

phase for generating public braids Z1 and Z2. One encoding operation is for converting

string of an identity into two braids, and two serial numbers of braid multiplication for

generating two private keys of a user at the private key extraction phase. In the both

encryption and decryption phases, one serial number of braid multiplication, one

55

hashing operation and one XOR operation are used. Table 4.3 is a summarization of

these costs.

4.2 Identity Based Broadcast Encryption Based on Braid Groups

 A concept of an identity based broadcast encryption comes from applying the

concept of an identity based encryption based on braid groups scheme from the

previous section to the broadcast encryption scheme, mentioned in the previous

chapter. The previous section gives the example that Alice encrypts message to Bob

using the identity based encryption scheme. For the identity based broadcast

encryption scheme, we can change Bob to be any group and do the same procedures

as an individual person. The group also can do the same thing as in the broadcast

encryption scheme in that the group can form a group public key used by others to

encrypt messages for that group. This group public key can be group identity

containing each user identities. Anyone needing to send encrypted message to group

members, can encrypt that message using a group identity, so group members can

decrypt it using their own private key. By comparing the proposed scheme on

broadcast encryption with this proposed scheme on the identity based broadcast

encryption, we are going to see that the later scheme does not required to setup a key

tree to manage a group public key. This can reduce the cost in group key

management. This section gives an example that Eve wants to send a ciphertext to a

group which has Alice, Bob and Charlie as group members. This section demonstrates

how to build a group by using identity based encryption scheme. Demonstration is

divided into three phases; setup, encryption, and decryption.

 4.2.1 Setup

 The setup phase continues with an example that a group has three members;

Alice, Bob, and Charlie. This subsection shows how to build a group using the

identity based cryptography. An operation starts from each member must contact to a

private key generator to obtain their private keys. Each member identity is contained

in the group identity. For ease of explanation, the following example gives a group

public key as PKGroup = (g1)(g2)(g3) as shown in Figure 4.4.

56

Figure 4.4 Setup and Private Key Extraction Phases for an Identity Based Broadcast

 Encryption Based on Braid Groups

 For this example, Eve can encrypt a message to group by using the group

public key and every group member can decrypt it using his/her own private key. The

total communication messages in key agreement and public group key generation are

2n unicast messages where n is a number of users in the system. This comes from

each user uses two unicast messages; one for a user to send identity information to a

private key generator and another for private key generator to send back private keys.

The value of the PKGroup needs to be known to all members in some ways depending

on a situation; for example it can be sent together with a ciphertext to all members in

case that a center needs to encrypt a secret shared key to the group members, or it can

be delivered to all members during a process for creating a group. The computation

cost is 2n + 3 serial numbers of braid group multiplication because three serial

numbers of braid group multiplication are for creating public braids Z1, Z2 and

PKGroup. The 2n comes from each user needs two private keys. This phase also needs

n encoding operations for converting string of identity information into braid.

57

 4.2.2 Encryption

 This section gives an example that Eve wants to encrypt message to a group

and the detail of this procedure is shown in the following.

 For Eve:

1) The private key generator encodes Eve’s identity IDE into a braid

in group g5, then divides this braid into left and right braids; g5l
 and g5r

2) The private key generator prepares private keys SK1E and SK2E for

Eve where SK1E = z1g5l
z2 and SK2E = z4g5r

z3

 For Group:

1) The group public key PKGroup = g1g2g3

 When Eve sends a message M to the group, she can encrypt it with her private

key; SK1E, SK2E and an group identity, IDGroup (or PKGroup) as the following. The

value of Z1 and Z2 are given from the setup phase.

 M = M  H{ SK1E Z1(PKGroup)
 Z2 SK2E

 }

 4.2.3 Decryption

 Group member can decrypt the message sent from Eve by using his/her private

key as the following.

