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Clustering analysis is one of the primary methods of data mining tasks with 

the objective to understand the natural grouping (or structure) of data objects in a 

dataset. The clustering tasks aim to segment the entire data set into relatively 

homogenous subgroups or clusters where the similarities of the data objects within 

clusters are maximized and the similarities of data objects belonging to different 

clusters are minimized. For supervised clustering, not only attribute variables of data 

objects but also the class variable of data objects take part in grouping or dividing 

data objects into clusters in the manner that each cluster has high homogeneity in term 

of classes of its data objects. 

This dissertation proposes a grid-based supervised clustering algorithm that is 

able to identify clusters of any shapes and sizes without presuming any canonical 

form for data distribution. The algorithm not only needs no pre-specified number of 

clusters but also is insensitive to the order of the input data objects. The proposed 

algorithm gradually partitions data space into equal-size grid cells using one 

dimension at a time. The greedy method is used to arrange the order of dimensions for 

the gradual partitioning that would give the best quality of clustering, while the 

gradient descent method is used to find the optimal number of intervals for each 

partitioning.  After all dimensions have been partitioned, any connected dense grid 

cells containing majority of data objects from the same class are merged into a cluster. 

By using the greedy and gradient descent methods as mentioned, the proposed 

algorithm can produce high quality clusters while reduce time to find the best 



 iv

partitioning and avoid the memory confinement problem during the process. On two-

dimensional synthetic datasets, the proposed algorithm can identify clusters with 

different shapes and sizes correctly. The proposed algorithm also outperforms other 

five supervised clustering algorithms when performed on some UCI datasets.  
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CHAPTER 1 

 

INTRODUCTION 

 
1.1  Problem Overview and Motivation 

 

Rapid advances in data collection methodologies have enabled the 

accumulation of vast amount of data. Extracting meaningful information from these 

data has been very beneficial as well as challenging. Data mining is the process of 

automatically discovering useful information in large data repositories. Clustering 

analysis is one of the primary methods of data mining tasks with the objective to 

understand the natural grouping (or structure) of data objects in a dataset. The main 

objective of clustering is to separate data objects into high quality groups (or clusters), 

based on similarities among the data objects. The clustering tasks aim to segment the 

entire data set into relatively homogeneous subgroups or clusters where similarities of 

data objects within any clusters are maximized and similarities of data objects that 

come from different clusters are minimized. 

Cluster analysis has long played an important role in a variety of fields. In 

biology, cluster analysis has been spent in creating the taxonomy or other words the 

hierarchical classification of living things. More recently, biologists have applied 

clustering to analyze the large amount of genetic information, as for example finding 

groups of genes that have similar functions. Clustering methodologies have been used 

in various schemes in information retrieval. One of the examples is grouping the 

search results of the World Wide Web queries into a small number of clusters, each of 

which captures a particular aspect of the query, in order to assist the web explorers in 

gaining their relevant information.  

Clustering has also been used in climate analysis in finding patterns in the 

atmosphere and ocean that have a significant impact on land climate. In psychology 

and medicine, cluster analysis has been used to identify the variations of illnesses in 

forms of their different sub-categories. Even in the business areas, clustering has been 
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used to analyze large amounts of information on current and potential customers so as 

to segment them into groups for approaching appropriate marketing activities. 

Figure 1.1 illustrates the difficulty of deciding what constitutes a cluster (Tan, 

Steinbach and Kumar, 2006: 490-491). Twenty points in the figure represent twenty 

data objects that are divided into clusters in three different ways: two clusters in figure 

1.1(b), four clusters in figure 1.1(c), and six clusters in figure 1.1(d). The boundaries 

of clusters are identified by the surrounding circles. Clusters depicted in figure 1.1(b) 

and 1.1(d) can be recognized apparently by human eyes, while clusters depicted in 

figure 1.1(c) may be not. 

 

      

      
 

Figure 1.1  Different Ways of Clustering 

Source:  Adapted from Tan et al., 2005: 491. 

 

Clustering techniques can be subdivided into three groups (Zeidat, Eick and 

Zhao, 2006: 1-2): traditional clustering, semi-supervised clustering, and supervised 

clustering.  Traditional clustering is performed in an unsupervised learning manner.  

No class label attribute of data objects is used to guide clustering them into groups.  

Figure 1.2 gives the view of performing traditional clustering upon the twenty-eight 

demonstrative data objects. Four clearly tight clusters: A, B, C, and D are depicted. 

Since the problem of finding the optimal clustering of data objects was proven to be 

NP-complete (Fowler, Paterson and Tanimoto, 1981: 133-137; Megiddo and Supowit, 

1984: 182-196 quoted in Procopiuc, 1997: 3), many heuristic methods have been 
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developed to solve the problem. Kotsiantis and Pintelas (2004: 74-78) categorized 

traditional clustering algorithms into several methods, namely, partitioning methods, 

hierarchical methods, density-based methods, grid-based methods, and model-based 

methods. 

 

 
 

Figure 1.2  Example Result of Traditional Clustering Process 

Source:  Adapted from Zeidat et al., 2006: 2. 

  

Apart from using only the similarity information, there are cases when a small 

amount of prior knowledge is available and is needed to be used as the guidance for 

the clustering process. Such knowledge concerns either in the form of the class labels 

of some data items or in the pair-wise constraints (in terms of ‘must-link’ or ‘cannot-

link’) between some data items. In this situation, the semi-supervised clustering can 

be approached in order to focus not only on obtaining tight clusters but also on 

satisfying the given constraints with respect to a small set of data objects. Figure 1.3 

exhibits the result of semi-supervised clustering on an example scenario. The clusters 

E, F, G, and H are generated where objects belonging to different classes are 

separated into different clusters, whereas those belonging to the same classes are 

grouped into the same clusters. Notice information of class labels of some objects are 

used to guide the semi-supervised clustering.  

 

 

 



4 
 

 

 
 

Figure 1.3  Example Result of Semi-supervised Clustering Process 

Source:  Adapted from Zeidat et al., 2006: 2. 

 

Unlike the goal of traditional unsupervised clustering, the goal of supervised 

clustering is to identify class-uniform clusters that have high data densities (Zeidat et 

al., 2006: 3). According to them, not only data attribute variables, but also a class 

variable, take part in grouping or dividing data objects into clusters in the manner that 

the class variable is used to supervise the clustering. Supervised clustering differs 

from semi-supervised clustering in that the former method utilizes prior knowledge 

(in terms of class labels) of all data objects, while the latter method needs the prior 

knowledge of some data objects in a given dataset. At the end of supervised clustering 

process, each cluster is assigned with specific class label corresponding to the 

majority class of data objects inside the cluster. Eick, Zeidat and Zhenghong (2004: 

774-776) proposed supervised clustering algorithm that uses a fitness function which 

maximizes the purity of clusters while keeping the number of clusters low. The 

example scenario describing the result of their supervised clustering is shown in 

figure 1.4 where data objects are grouped into four clusters: I, J, K, and L, each of 

which governs objects of the same class only. 
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Figure 1.4  Example Result of Supervised Clustering Process 

Source:  Adapted from Zeidat et al., 2006: 2. 

 

Supervised clustering concept has been used in various applications. Dettling 

(2003: 1-8) used supervised clustering technique in revealing groups of co-regulated 

predictor variables (genes) in microarray data which are controlled by external 

(supervised) information in order to predict a certain type of disease. His approach 

yielded more effective result than any unsupervised techniques clustering. Aggarwal, 

Gates and Yu (1999: 352-356) proposed methods for building categorization systems 

to categorize documents by applying supervised clustering, using a priori knowledge 

of the definition of each category. They built a categorization system using a set of 

classes from the Yahoo! Taxonomy and showed that the supervised clustering created 

a new set of classes which were surveyed to be as good as the original set of classes in  

the Yahoo! Taxonomy, but which are naturally suited to automated categorization. 

The result is a system which has much higher overall quality of categorization than 

systems based on manual taxonomies. Zeidat et al. (2006) and Eick et al. (2004) used 

supervised clustering information in creating background knowledge for a dataset. 

This knowledge was used to analyze the distribution of the instances of classes in the 

attribute space with the objective to discover the subclasses of each particular class. 

They also proposed supervised clustering as a tool to select the minimal subset of 

examples from a training dataset that would enhance the accuracy of a classifier. As 

simple classifiers are known to exhibit low variances and high biases, Zeidat et al. 

(2006) proposed using supervised clustering to enhance simple classifiers via class 

decomposition. 
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1.2  Dissertation Objectives 

 

Until recently, there have been quite a few previous works in the area of 

supervised clustering algorithms. Due to the acknowledgment that no single clustering 

method can adequately handle all sorts of cluster structures and that different 

clustering approaches often define different definitions for clusters, it is impossible to 

define either a universal algorithms or a universal fitness function to measure 

clustering quality. However, most of the supervised clustering algorithms still contain 

one or the other drawbacks. For a number of algorithms, the clustering results may 

depend on the ordering of data objects that are presented, i.e. their result clusters may 

be not identical if the ordering of input data differs. Some algorithms need to have 

pre-specified number of clusters, or moreover the initialization of the cluster 

representatives, as the guidance in the clustering process. Other algorithms may 

decrease their clustering proficiency by restricting the result clusters to be within the 

global shape boundaries. 

As mentioned in Kotsiantis et al. (2004: 79) that “A solution for better results 

could be instead of integrating all requirements into a single algorithm, to try to build 

a combination of clustering algorithms.”, the contribution of this dissertation is to 

propose the new idea of supervised clustering algorithm based on the combination of 

two methods, i.e. grid-based approach to density clustering method and bottom-up 

subspace clustering method. The proposed algorithm is intended to eliminate all 

mention drawbacks occurred in the previous algorithms. The algorithm gradually 

partitions data space into equal-size nonempty grid cells (containing data objects) 

using one dimension at a time for partitioning, and merges the connected grid cells 

with same data class majorities to form partial clusters until all dimensions have been 

partitioned. This process follows the framework of bottom-up subspace clustering. To 

gradually partition data space into nonempty grid cells, the proposed algorithm first 

finds the order of dimensions to be used for the gradual subspace clustering by 

considering each of the data dimensions as the only dimension for partitioning 

(individual dimension subspace clustering). The optimal number of equal intervals to 

achieve the best quality of supervised clustering for each partitioning of a dimension 

is determined using the gradient descent search instead of sequential search as 
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presented in Pornpimol Bungkomkhun and Surapong Auwatanamongkol (2009: 539-

541). Next, the bottom up subspace clustering is performed by gradually partitioning 

data space using one dimension at a time. Using the greedy approach, dimensions are 

selected to be the next dimension for partitioning based on their clustering quality 

fitness values achieved from individual dimension clustering. The optimal individual 

dimension clustering is also performed using the same gradient descent method. Once 

all dimensions have participated in the partitioning, grid cells are formed and all 

connected nonempty cells containing the majority of data from a same class are 

merged into a cluster. Finally, each cluster is then labeled with its majority class of 

data. 



 

CHAPTER 2 

 

LITERATURE REVIEW 

 
The proposed algorithm is the supervised clustering algorithm that relies on 

grid-based clustering method in quantizing data space into grid cells in the bottom-up 

fashion by gradually adding dimensions into the cells one at a time. All adjacent cells 

whose classes are identical are finally merged into the same cluster by applying 

density-based clustering concept. In this section, essential backgrounds on traditional 

clustering, subspace clustering and supervised clustering are provided. Reviews on 

clustering algorithms relevant to the proposed algorithm are also given.  

 

2.1  Traditional Clustering 

 

2.1.1  Partitioning Algorithm 

The basic idea of partitioning algorithms is to partition the data objects into a 

set of k clusters. Usually, the algorithms start with an initial partition and afterwards 

use the iterative control strategy to assign each object to the closest cluster with regard 

to optimizing the defined objective function. There are mainly two approaches, k-

means and k-medoid algorithms (Tan et al., 2006: 496-514), which are different in the 

way the clusters are represented. In the k-means algorithm, each cluster is represented 

by the center of its gravity, whereas in the k-mediod algorithm, one of the object 

located near the center of the cluster is used as the representative of the cluster. The 

partitioning algorithms are effective only in case of clusters that have convex shapes, 

similar sizes, and commensurate densities, and are under the reasonably estimated 

number of clusters (Kotsiantis et al., 2004: 79), however.   

  

2.1.2  Hierarchical Algorithm 

The hierarchical algorithms (Tan et al., 2006: 515-526) decompose data 

objects into hierarchical levels of partitioning, usually represented by a dendrogram - 
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a tree keeping track of the splitting data objects in each level. The algorithm 

recursively splits data objects into smaller subsets until the termination condition is 

satisfied. The dendrogram can be created in either the top-down manner (divisive 

approach) or in the bottom-up manner (agglomerative approach). Although having 

ability to handle clusters of different sizes, for high-dimensional data the hierarchical 

algorithms are expensive in terms of the computational and storage requirements 

(Kotsiantis et al., 2004: 79).  

 

2.1.3  Density-based Algorithm 

In density-based clustering (Tan et al., 2006: 526-532), clusters are defined as 

regions of higher density of data objects than their surrounding regions. The 

algorithms locate regions of high density that are separated from one another by 

regions of low density, and hence have major ability to form clusters of arbitrary 

shapes and sizes. The most popular density-based clustering is DBSCAN which 

proposes the idea that the density of the neighborhood of a given radius of each point 

in the same cluster has to exceed the specified threshold. The density-based 

algorithms, hence, can cope with clusters of any shapes and sizes, but still have 

trouble with high-dimensional data, especially when dealing with large datasets 

(Kotsiantis et al., 2004: 79). 