 For Alice:

 M = M  H{SK1A Z1(g2) (g3)(g5) Z2 SK2A }

 For Bob:

 M = M  H{SK1B Z1(g1) (g3)(g5) Z2 SK2B }

 For Charlie:

 M = M  H{SK1C Z1(g1) (g2)(g5) Z2 SK2C }

 4.2.4 Correctness

 This section shows the correctness of encryption and decryption processes as

in the following. The property of commutation braids in different braid groups is used

58

for example braid a and b commutes with each other, thus ab = ba. This property of

the braid groups is true, when a and b are on different braid groups.

 Theorem: ab = ba where a  Bg1
, and b  Bg2

 Thus for Alice:

 M = M  H{SK1A Z1(g2)(g3)(g5) Z2 SK2A}

 = M  H{ (z1g1l
z2)(z2

-1g)(g2)(g3)(g5) (gz4
-1)(z4g1r

z3) }

 = M  H{ (z1g1l
z2)(z2

-1g)(g2)(g3)(g5l
 g5r

) (gz4
-1)(z4g1r

z3) }

 = M  H{ (z1g1l
)(g)(g2)(g3)(g5l

 g5r
)(g)(g1r

z3) }

 = M  H{ (z1g5l
)(g)(g2)(g3)(g1l

 g1r
)(g)(g5r

z3) }

 = M  H{ (z1g5l
)(g)(g2)(g3)(g1)(g)(g5r

z3) }

 = M  H{ (z1g5l
z2)(z2

-1g)(g1)(g2)(g3)(gz4
-1)(z4g5r

z3) }

 = M

 Thus for Bob:

 M = M  H{SK1B Z1(g1)(g3)(g5) Z2 SK2B}

 = M  H{ (z1g2l
z2)(z2

-1g)(g1)(g3)(g5) (gz4
-1)(z4g2r

z3) }

 = M  H{ (z1g2l
z2)(z2

-1g)(g1)(g3)(g5l
 g5r

) (gz4
-1)(z4g2r

z3) }

 = M  H{ (z1g2l
)(g)(g1)(g3)(g5l

 g5r
)(g)(g2r

z3) }

 = M  H{ (z1g5l
)(g)(g1)(g3)(g2l

 g2r
)(g)(g5r

z3) }

 = M  H{ (z1g5l
)(g)(g1)(g2)(g3)(g)(g5r

z3) }

 = M  H{ (z1g5l
z2)(z2

-1g)(g1)(g2)(g3)(gz4
-1)(z4g5r

z3) }

 = M

 Thus for Charlie:

 M = M  H{SK1C Z1(g1)(g2)(g5) Z2 SK2C}

 = M  H{ (z1g3l
z2)(z2

-1g)(g1)(g2)(g5) (gz4
-1)(z4g3r

z3) }

 = M  H{ (z1g3l
z2)(z2

-1g)(g1)(g2)(g5l
 g5r

) (gz4
-1)(z4g3r

z3) }

 = M  H{ (z1g3l
)(g)(g1)(g2)(g5l

 g5r
)(g)(g3r

z3) }

59

 = M  H{ (z1g5l
)(g)(g1)(g2)(g3l

 g3r
)(g)(g5r

z3) }

 = M  H{ (z1g5l
)(g)(g1)(g2)(g3)(g)(g5r

z3) }

 = M  H{ (z1g5l
z2)(z2

-1g)(g1)(g2)(g3)(gz4
-1)(z4g5r

z3) }

 = M

 We can see that the ciphertext, sent by Eve to the group, cannot decrypt it by

others outside the group because they do not know any member private keys.

4.2.5 Example

 This subsection shows an example of the identity based broadcast encryption

based on braid groups. This example is tested by braiding program implemented by

Cha, Ko, Lee, Han, and Cheon (2001).

 Given g  123

z1  71217, z2  61119

z3  91518, z4  81318

For Alice: g1  9786

For Bob: g2  11141412

For Charlie: g3  18191617

For Eve: g5  22212324

For Group: PKGroup  g1g2g3

The key that Eve encrypts a message M to group is SK1E Z1(PKGroup)
 Z2 SK2E

as shown in Figure 4.5 in the left normal form.