 

2.1.4  Grid-based Algorithm 

The idea of the grid-based clustering is to quantize data space into a number of 

multi-dimensional (hyper-rectangular) cells and then perform the desired operations 

on the data objects in each cell’s boundary, one cell at a time. The grid-based 

clustering approaches are frequently used as the preliminary passageway for the 

density-based clustering in the manner that data are separated into groups in 

accordance with the cells’ structures, and only data in the dense cells are processed, 

cell by cell. The clusters are finally formed from merging cells that are sufficiently 

dense. The benefit of the grid-based approach to density clustering algorithms is their 

fast processing time which depends on the number of grid cells only, not on the 

number of data objects (Sheikholeslami, Chatterjee and Zhang, 1998: 430). 
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Wang, Yang and Muntz (1997) proposed the grid-based multi-resolution 

clustering algorithm named STING (A Statistical Information Grid Approach to 

Spatial Data). The algorithm aims to facilitate the region-oriented query processing in 

such a manner that the classes of queries and clustering problems can be answered 

with no need to access the full database. The algorithm divides data space into multi-

level rectangular cells represented by a hierarchical structure. Each cell in the parent 

level is recursively partitioned into four child cells at the next lower level until the 

size of the leaf cells is less than the pre-defined density of the cells. The statistical 

information regarding the objects in each grid cell is captured and stored within the 

cells’ structures, hence the statistical parameters of the higher level cells can easily be 

computed from those of the lower level cells. When comes a spatial data mining 

query, the algorithm first determines a layer from which the query processing 

procedure is to start (it is not necessary to start with the root level), and then uses a 

top-down approach to answer the query. For each cell in the layer, the algorithm 

calculates the relevancy of the cell to the query at the specified confidence level, and 

the irrelevant cells are then removed. After finish examining the current layer, the 

cells in the next lower level of the relevant cells are repeated processed until the 

lowest layer is reached. Through this approach, instead of going through all cells, the 

algorithm looks only at those cells that are children of the relevant cells of the 

previous layer. The algorithm finally identifies all the regions formed by relevant cells 

and returns them as the answer to the query. 

The WaveCluster (Sheikholeslami et al., 1998: 428-439) views the multi-

dimensional data objects as a multi-dimensional signal. The algorithm begins by 

quantizing data space into multi-dimensional grid cells. The signal processing 

technique, the wavelet transformation, is then applied to convert the data objects in 

the region of each cell into the frequency domain. The WaveCluster identifies clusters 

by means of detecting the connected components in the transformed space, and 

afterwards map the cells in the transformed space back to the cells in the original 

space.  

Hinneburg and Keim (1998) proposed the algorithm to cluster large 

multimedia databases called DENCLUE (DENsity-based CLUstEring). The influence 

function, a function describing the impact of a data point to its neighborhoods, is 
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applied to each data point. The overall density function is the sum of the influence 

function of all data points in the data space. Clusters are determined by identifying 

density-attractors, the local maxima of the overall density function, by means of a 

hill-climbing procedure guided by the gradient of the overall density function. The 

DENCLUE algorithm consists of two steps. The pre-clustering step is aimed to speed 

up the density function calculation by constructing a map of the relevant portion of 

the data space. The data space is divided into equal size d-dimensional hypercubes, 

with an edge-length of 2σ, and only the hypercubes containing data points are 

connected to their neighboring cubes. In the actual clustering step, the density-

attractors and the corresponding density-attracted points are identified. Only the 

highly populated cubes and their neighboring cubes are considered in determining 

clusters. 

Kunttu, Lepisto, Rauhamaa and Visa (n.d.) presents the hierarchical clustering 

algorithm using multi-resolution grid-based clustering approach to enable the image 

browsing and retrieval in hierarchical manner. The goal of image browsing is to show 

the user a view of representative images of the database content. The images can be 

browsed in different scales through moving back and forth between general view and 

more specific image groups in the database, represented by different levels in 

hierarchical structure. The algorithm enables users to either zoom in to select a 

specific image type of interest, or zoom out to browse the variations in the image 

contents. When a desired image type is found at a certain level, users can zoom in to 

closer scrutinize the relevant clusters. The cells at a selected level are merged into 

clusters of similar images using density-based clustering approach. 

Liao, Liu and Choudhary (2004) proposed the idea that employing on a single-

level uniform grid only may not sufficient to obtain rational clustering quality. They 

presented a multi-scale grid-based clustering algorithm using adaptive mesh 

refinement (AMR) technique to automatically create different resolution grids based 

on the regional density. According to the algorithm, the additional meshes with higher 

resolution are recursively defined on each high density region until the desired density 

is met. The AMR tree is created to represent the various levels of grid cells’ densities 

in the manner that the denser regions are to be indicated by the nodes nearer to the 

leaves. The clusters are created by using regions indicated by the leaves of the tree as 
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the cluster pivots in inducing the data objects underneath the region of their parent 

nodes, on the minimum distance approach, to be the members of the clusters. In this 

way, the AMR clustering algorithm can detect nested clusters at different level of 

resolution. 

Park and Lee (2004: 32-37) proposed a grid-based algorithm for clustering 

data elements generated continuously and rapidly as a data stream. The algorithm 

initially partitions data space into a set of mutually exclusive equal-size cells. Not the 

physical data elements, but only the distribution statistics of which, are kept in the 

corresponding grid cells. The statistics of each cell are updated whenever the new 

generated data elements are within its boundary. The cells are recursively split out 

when their support parameters are higher than a pre-defined value. One of the 

dimensions of the data space is chosen as a dividing dimension based on the statistics 

of the data elements in the cell, resulting in splitting the cell into mutually exclusive 

smaller cells. The range of a dense cell can be partitioned by one of the three 

methods:  μ-partition,  σ-partition  and  hybrid-partition.  The clusters are finally 

identified as groups of adjacent dense cells. 

 

2.2   Subspace Clustering 

 

Data objects may be related in different ways when different subsets of 

dimensions are considered. Thus, different clusters might exist when different sets of 

dimensions of the data objects are used for clustering. Subspace clustering aims to 

reveal clusters lying in various subspaces of the dataset. Parsans, Haque and Liu 

(2004: 90-105) classified subspace clustering algorithms into two major groups with 

regard to the search technique employed:  the bottom-up search method and the top-

down search method. 

The bottom-up method searches for clusters from subspaces with smaller 

subsets of dimensions to subspaces with larger subsets of dimensions, whereas the 

top-down method does the other way around. Most of the bottom-up method used 

grid-based clustering in finding dense units in all different lower dimensional 

subspaces.  In subsequently locating dense units in any higher dimensional subspaces, 

the downward closure property of density was applied, in an APRIORI style, in order 
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to reduce the search space. Clusters were lastly formed by combining all adjacent 

dense units together. Most of the researches in this field assume the search space to be 

restricted to axis-parallel subspaces. 

A number of subspace clustering algorithms were categorized and reviewed in 

Parsans et al. (2004). One of them that the proposed algorithm is based on is CLIQUE 

(Agrawal, Gehrke, Gunopulos and Raghavan, 1998). CLIQUE is one of the very first 

subspace clustering algorithms.  It is a grid-based clustering algorithm that provides 

an efficient approach for bottom-up subspace clustering. It uses an APRIORI style 

technique to find clusters in subspaces, based on the observation that dense areas in a 

higher-dimensional space imply the existence of dense areas in lower-dimensional 

space. 

CLIQUE identifies dense clusters in a subspace of maximum dimensionality 

by automatically identifying projections of the data objects onto various subsets of 

dimensions where regions of high density with respect to those objects reside. The 

algorithm uses bottom-up approach in generating grid cells and identifying dense 

cells. It begins by finding dense units in all one-dimensional spaces, corresponding to 

each individual attribute of dataset. The algorithm then proceeds level-by-level, in the 

manner that the candidate k-dimensional dense cells can be determined using already 

determined (k-1)-dimensional dense cells. Hence the set of candidate k-dimensional 

cells that might possibly be dense can be found inside dense (k-1)-dimensional cells 

only.  The algorithm is terminated when no more candidates are discovered. To form 

clusters, CLIQUE uses a depth-first search algorithm to find the connected dense 

cells, then creates cluster descriptions in the form of DNF expression. 

 

2.3  Supervised Clustering  

 

Supervised clustering is applied on classified data objects with the aim of 

identifying identical-class clusters that have high densities and have minimal 

impurity, with respect to majority classes of the clusters. The clustering is performed 

on attribute variables under the supervision of a target class variable. As a 

consequence, each generated cluster is labeled with only one specific class that has 



 

 

14

majority data objects inside the cluster. Supervised clustering procedure is therefore 

used not only for knowledge discovery, but also for data classification, as the cluster 

structure with class information can be used as a classification function. 

Tishby, Pereira and Bialek (1999: 368-377), Slonim and Tishby (1999: 617-

623), and Aguilar, Ruiz, Riquelme and Giráldez (2001: 207-216) proposed supervised 

clustering algorithms based on bottom-up agglomerative approach. The algorithm 

proposed in Sinkkonen, Kaski and Nikkila (2002: 418-430) intended to find clusters 

that are homogenous in target class variable using a probabilistic approach based on 

discriminative clustering to minimize distortion within clusters. Qu and Xu (2004: 

1905-1913) introduced supervised model-based clustering algorithms that were based 

on multivariate Gaussian mixture model which employs EM algorithm to estimate 

model parameters.  

Finley and Joachims (2005: 217-224) proposed that supervised clustering can 

be achieved by training a clustering algorithm to produce desirable clusters. An SVM 

algorithm that could learn from an item-pair similarity measure to optimize clustering 

performance based on a variety of performance measures was proposed. Al-Harbi and 

Rayward-Smith (2006: 219-226) introduced supervised K-mean algorithm that 

combined Simulated Annealing with K-mean algorithm. 

CCAS algorithms were developed for detecting intrusions into computer 

network system through intrusion signature recognition. The algorithms start by 

learning data patterns based on supervised clustering procedure, and afterwards uses 

these patterns for data classification. The original version of CCAS, namely CCA-S 

(Clustering and Classification Algorithm - Supervised) (Ye and Li, 2001: 1-4), starts 

with two dummy clusters and allows clusters of each individual class to spread over 

the entire data space regardless of the training sequence of data objects. Li and Ye 

(2002: 231-242) modified original CCAS with grid-based method to limit the search 

space in splitting training data objects into smaller size clusters. The algorithm begins 

with dividing data space into equal size grid cells. It then performed dummy-based 

approach only on data objects lying in the same cell.  

Li and Ye (2005: 498-509) enhanced the robustness of CCAS by strengthening 

the algorithm with three post-processing steps: data redistribution, supervised 

grouping of clusters, and removal of outliers.  ECCAS (Li and Ye, 2006: 396-406) 
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enabled CCAS to handle data of the mixed type, by introducing two methods for 

combining numerical and nominal variables in calculating distance measure. The first 

method combines different distance measure for each type of variables into a single 

distance measure ranging between 0 and 1. The second method is based on conversion 

of nominal variables to binary variables, and then treats these binary variables as 

numeric variables.  

Three representative-based supervised clustering algorithms were introduced 

in Eick et al. (2004: 774-776) and Zeidat et al. (2006): Supervised Partitioning 

Arround Medoids (SPAM), Single Representative Insertion/Deletion Steepest Decent 

Hill Climbing with Randomized Start (SRIDHCR), and Supervised Clustering using 

Evolutionary Computing (SCEC).  In their paper, the new fitness function used for 

measuring the algorithms was proposed.  Instead of relying only on the tightness of 

objects in each cluster, like most of the traditional clustering algorithms, the three 

algorithms weights cluster purity against the number of generated clusters in the 

proposed fitness function.  

SPAM, aimed to be the variation of PAM (Partitioning Around Medoids) that 

uses the proposed fitness function, starts by randomly selecting a mediod of the most 

frequent class data objects as the first representative. The algorithm then fills up the 

initial set of representatives with non-representative objects. The number of 

representatives is fixed by a pre-defined figure. SPAM later on repeatedly explores all 

possible replacements of a single representative of the most current solution by a 

single non-representative, provided that the new set of representatives induces 

minimum fitness function value. The algorithm terminates if none of the replacement 

can provide lower fitness function value. 

In order to eliminate the limitation of SPAM that the number of 

representatives must be fixed by the pre-defined parameter, SRIDHCR algorithm 

permits either adding or removing any representatives into or from the current set of 

cluster representatives, with respect to the proposed fitness function.  SRIDHCR is 

designed to be run r pre-specified times, with the intention to report the set of 

representatives that produces the lowest value of fitness function as the final result.  

At the beginning of each run, the algorithm randomly selects a pre-defined number of 

objects into the set of representatives.  It afterwards repeatedly computes the fitness 
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function of the intermediate set of clusters, resulting from either adding a single non-

representative into or removing a single representative from the current set of 

representatives. Each repeated loop ends by replacing the current representative set by 

the new set of representatives whose fitness function value is the lowest, providing 

that the value is less than those of the current representative set. In each run, the 

algorithm terminates whenever there is no significant improvement in the solution 

quality (measured by the value of the fitness function).  

Besides the above two greedy algorithms, Zeidat et al. (2006) also proposed an 

evolutionary computing algorithm called SCEC.  The algorithm evolves a population 

of solutions, each of which is a set of representatives, over a pre-defined number of 

generations. The best solution of the last generation is chosen to be the set of 

representatives for the clustering. The SCEC’s population consists of the fixed (pre-

specified) number of solutions, each of which is a set of representatives.  Each 

solution in the initial population is randomly selected. Populations of the subsequent 

generations are generated through three genetic operators: mutation, crossover, and 

copy.  SCEC used K-tournament selection method (with tournament size of  K = 2) in 

selecting potential solutions to participate in creating new population. Different 

adaptive values are used to control the probabilities of applying each of the three 

genetic operators to generate new solutions for the subsequent generations. 

Apirak Jirayusakul (2007: 23-55) and Apirak Jirayusakul and Surapong 

Auwatanamongkol (2007: 217-229) proposed two supervised clustering algorithms 

based on prototype-based clustering methodology: Supervised Growing Neural Gas 

(SGNG) and Robust Supervised Growing Neural Gas (RSGNG).  The SGNG 

incorporates Growing Neural Gas network with various techniques as Type Two 

Learning Vector Quantization (LVQ2), adaptive learning rates, and cluster repulsion 

mechanisms. The SGNG also proposed a new validity based on geometric 

measurement paradigm in order to determine the optimal number of prototypes. Due 

to drawbacks of the SGNG of being sensitive to the prototype initialization, the 

sequence of input data objects, and the presence of noises, the RSGNG is intended to 

be the robust version of SGNG.  The RSGNG incorporates SGNG learning schema 

with the outlier resistant strategy.  Moreover, to determine the optimal number of 
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prototypes where data objects may include some outliers, a modified validity index 

was proposed based on the Minimum Description Length technique. 