In this case:

SK1E = z1 g5l
 z2 = (71217)(2221)(61119)

Z1 = z2
-1g = (61119)

-1(123)

PKGroup  g1g2g3 = (9786)(11141412)(18191617)

Z2 = gz4
-1= (123)(81318)

-1

SK2E = z4 g5r
z3 = (81318)(2324)(91518)

60

Figure 4.5 Eve’s Encryption Key Computed by Braiding Program

The key that Alice decrypts a ciphertext M  is SK1AZ1(g2)(g3)(g5)Z2SK2A as

shown in Figure 4.6, and the key that Bob decrypt a ciphertext M  is SK1B Z1(g1)(g3)

(g5)Z2 SK2B as shown in Figure 4.7. Both are in the left normal form.

In Alice case:

SK1A = z1 g1l
 z2 = (71217)(97)(61119)

Z1 = z2
-1g = (61119)

-1(123)

g2g3g5 = (11141412)(18191617)(22212324)

Z2 = gz4
-1= (123)(81318)

-1

SK2A = z4 g1r
z3 = (81318)(86)(91518)

In Bob case:

SK1B = z1 g2l
 z2 = (71217)(1114)(61119)

Z1 = z2
-1g = (61119)

-1(123)

g1g3g5 = (9786)(18191617)(22212324)

Z2 = gz4
-1= (123)(81318)

-1

SK2B = z4 g2r
z3 = (81318)(1412)(91518)

61

We can see that SK1E Z1(PKGroup)
 Z2 SK2E

 = SK1AZ1(g2)(g3)(g5)Z2SK2A

 = SK1B Z1(g1)(g3) (g5)Z2 SK2B

Figure 4.6 Alice’s Decryption Key Computed by Braiding Program

Figure 4.7 Bob’s Decryption Key Computed by Braiding Program

62

4.3 Key Secrecy

 For backward secrecy, a new member joining the group cannot use his private

key to decrypt the previous ciphertext for that group. This is true because the previous

public group key does not contain the new member’s identity. Only a way he can

decrypt the ciphertext is to know one of the previous group member’s private key. For

the forward secrecy, when one group member leaves a group, a group public key is

changed, so a leaving member cannot use his private key to decrypt a ciphertext. The

proposed scheme fulfils the concept of both backward secrecy and forward secrecy.

This can be shown by using two protocols; join and leave protocols. The join protocol

is operated when a new member needs to join a group, on the other hand the leave

protocol is operated when a member needs to leave the group.

4.4 Join Protocol

 In the proposed scheme, we assume that each new member have already

contacted a private key generator in order to get his private key. When the new

member needs to join a group, he can send a request to join message to the group.

This message contains the new member’s public key. Every member can compute a

new group public key. From subsection 4.2.1, the setup phase, this example continues

with the scenario when user named “Delta” needs to join the group as shown in the

following.

 For Delta:

1) The private key generator encodes Delta’s identity IDD into a braid

in group g4, then divides this braid into left and right braids; g4l
 and g4r

2) The private key generator prepares private keys SK1D and SK2D for

Delta where SK1D = z1g4l
z2 and SK2D = z4g4r

z3

 For Group:

The group public key PKABCD = (g1) (g2) (g3) (g4)

63

 The total communication messages for join protocol are two unicast messages

and one multicast message; these two unicast messages for obtaining a private key

from private key generator, and one multicast message for sending a join request. The

total computation cost are three serial numbers of braid group multiplication (one for

generate new public group key and two for generate private keys for new member),

and one encoding operation to convert identity into braid.

The multiple join occurs when any m users want to join a group simultaneously. In

this case the total communication messages are 2m unicast messages and m multicast

messages, and the total computation cost is 2m+1 serial numbers of braid group

multiplication, and m encoding operation.

4.5 Leave Protocol

 The leave protocol operates when an existing member needs to leave the

group. A leaving member sends a leave request message to a group. All members can

compute a new public group key by themselves. The next example continues with the

scenario from the join protocol in section 4.4. In this leave protocol scenario, it is

assumed that user Charlie is going to leave the group. In this case, all members can

compute a new public group key PKABD == (g1) (g2) (g4). The proposed scheme

designed to comply with the concept of forward secrecy as mentioned above. For

example, the leaving user Chalie cannot decrypt a ciphertext intended for the current

group because she does not know the value of any member’s private key.