 

CHAPTER 3 

 

METHODOLOGY 
 

The proposed algorithm is a bottom-up supervised clustering algorithm that 

relies on many concepts such as grid-based clustering, density-based clustering, and 

the downward closure property of density used in subspace clustering. The algorithm 

uses heuristics to partition data spaces into grid cells, then group any adjacent hyper-

rectangle grid cells containing majority of data with a same class into a cluster. It can 

automatically determine the number of intervals to be used to partition each of data 

dimensions into grid cells clusters, which yields the best clustering in according with 

a fitness function. The algorithm possesses all of the good clustering properties 

mentioned in Sheikholeslami, et al. (1998: 428). That is, the algorithm has ability to 

produce identical results regardless of neither the order of data objects to be processed 

nor any pre-defined number of clusters. Also, it is able to handle clusters of arbitrary 

shapes and sizes without making any assumption about the distribution of data 

objects.   

 

3.1  Definitions 

 

3.1.1  Data Objects 

A data object is considered a data point in a d-dimensional space.  Formally, 

each data point is a 1 -tuple in the form  , , … , ,  , where  represents 

the value of the   predictor variable (or attribute) and  T  represents the value of the 

target variable (or class label) of the data point (Ye and Li, 2005: 2-3) .  

For instance,  1.54, 270, 46.8,  represents an object which values of the first 

attribute, the second attribute, and the third attribute are 1.54, 270 and 46.8 

respectively, and which class label is “A”. 
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3.1.2  Grid Cells 

Let  , , … ,  be sets of dimensions (or attributes, or predictor variables) of 

any datasets, and let  …  be the d-dimensional data space.  The 

problem is to divide the data space  into  ∏   non-overlapping hyper-

rectangular grid cells, where   represents the number of intervals in the 

 dimension of d-dimensional data space.  A cell is defined by a set of d-dimensional 

hyperplanes, all of which are parallel to 1   coordinate axes. 

To accomplish this, the range of the value domain of each dimension   is 

partitioned into  number of mutually exclusive equal-size right-opened intervals  

, , 1  ,  where   and   respectively denotes the start value and end 

value of the  interval in the   dimension, and hence each cell is represented in the 

form  , , … ,   (Agrawal, et al., 1998: 95).  A data object  , , … ,  , 

where   is the value of the   dimension, is said to lie in the cell    only  if   

   for all    . 

 

3.1.3  Clusters 

As defined by Agrawal, et al. (1998: 96), a cluster is a maximal set of 

connected dense cells in d-dimensions. The problem is to separate all identified dense 

cells   into  , , … ,  sets, such that all cells in the set   are said to be connected, 

and no two cells, ,  with   are connected. Two d-dimensional cells 

  and   are declared connected, either in case they share at least one common 

corner point, or there exists another d-dimensional cell   to which both  and   

are connected.  

If a running number is assigned to each interval in all dimensions, starting 

from 1 to   , where    is the number of intervals in the dimension, each cell can 

be represented in the form  , , … ,  , where   is the interval number of 

the cell   in the   dimension. Cells  , , … ,   and  , , … ,  

are claimed connected if all  | | 1 , where    and  are the interval numbers 

of the   dimension of    and   respectively.  
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3.2  Fitness Function 

 

The objective of supervised clustering is to identify groups of data objects, that 

possess low impurities and few groups as possible. To accomplish this, Zeidat, et al. 

(2006: 3-4) proposed the following fitness function,   , as a validity measurement 

to evaluate the performance of a supervised clustering algorithm,  

 

                                             

                                     

                                              ,

           ,
 

 

where parameter  k, c, and n  represent the number of generated clusters, the number 

of classes, and the number of data objects respectively.  

The proposed fitness function consists of 2 contradictory parts,    

and .  Due to the objective of supervised clustering, the   value must be 

kept as low as possible. Further split of data objects into more clusters may cause a 

decrease on    value but an increase in   value.  The parameter    

puts a weight on the significance of the    part against the    part, 

i.e. the higher the  value, the higher the significance of the    part. 

Normally, the    value is chosen between 0 and 5.  

Under the consideration that the above fitness function can certainly lead 

supervised clustering to yield the most effective solution, this   function is chosen 

to be the fitness function for the proposed algorithm.  

   

3.3  Grid-based Supervised Clustering Algorithm 

 

The proposed algorithm is a bottom-up supervised clustering algorithm relying 

on the combination of the concepts of grid-based clustering, density-based clustering, 



 

21

 

and subspace clustering. The basic idea of the proposed algorithm is to create uniform 

size grid cells over the whole data space, resulting in partitioning data objects into a 

number of groups abiding by the region of each cell. Clusters are afterward defined by 

merging together all connected nonempty cells with the same class labels. In 

consequence, the data objects lying inside the region of such connected cells are 

claimed to be in the same cluster.  For the proposed algorithm, each dimension is 

partitioned into same-size intervals, under the condition that the numbers of intervals 

of different dimensions are allowed to be different. 

The key to the success of the algorithm is to use the proper number of intervals 

for each partitioning of a dimension. The number of intervals for each dimension must 

be carefully selected so the smallest value of the fitness function   is achieved. To 

fulfill this, the proposed algorithm comprises 2 steps: Dimension Ordering step and 

Subspace Clustering step. 

      

3.3.1  Dimension Ordering Step 

This step is aimed to be the preparatory part of the next step, with the objective 

to re-arrange the order of dimensions to be processed sequentially in the subspace 

clustering procedure. This step determines the order of dimensions to be processed 

sequentially in the subspace clustering step.  The step considers partitioning each 

dimension independently into a number of equal intervals which yields the smallest 

fitness function,  . A linear search for the number of intervals that produces the 

smallest fitness  value can be done by starting the search from the number of 

intervals equal to one, and keeping incrementing the number until there is an obvious 

increase on the fitness value. Using the linear search method, the number of iterations 

needed for searching the optimal number of intervals is rather high. To save the 

processing time, the algorithm still proposes a search for the optimal number of 

intervals that is based on the gradient descent concept. The Dimension Ordering step 

comprises two tasks: clustering based on each individual dimension and dimension 

sequencing.  

                   3.3.1.1  Clustering Based on Each Individual Dimension 

                   Consider that different sets of data have particular characteristic that 

might result in non-equivalent competence in the clustering activities. The first task of 
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the Dimension Ordering step is to approximate the clustering potential hidden in each 

dimension when employed solely in the clustering process. The individual potential 

for each of a dimension is measured by mean of the value of the possible smallest 

fitness function, , each specific dimension can produce. To determine the 

individual potential, a subspace clustering based on each dimension is performed and 

the fitness function value is evaluated.  

                  With the intention to find the optimal number of intervals  for the 

dimension partitioning as quickly as possible, the gradient descent method is used in 

searching for the optimal    value. During the search, let   represents the 

current   value and   be the corresponding   value of the  , the new  

value, represented by  , is calculated by the following formula, 

 
∆

∆ ⁄  ,     1 

 = 2 

where  ∆  represents the difference between the current  value   and its 

previous value , as well as  ∆  represents the difference between the 

current   value,  , and its previous value,  .  