 The total communication message for leave protocol is one multicast message.

The number of computation cost in this protocol is equal one serial number of braid

group multiplication.

 The multiple leave occurs when any m users want to leave a group

simultaneously. In this case the total communication messages are m multicast messages,

and the total computation cost is one serial numbers of braid group multiplication.

64

4.6 Complexity

 This section gives a summarization in both communication and computation

costs from comparing with the scheme proposed by Du, Wang, Ge, and Wang (2005)

as in the following. In Du, Wang, Ge and Wang’s scheme, the center encrypts a key to

group members and then group member can use this key as a symmetric group key.

Their scheme also needs a center to manage member’s public keys, but the proposed

scheme does not need a center to manage member’s public keys. The comparison

takes on all operation; setup, private key extraction, encryption and decryption. The

costs for join and leave operations also are expressed in the next subsection, but these

operations do not state in the Du, Wang, Ge and Wang’s scheme. For the setup,

private key extraction, join, and leave phases, the calculation of both costs are on per

system, but for the encryption and decryption phases, the calculation are based on one

sender (a center) and one recipient. For the join and leave phases, the assumption is

that there are n existing group members and m members need to join or leave a group

simultaneously. The comment for this comparison is that in the proposed scheme, the

communication and computation costs are included the costs in contacting a private

key generator and computing at the private key generator in setup and private key

extraction, and join phases.

 4.6.1 Communication Cost

 The communication cost is shown in Table 4.4. The communication cost is

analyzed by expressing both unicast and multicast messages for every member in the

system. The communication cost in setup and private key extraction phase is O(n) for

both schemes. For the proposed scheme, the communication costs are O(m) in both

join and leave phases.

 4.6.2 Computation Cost

 The computation cost is shown in Table 4.5. The computation cost in setup

phase are O(1) on point multiplication for Du, Wang, Ge and Wang’s scheme, and

O(1) on braid multiplication for the proposed scheme. The computation cost in private

key extraction phase are O(n) on both point multiplication and hashing operations for

Du, Wang, Ge and Wang’s scheme, and O(n) on both braid multiplication and

65

encoding operations for the proposed scheme. The computation cost in encryption

phase are O(n) on both addition in G and point multiplication, and O(1) on pairing,

hashing, and XOR operations for Du, Wang, Ge and Wang’s scheme, but O(1) on

braid multiplication, hashing and XOR operations for the proposed scheme. The

computation cost in decryption phase is the same as in encryption phase in term of

Big-O notation. For the proposed scheme, the computation costs are O(m) on braid

group multiplication and encoding operations in join phase and O(1) on braid group

multiplication in leave phase.

 4.6.3 Message Size

 A ciphertext size of the Du, Wang, Ge and Wang’s scheme is depended on the

number of group members. A reason for this is that the value of Ui  G where 2  i 

n is not identity information, thus they must be sent to all members. In the proposed

scheme, a group identity, IDGroup or PKGroup, can be known by all group members, so

no need to send it together with a ciphertext in some situation. Thus a ciphertext size

in the proposed scheme is constant.

Table 4.4 Communication Cost of Identity Based Broadcast Encryption Schemes

Scheme Operation Message
Unicast
Message

Multicast
Message

Du, Wang, Ge and
Wang’s Scheme

Setup and Private Key
Extraction

(per system)

2n 2n -

Encryption

(one sender)
1 - 1

Decryption - - -

Join - - -

Leave - - -

66

Table 4.4 (Continued)

Scheme Operation Message
Unicast
Message

Multicast
Message

The Proposed
Scheme

Setup and Private Key
Extraction

(per system)

2n 2n -

Encryption

(one sender)
1 - 1

Decryption - - -

Join 3m 2m m

Leave m - m

Note: n: the total number of members in the protocol,

m: the number of members who want to join/leave the group.