                  Since the   values are certainly less than 1.0, whereas the   values 

are higher than 1, the value of  ∆  is normalized by a maximum value of  , i.e. 

, in order to correctly determine the gradient or the ratio between  ∆  and 

 ∆ . The learning rate of the gradient descent formula is represented by the 

symbol  . The momentum term is employed to give weight on the current 

increment/decrement of the   in order to avoid the convergence to local optima. 

The term is formularized as 

                                        |∆ |  

where    is the momentum weight of the momentum term.  

                  The   value calculated from the formula is always round to an integer 

value. When the  value gets incremented, the  value is always round up in 
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order to facilitate the forward move during early stages of the search. However, when 

it is decremented, it is round to the nearest integer. 

      The gradient descent search for the optimal  value for each individual 

dimension clustering is terminated when either of the two conditions occurs two times 

consecutively.  We assume when such event happens the optima has been reached, 

therefore, the search should be terminated. The first condition is that there is no 

decrement of   value. The second condition is when the recommended    results 

in deficient decrement in the  values. This condition is measured by dividing the 

absolute value of the latest slope, computed as  1

1
, by the absolute value of 

the initial slope, computed as  2 1

2 1
. In case the result value is less than 0.001, 

the algorithm claims that such decrease of the  value is not worth-while the 

increase in the    value. 

                   In addition, when the search goes backward, i.e.  is decremented, the 

current value of  and the new  (after decremented from the current ) will 

mark the range of   to be searched. If the search moves current  value beyond 

the range, the search is also terminated. This is similar to the movement of a 

pendulum which can swing only back and forth with gradually reduced range to 

swing. 

                  3.3.1.2  Dimension Sequencing Task 

      Abide by the observation, the dimensions possessing lower  values 

when working individually have tendency to yield better result when working 

mutually in the subspace clustering. Using greedy approach, such dimensions should 

be given higher priority in being used early in the subspace clustering process.  

Hence, the last task of the Dimension Ordering step is to sort the dimensions into a 

list in ascending order on their smallest  values achieved from the first task.  The 

list will be used to guide the subspace clustering in the next step. 

          

3.3.2  Subspace Clustering Step 

The intention of this step is to find out the delineation of grid cells that would 

produce clustering with the possible smallest  value when all dimensions are 
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considered together. The Subspace Clustering step comprises two tasks: Grid Cell 

Creation task and Cluster Formation task.  

                   3.3.2.1  Grid Cells Creation Task 

                   In this task, grid cells are created in bottom up fashion by gradually and 

repeatedly partition data space using one additional dimension at a time. Using the 

heuristic mentioned in section 3.3.1.1, the partitioning performs on the dimensions in 

sequence based on the order list created by the first step. The partitioning starts from 

creating the first-level grid cells using the first dimension in the list together with the 

optimal number of intervals for the dimension previously derived in the first step. 

Only data objects residing in each of the first-level grid cells as well as the grid cell 

information are then written into the external file, cell by cell.  Next, the nonempty 

first-level grid cells, retrieved from the external file, will be partitioned using the 

second dimension in the list.   

       Since the grid space has already been partitioned by the first dimension, 

the optimal number of intervals for the second dimension can be different from the 

one derived in the first step. Hence, the optimal number of intervals for the second 

dimension must be derived again using the same gradient descent method as in the 

first step, except that clusters are formed using the first and the second dimensions 

and the number of intervals of the first dimension is fixed. The process then continues 

on the third dimension and so on until all dimensions have been partitioned. 

                   Refer to the fact that the number of generated grid cells can be computed 

as  ∏  where  represents the number of dimensions and   represents the 

number of intervals in the   dimensions of d-dimensional space, the number of 

created cells increases dramatically whenever the number of dimensions increases.  

When the number of dimensions is large, not all grid cells contain data objects, and 

the number of grid cells containing data objects is usually tremendously small when 

compared with the number of created cells. 

       As only nonempty cells in the current dimensional-level grid space are 

kept for the processing of the subsequent higher dimensional level, this procedure 

results in saving a lot of processing time since large parts of search space are 

discarded. As a consequence, the proposed algorithm allows only  1  
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dimensional nonempty grid cells to be candidates for the generation of d-dimensional 

nonempty grid cells.  

                   3.3.2.2  Cluster Formation Task 

                   To create final clusters (or partial clusters formed during the first or the 

second step), connected nonempty same-class labeled cells are merged into a same 

cluster. The input for the cluster formation task is a set of cell blocks  , each of 

which consists of cell’s information, cell’s class label, and data objects belonging to 

that cell. Starting from any cell    as the seed cell to form a cluster, the task 

searches in   to find for all  , which are connected with  , or any members of 

, and have the same class label as  .  All  s are then put into a same cluster as well 

as removed from  . The task arbitrary selects the next seed cell    from  .   It then 

performs the same process to form the next cluster. The iterative process stops when 

all cells have been removed from  . 

      With this cluster formation procedure, the proposed algorithm can generate 

clusters of any shapes and sizes without presuming any specific mathematical form 

for data distribution, and can produce identical results regardless of the order in which 

input data objects are presented. 

 



 

CHAPTER 4 

 

EXPERIMENTAL RESULTS 

 
The objective of this chapter is to illustrate the experiments designed to 

evaluate the effectiveness of the proposed algorithm. Two sets of experiments were 

performed. The first set was performed on datasets obtained from University of 

California at Irving Machine Learning repository. The experimental results are 

compared to those reported in Zeidat et al. (2006: 14-15) and Apirak Jirayusakul 

(2007: 96). The second one was performed on two-dimension synthetic datasets under 

the permission of the author of Apirak Jirayusakul (2007: 61-62, 66, 69-70, 73-74). 

 

4.1  The Experiments on  UCI  Datasets 

 

The objective of this experiment is to evaluate the performance of the 

proposed algorithm in the comparative manner, with the other supervised clustering 

algorithms. The experiments were performed on four datasets obtained from 

University of California at Irving Machine Learning repository: Iris-Plans, Pimma-

Indian Diabetes, Vehicle Silhouettes, and Image-Segmentation, using the following 

parameters: 0.1,   0.5, 100, 0.3. The properties of the four 

datasets are shown in Table 4.1. The results in term of the fitness function values  

from the experiments are compared with those results from SPAM, SREDHCR, and  

SCEC reported  in Zeidat et al. (2006: 14-15), and the best solutions from SGNG and  

RSGNG  in Apirak Jirayusakul (2007: 96).  

 
Table 4.1  List of the Properties of  UCI Datasets Used in the Experiments 
 

  Dataset Name No. of Examples No. of  Attributes No. of Classes 

  Iris-Plants 150 4 3 

  Pima-Indian Diabetes 768 8 2 

  Vehicle Silhouettes 846 18 4 

  Image-Segmentation 2100 19 7 
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4.1.1  Experimental Results from Dimension Ordering Step 

The task of the Dimension Ordering step is to find out the potential  value 

each attribute (or dimension) could give when each is considered alone for the grid 

space partitioning.  The attributes are then ordered in the ascending sequence based on 

their  values. Table 4.2 (a)-(d) and Table 4.3 (a)-(d) show the ordering results of 

the attributes for the four datasets, when  is set at 0.1 and 0.4 respectively. 

 
Table 4.2  Results from Dimension Ordering Step  at  0.1 

 

 (a) Iris-Plants   [on  β=0.1] 
 

 
(b) Pima-Indian Diabetes  [on  β=0.1] 

 
 
 
 
 

(c) Vehicle Silhouettes  [on  β=0.1] 
 

 

 

 

 

(d) Image-Segmentation  [on  β=0.1] 
 

 

 

 

 

 
 
 
 

Oder 
No. 

Attribute 
No. NOI Q(x) Value  Oder 

No. 
Attribute 

No. NOI Q(x) Value 

1 4 3 0.04000  3 1 4 0.26488 
2 3 3 0.04667  4 2 2 0.42000 

Oder 
No. 

Attribute 
No. NOI Q(x) Value  Oder 

No. 
Attribute 

No. NOI Q(x) Value 

1 2 7 0.25260  5 7 7 0.33713 
2 8 3 0.32783  6 5 2 0.34115 
3 6 3 0.33333  7 4 3 0.34766 
4 1 2 0.33594  8 3 1 0.34896 

Oder 
No. 

Attribute 
No. NOI Q(x) Value  Oder 

No. 
Attribute 

No. NOI Q(x) Value 

1 7 14 0.46432  10 4 11 0.58406 
2 8 17 0.46868  11 10 8 0.58524 
3 9 12 0.47614  12 18 14 0.58642 
4 12 7 0.51171  13 17 10 0.58870 
5 11 11 0.51786  14 13 11 0.59907 
6 3 12 0.53205  15 14 13 0.61243 
7 1 12 0.55308  16 15 9 0.66194 
8 2 10 0.58161  17 16 8 0.66325 
9 6 10 0.58397  18 5 6 0.68203 

Oder 
No. 

Attribute 
No. NOI Q(x) Value  Oder 

No. 
Attribute 

No. NOI Q(x) Value 

1 11 16 0.40742  11 14 15 0.50762 
2 10 14 0.43456  12 8 26 0.71361 
3 12 14 0.44000  13 6 23 0.71631 
4 17 18 0.44381  14 1 8 0.76952 
5 13 16 0.44429  15 4 4 0.83143 
6 18 15 0.44547  16 5 3 0.84190 
7 19 14 0.44905  17 7 6 0.85000 
8 16 15 0.46714  18 9 4 0.85333 
9 15 16 0.46714  19 3 1 0.85714 
10 2 10 0.49524      
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Table 4.3  Results from Dimension Ordering Step  at  0.4 

 

(a) Iris-Plants   [on  β=0.4] 
 
 
 

(b) Pima-Indian Diabetes  [on  β=0.4] 
 
 
 
 
 

(c) Vehicle Silhouettes  [on  β=0.4] 
 

 

 

 

 

(d) Image-Segmentation  [on  β=0.4] 
 

 

 

 

 

 
 

The proposed algorithm proposes the methodology to reduce the execution 

time by neglecting the processing on the possibly trivial number of intervals ( ) 

values and going directly to the worthy  values.  The methodology has been 

explained in section 3.3.1. Figure 4.1 (a)-(d) illustrates the searching chain in 

acquiring the prospective  values performing on each individual attribute of the 

Iris-Plants dataset. Figure 4.2 (a)-(h) are for the Pima-Indian Diabetes dataset, Figure 

4.3 (a)-(r) are for the Vehicle Silhouettes dataset, and Figure 4.4 (a)-(s) are for the 

Image-Segmentation dataset, at =0.1. Figure 4.5 (a)-(d), Figure 4.6 (a)-(h), Figure 

Oder 
No. 

Attribute 
No. NOI Q(x) Value  Oder 

No. 
Attribute 

No. NOI Q(x) Value 

1 4 3 0.04000  3 1 4 0.29952 
2 3 3 0.04667  4 2 2 0.42000 

Oder 
No. 

Attribute 
No. NOI Q(x) Value  Oder 

No. 
Attribute 

No. NOI Q(x) Value 

1 2 7 0.25260  5 5 2 0.34115 
2 6 3 0.33333  6 7 2 0.34766 
3 1 2 0.33594  7 4 3 0.34766 
4 8 3 0.33865  8 3 1 0.34896 

Oder 
No. 

Attribute 
No. NOI Q(x) Value  Oder 

No. 
Attribute 

No. NOI Q(x) Value 

1 7 14 0.48495  10 6 10 0.60183 
2 8 17 0.49174  11 17 10 0.60656 
3 9 12 0.49677  12 18 8 0.60875 
4 12 7 0.52203  13 4 4 0.61229 
5 11 11 0.53245  14 13 11 0.61970 
6 3 12 0.54664  15 14 6 0.63357 
7 1 12 0.56340  16 15 9 0.66194 
8 10 8 0.59983  17 16 2 0.67967 
9 2 6 0.60004  18 5 6 0.68203 

Oder 
No. 

Attribute 
No. NOI Q(x) Value  Oder 

No. 
Attribute 

No. NOI Q(x) Value 

1 11 16 0.41397  11 14 15 0.50762 
2 12 14 0.44000  12 8 25 0.71857 
3 10 14 0.44111  13 6 18 0.73397 
4 17 18 0.44381  14 1 8 0.76952 
5 13 16 0.44429  15 4 4 0.83143 
6 19 14 0.44905  16 5 3 0.84190 
7 18 15 0.45473  17 7 6 0.85000 
8 15 16 0.46714  18 9 4 0.85333 
9 16 19 0.47016  19 3 1 0.85714 
10 2 10 0.49524      
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4.7 (a)-(r), and Figure 4.8(a)-(s) show the results from the same scenarios, but at 

=0.4.  Values on the x-axis in the figures represent the  values, and values on the 

y-axis represent the  values achieved for the given  . The meanings of the 

symbols used in the figures are described in Table 4.4. 

As can be seen from the figures, the   value achieved from the 

corresponding prospective  value is gradually decreased by the gradient descent 

where the current gradient is negative. However, it can pass through the optimal value 

where  is minimal and the    value is as small as possible. The  value can 

get increased as the current gradient becomes positive and eventually settled down at 

the optimal value where the current gradient becomes almost zero.   