Table 4.5 Computation Cost of Identity Based Broadcast Encryption Schemes

Scheme Operation Computation

Du, Wang, Ge and
Wang’s Scheme

Setup (per system) 1M

Private Key Extraction

(per system)
(n)H + (n)M

Encryption

(one sender)

(2n-2)A + (n+1)M + 1P + 1H +
1XOR

Decryption

(per member)
(n-1)A + (n)M + 2P + 1H + 1XOR

Join -

Leave -

67

Table 4.5 (Continued)

Scheme Operation Computation

The Proposed
Scheme

Setup (per system) 3Mul

Private Key Extraction
(per system) (n)Enc + (2n)Mul

Encryption

(one sender)
1H + 1Mul + 1XOR

Decryption

(per member)
1H + 1Mul + 1XOR

Join (2m+1)Mul + (m)Enc

Leave 1Mul

Note: n: the total number of members in the protocol,

m: the number of members who want to join/leave the group, A: addition in G,

M: scalar multiplication (point multiplication) in G, H: hashing operation,

P: pairing operation, XOR: XOR operation, Mul: serial multiplication in braid

 groups,

Enc: encoding {ID} braid.

CHAPTER 5

IMPLEMENTAION

This chapter shows how to implement the broadcast encryption scheme based

on braid groups mention in chapter 3. The implementation is on Ubuntu 11.10

operating systems. The program is developed in C++ programming language. The

program also uses additional braiding libraries, developed by Cha, Ko, Lee, Han, and

Cheon (2001). This chapter also states how to calculate public key for each user and

the public group key. It also expresses the way to encrypt and decrypt message and

how to build a hash function for braid group.

5.1 Program Design

 The program is implemented by using multi-threading concept. A main thread

is responsible for receiving commands from user. The user commands can be join,

leave or quit. The join command uses when user needs to join a group. The leave

command uses when he needs to leave a group, and the quit command is used when

he wants to quit a program.

 5.1.1 Main Thread

 The subsection shows a flowchart for main thread as in Figure 5.1. In this

main thread, it creates a new thread used for receiving a packet. The broadcast socket

in main thread is used for sending join request (JREQ) or leave request (LREQ)

messages. The program also records node’s own IP address and joining group in a

join request list which is implemented using link list data structure.

69

Figure 5.1 Flowchart for Main Program

5.1.2 New Thread

 This new thread is created to handle the receiving packets such as join request,

leave request, or update key tree packets. A flowchart of this new thread is shown in

Figure 5.2. The program also records a sender’s IP address and joining group of the

sender in a join request list.

70

Figure 5.2 Flowchart for New Thread

5.1.3 Sender Timer

The sender timer is useful for a situation that there exists only one sender node

broadcasting a join request message. No node replies for this request. The flowchart is

shown in Figure 5.3. When a sender’s timer is expired, the sender checks whether it is

the lowest IP address node. If it has the lowest IP address, it sets itself as a director of

a group. Then it creates key tree.

71

Figure 5.3 Flowchart in Handling Sender Time Out

5.1.4 Receive JREQ Function

 This function handles a join request packet at a destination node. The

flowchart is shown in Figure 5.4. First of all, it records a sender’s IP address and a

group to join in join request list. If a receiving node is a director of the group, it

updates key tree by adding a new member in the key tree and then broadcast an

updated key tree to others. In case that the receiving node has no information about a

director of the group and it also participates in the group, it starts a receiver timer, and

then goes to a process for selecting a group director after timer is expired.

72

Figure 5.4 Flowchart for Recv_JREQ Function

5.1.5 Receiver Timer

The receiver timer is used to waiting for a while to correct join request

messages from others. The flowchart is shown in Figure 5.5. When a receiver timer is

expired, the receiver checks whether it is the lowest IP address node in join request

list. If it has the lowest IP address, it sets itself as a director of a group. Then it create

key tree and broadcast this keytree.

73

Figure 5.5 Flowchart in Handling Receiver Time Out

5.1.6 Receive LREQ Function

 This function handles a leave request packet at a destination node. The

flowchart is shown in Figure 5.6. If a receiving node is a director of the group, it

updates key tree by removing a requested member from the key tree and then

broadcast key tree to others.

5.1.7 Receive UPDATED_TREE Function

 This function handles an updated key tree packet at a destination node. The

flowchart is shown in Figure 5.7. First, it checks that it has sent join request message

for this group or not. If a receiving node has sent a join request for this group, it stops

a receiver timer and then updates new key tree.

74

Figure 5.6 Flowchart for Recv_LREQ Function

Figure 5.7 Flowchart for Recv_UPDATED Function

75

5.2 Key Tree Calculation

 The implementation in the proposed scheme uses only positive braid word.

Each user has private key i and j, he/she needs to calculate his/her public key PKU.

This PKU has value equal to i gogu j where gu is his/her published braid and go is the

published braid of another node at the same level in a key tree. The steps for

computing this public key PKU are as the following;

1) Read the value of i and j in C++ string format.

For example; an input string for i is 1 4 3, an input string for j is 2 1 1,

and assume that gogu is 2 7

2) Convert i and j to the Artin braid by using the function.

WordToBraid(list<sint16> w, sint16 n) where w is a list of characters in string and n

is braid index. This function returns an Artin braid object.

 For example; a braid for i is σ1σ4σ3 and a braid for j is σ2σ1σ1

1) Right multiply the braid i with the braid gogu and then make the

value of this braid i gogu in left canonical form by using function MakeLCF(const

Braid&).

For example; a left canonical form of braid i gogu is σ1σ4σ3σ2σ7

2) Right multiply the braid i gogu with the braid j and then make the

value of this braid in left canonical form. This is a braid PKU.

For example; a left canonical form of braid PKU is σ1σ4σ3σ2σ7 .σ2σ1.σ1

 Each member in a group can send his/her public key PKU in left canonical

form to a director. In this case, user U sends a value 1 4 3 2 7 . 2 1 . 1 to the director.

The director can use the function RightMultiply(const Factor<P>&), got a canonical

factor form as an argument to the function, and multiply with other braid to calculate

a public group key.

 In this case; P1 is 1 4 3 2 7, P2 is 2 1, and P3 is 1. This sequence of factor can

be multiplied with other braids.

76

5.3 Encryption and Decryption

 This subsection considers the braid cryptosystem proposed in chapter 3. The

encryption and decryption scheme is as follows.

 Encryption:

 m = mU H (R u PKGroup u
 -1) where m, mU  {0, 1}M, and sends m , R and

PKU to members of the group.

 Decryption:

 mD = m H (R KABC PKD
 (KABC)-1

)

 In the above, the H: Bn  {0, 1}M is a collision-free hash function. The H can

be obtained by composing a collision free hash function of bitstrings into {0, 1}M.

This needs a function to convert braids into bitstrings. A braid written as left

canonical form Du A1 … Al can be converted into a bitstring by dumping the integer u

and permutation tables of Ai as binary digits for i = 1, …, l sequentially. Because

different braids are converted into different bitstrings, this conversion can be used as a

part of the hash H.

 For example, consider B3 which have (3 = 6) possible numbers of canonical

factors such as (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). Each

possible canonical factor can be represented by using three binary digits from 000 to

111. If a key’s length is p bits, a message block can be made in p bit block and put

both bit blocks into an exclusive-or operation.

CHAPTER 6

CONCLUSION

6.1 Conclusion

 The research proposes two schemes; the first scheme is the broadcast

encryption based on braid groups and the second scheme is the identity based

broadcast encryption based on braid groups. Both schemes are the dynamic

asymmetric key agreement scheme for broadcast encryption. The braid group concept

was applied in these schemes to reduce the computation complexity, and the identity-

based cryptosystem was applied to reduce a system complexity and cost for

establishing and managing a public key authentication framework known as the

public key infrastructure (PKI). By comparing the first proposed scheme and other

schemes in an asymmetric broadcast encryption scheme, the first proposed scheme

can support dynamic networks like mobile ad hoc networks. Comparing with another

dynamic scheme as in Zhao, Zhang, and Tian (2011), the computation costs in the

first proposed scheme are in braid multiplication, but the other are the exponentiation

in G. The communication costs for both schemes are not too different.

 By comparing the second proposed scheme on the identity based broadcast

encryption with the similar scheme as in Du, Wang, Ge and Wang’s scheme (2005),

we can see that the second proposed scheme can support well in dynamic networks.

This is because the second proposed scheme does not require a center for group key

management. The communication cost of the second proposed scheme is the same as

the other. This is O(n) unicast message in setup and private key extraction phases. The

second proposed scheme also includes the join protocol which is taken O(m) in both

unicast and multicast messages, and the leave protocol which is taken O(m) in

multicast message . The computation cost in both encryption and decryption phases

for the second proposed scheme is better than the other in which it uses O(1) in braid

group multiplication while the other uses O(n) in both point addition and

78

multiplication as well as O(1) in paring operation. The second proposed scheme also

has an advantage in that it produces a constant ciphertext.

 The comparison also was taken between the first proposed scheme in

broadcast encryption with the second proposed scheme in the identity based broadcast

encryption. Both schemes are asymmetric contributory key agreement scheme. The

former scheme requires a key tree for managing a group public key, but the later

scheme does not.

6.2 Future Works

 There are some points to be concerned for the proposed scheme in the identity

based broadcast encryption to make it more efficient. The first one is that the group

public key is getting bigger when a group number are increased. The second comes

from using the identity based cryptosystem. The identity based cryptosystem has

disadvantage in the privacy in distributing user’s private key by a private key

generator. This can be eliminated by applying the other schemes like a certificateless

cryptosystem in the proposed scheme.

BIBLIOGRAPHY

Artin, E. 1947. Theory of Braids. The Annals of Mathematics. 48, 1 (January): 101-126.

Boneh, D. and Franklin, M. 2001. Identity-Based Encryption from the Weil

Pairing. Retrieved March 20, 2011 from

http://crypto.stanford.edu/~dabo/papers/bfibe.pdf

Baek , J.; Newmarch, J.; Safavi-naini, R. and Susilo, W. 2004. A Survey of

Identity-Based Cryptography. Retrieved March 20, 2011 from

http://jan.newmarch.name/publications/auug_id_survey.pdf

Cocks, C. 2001. An Identity Based Encryption Scheme Based on Quadratic

Residues, Cryptography and Coding-Institute of Mathematics and Its

Applications International Conference on Cryptography and Coding.

Proceedings of IMA, Springer-Verlag. Pp. 360-363.

Cha, J. C.; Ko, K. H.; Lee, S.; Han, J. W. and Cheon, J. H. 2001. An Efficient

Implementation of Braid Groups. Retrieved October 20, 2011 from

http://www.iacr.org/archive/asiacrypt2001/22480144.pdf

Dehornoy, P. 2004. Braid-Based Cryptography. Contemporary Mathematics. 360: 5-33.

Du, X.; Wang, Y.; Ge, J. and Wang, Y. 2005. An ID-Based Broadcast Encryption

Scheme for Key Distribution. IEEE Transactions on In Broadcasting.

51 (2): 264-266.

Elrifai, E. A. and Morton, H. R. 1994. Algorithms for Positive Braids. Quarterly

Journal of Mathematics. 45 (4): 479-497.

Fiat, A. and Naor, M. 1993. Broadcast Encryption. Advances in Cryptology-

CRYTO 1993. Springer-Verlag. Lecture Notes in Computer Science.

773: 480-491.

Hoffstein, J.; Pipher, J. and Silverman, J. H. 2008. An Introduction to

Mathematical Cryptography. New York: Springer.

80

Kim, Y.; Perrig, A. and Tsudik, G. 2000. Simple and Fault-Tolerant Key

Agreement for Dynamic Collaborative Groups. Retrieved June 12,

2011 from http://delivery.acm.org/10.1145/360000/352638/p235-

kim.pdf?ip=202.29.108.22&acc=ACTIVE%20SERVICE&CFID=136034

141&CFTOKEN=73071967&_acm_=1351842178_4f6ffbd0e3bcdb27093

427464c56bce6-244.

Ko, K. H.; Lee, S. J.; Cheon, J. H.; Han, J. W.; Kang, J. and Park, C. 2000. New

Public-Key Cryptosystem Using Braid Groups. Retrieved August 23,

2011 from http://pdf.aminer.org/000/120/173/new_public_key_

cryptosystem_ using_braid_groups.pdf

Karu, P. and Loikkanen, J. 2000. Practical Comparison of Fast Public-Key

Cryptosystems. Retrieved October 12, 2011 from

http://www.tml.hut.fi/Opinnot/Tik-110.501/2000/papers.html

Ma, C. and Ao, J. 2009. Improved Group-Oriented Encryption for Group

Communication. Retrieved October 12, 2011 from

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5194037

Ma, C.; Wu, Y. and Li, J. 2006. Broadcast Group-oriented Encryption for

Group Communication. Retrieved October 12, 2011 from

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4064210

Naor, D.; Naor, M. and Lotspiech J. 2001. Revocation and Tracing Schemes for

Stateless Receivers. Retrieved November 12, 2011 from

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/2nl.pdf

Norrarut Saguansakdiyotin and Pipat Hiranvanichakorn 2012. Broadcast Encryption

Based on Braid Groups. International Journal of Computer Science

and Network Security. 12 (February): 12-19.

Shamir, A. 1984. Identity-Based Cryptosystems and Signature Schemes.

Retrieved November 12, 2011 from http://discovery.csc.ncsu.edu/

Courses/csc774-S07/shamir84.pdf

Thanongsak Aneksrup and Piapt Hiranvanichakorn. 2011. Efficient Group Key

Agreement on Tree-based Braid Groups. Computer and Information

Science. 4 (January): 14-27.

81

Wallner, D.; Harder, E. and Agee, R. 1997. Key Management for Multicast:

Issues and Architecture. Retrieved November 23, 2011 from

http://tools.ietf.org/html/draft-wallner-key-arch-00.

Wu, Q.; Mu, Y.; Susilo, W.; Qin, B. and Domingo-Ferrer; J. 2009. Asymmetric

Group Key Agreement. Retrieved November 23, 2011 from

http://www.iacr.org/archive/eurocrypt2009/54790154/54790154.pdf

Zhao, X.; Zhang, F. and Tian, H. 2011. Dynamic Asymmetric Group Key

Agreement for ad Hoc Networks. Ad Hoc Networks. 9, 5 (July): 928-939.

BIOGRAPHY

NAME Norranut Saguansakdiyotin

ACADEMIC BACKGROUND M.S. (Software Engineering), West

Virginia University, USA.

 M.S. (Computer Science), Rangsit

University, Thailand.

 B.S., Chulachomklao Royal Military

Academy, Thailand.

PRESENT POSITION Lecturer in Computer Engineering

Department, Siam University.

EXPERIENCES Network Engineer, Olympiathai Co.,

Ltd.

PUBLICATION 1. Norranut Saguansakdiyotin and Pipat

Hiranvanichakorn. 2011. Broadcast

Group-Oriented Encryption based on

Braid Groups. In 2011 the 7th IMT-GT

International Conference on

Mathematics, Statistics and its

Applications (ICMSA2011). July 21-23,

Bangkok Thailand.

 83

 2. Norranut Saguansakdiyotin and Pipat

Hiranvanichakorn. 2012. Broadcast

Encryption Based on Braid Groups. In

2012 International Journal of Computer

Science and Network Security (IJCSNS).

Volume 12, Number 2, February 2012,

Page 12-19.

	A DYNAMIC ASYMMETRIC KEY AGREEMENT FORBROADCAST ENCRYPTION BASED ONBRAID GROUPS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1
INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 BROADCAST ENCRYPTION BASED ON BRAID GROUPS
	CHAPTER 4 IDENTITY BASED BROADCAST ENCRYPTIONBASED ON BRAID GROUPS
	CHAPTER 5 IMPLEMENTAION
	CHAPTER 6 CONCLUSION
	BIBLIOGRAPHY
	BIOGRAPHY