 

Table 4.4  The Symbols and their Meanings Used in Figure 4.1 thru 4.8 

 
Symbol Symbol Meanings 

green point   the skipped noi value 

blue circle   the prospective noi value that generates the lower  
  q(x) value than the previous value 

magenta circle   the prospective noi value that generates the    
  higher q(x) value than the previous value 

yellow circle   the swinging range  

red five-pointed star   the final result noi value   

black six-pointed star   the q(x) value that might proposed by the  
  ordinary searching procedure (Figure 3.2)   

blue square   the termination point  

green dotted line   the linkage between every value of noi 

yellow dotted line   The linkage between the swung noi values  

blue solid line   the linkage between the prospective noi values 
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           (a) NOI  Searching Chain on Attr. No. 1             (b) NOI  Searching Chain on Attr. No. 2 

 

                     
            (c) NOI  Searching Chain on Attr. No. 3             (d) NOI  Searching Chain on Attr. No. 4 

 

Figure 4.1  Searching Chain for NOI  Values on Iris-Plants  at   0.1 

 

 

                  
            (a)  NOI  Searching Chain on Attr. No. 1             (b)  NOI  Searching Chain on Attr. No. 2  

 

Figure 4.2  Searching Chain for NOI  Values on Pima-Indian Diabetes at  0.1 
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            (c)  NOI  Searching Chain on Attr. No. 3              (d)  NOI  Searching Chain on Attr. No. 4  

 

         
           (e)  NOI  Searching Chain on Attr. No. 5               (f)  NOI  Searching Chain on Attr. No. 6  

 

         
            (g)  NOI  Searching Chain on Attr. No. 7              (h)  NOI  Searching Chain on Attr. No. 8  

 

Figure 4.2  Searching Chain for NOI Values on Pima-Indian Diabetes at  0.1 

                     (Continued) 
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            (a)  NOI  Searching Chain on Attr. No. 1             (b)  NOI  Searching Chain on Attr. No. 2  

 

        
            (c)  NOI  Searching Chain on Attr. No. 3            (d)  NOI  Searching Chain on Attr. No. 4  

 

         
            (e)  NOI  Searching Chain on Attr. No. 5              (f)  NOI  Searching Chain on Attr. No. 6  

 

Figure 4.3  Searching Chain for NOI  Values on Vehicle Silhouettes at  0.1 
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            (g)  NOI  Searching Chain on Attr. No. 7             (h)  NOI  Searching Chain on Attr. No. 8  

 

         
            (i)  NOI  Searching Chain on Attr. No. 9               (j)  NOI  Searching Chain on Attr. No. 10 

 

        
           (k)  NOI  Searching Chain on Attr. No. 11          (l)  NOI  Searching Chain on Attr. No. 12 

 

Figure 4.3  Searching Chain for NOI  Values on Vehicle Silhouettes at  0.1 

                     (Continued) 
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           (m)  NOI  Searching Chain on Attr. No. 13            (n)  NOI  Searching Chain on Attr. No. 14 

 

           
           (o)  NOI  Searching Chain on Attr. No. 15             (p)  NOI  Searching Chain on Attr. No. 16 

 

         
           (q)  NOI  Searching Chain on Attr. No. 17            (r)  NOI  Searching Chain on Attr. No. 18  

 

Figure 4.3  Searching Chain for NOI  Values on Vehicle Silhouettes at  0.1 

                     (Continued) 
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           (a)  NOI  Searching Chain on Attr. No. 1             (b)  NOI  Searching Chain on Attr. No. 2  

 

         
           (c)  NOI  Searching Chain on Attr. No. 3              (d)  NOI  Searching Chain on Attr. No. 4  

 

         
           (e)  NOI  Searching Chain on Attr. No. 5               (f)  NOI  Searching Chain on Attr. No. 6  

 

Figure 4.4  Searching Chain for NOI  Values on Image-Segmentation at 0.1 
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            (g)  NOI  Searching Chain on Attr. No. 7             (h)  NOI  Searching Chain on Attr. No. 8  

 

         
            (i)  NOI  Searching Chain on Attr. No. 9             (j)  NOI  Searching Chain on Attr. No. 10 

 

        
           (k)  NOI  Searching Chain on Attr. No. 11           (l)  NOI  Searching Chain on Attr. No. 12 

 

Figure 4.4  Searching Chain for NOI  Values on Image-Segmentation at  0.1 

                     (Continued) 
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           (m)  NOI  Searching Chain on Attr. No. 13          (n)  NOI  Searching Chain on Attr. No. 14 

 

                  
           (o)  NOI  Searching Chain on Attr. No. 15            (p)  NOI  Searching Chain on Attr. No. 16 

 

                    
          (q)  NOI  Searching Chain on Attr. No. 17            (r)  NOI  Searching Chain on Attr. No. 18  

 

Figure 4.4  Searching Chain for NOI  Values on Image-Segmentation at  0.1 

                     (Continued) 
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            (s)  NOI  Searching Chain on Attr. No. 19   

 

 Figure 4.4  Searching Chain for NOI  Values on Image-Segmentation at  0.1 

                      (Continued) 
                

   

                  
            (a)  NOI  Searching Chain on Attr. No. 1             (b)  NOI  Searching Chain on Attr. No. 2  

 

                    
            (c)  NOI  Searching Chain on Attr. No. 3            (d)  NOI  Searching Chain on Attr. No. 4 

 

Figure 4.5  Searching Chain for NOI  Values on Iris-Plants  at  0.4 
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           (a)  NOI  Searching Chain on Attr. No. 1              (b)  NOI  Searching Chain on Attr. No. 2  

 

         
           (c)  NOI  Searching Chain on Attr. No. 3              (d)  NOI  Searching Chain on Attr. No. 4 

 

         
           (e)  NOI  Searching Chain on Attr. No. 5              (f)  NOI  Searching Chain on Attr. No. 6 

 

 Figure 4.6  Searching Chain for NOI  Values on Pima-Indian Diabetes at β = 0.4 

 



 

 

40

                   
            (g)  NOI  Searching Chain on Attr. No. 7             (h)  NOI  Searching Chain on Attr. No. 8  

 

Figure 4.6  Searching Chain for NOI  Values on Pima-Indian Diabetes at β = 0.4 

                     (Continued)  

 
 

         
            (a)  NOI  Searching Chain on Attr. No. 1              (b)  NOI  Searching Chain on Attr. No. 2  

 

         
            (c)  NOI  Searching Chain on Attr. No. 3             (d)  NOI  Searching Chain on Attr. No. 4  

 

Figure 4.7  Searching Chain for NOI  Values on Vehicle Silhouettes at  0.4 
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           (e)  NOI  Searching Chain on Attr. No. 5               (f)  NOI  Searching Chain on Attr. No. 6  

 

         
            (g)  NOI  Searching Chain on Attr. No. 7              (h)  NOI  Searching Chain on Attr. No. 8  

 

         
            (i)  NOI  Searching Chain on Attr. No. 9              (j)  NOI  Searching Chain on Attr. No. 10 

 

Figure 4.7  Searching Chain for NOI  Values on Vehicle Silhouettes at  0.4 

                   (Continued) 
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            (k)  NOI  Searching Chain on Attr. No. 11           (l)  NOI  Searching Chain on Attr. No. 12 

 

         
           (m)  NOI  Searching Chain on Attr. No. 13           (n)  NOI  Searching Chain on Attr. No. 14 

 

         
           (o)  NOI  Searching Chain on Attr. No. 15             (p)  NOI  Searching Chain on Attr. No. 16 

 

Figure 4.7  Searching Chain for NOI  Values on Vehicle Silhouettes at  0.4 

                     (Continued) 
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            (q)  NOI  Searching Chain on Attr. No. 17            (r)  NOI  Searching Chain on Attr. No. 18  

 

Figure 4.7  Searching Chain for NOI  Values on Vehicle Silhouettes at  0.4 

                     (Continued) 
 

         
           (a)  NOI  Searching Chain on Attr. No. 1              (b)  NOI  Searching Chain on Attr. No. 2  

 

         
           (c)  NOI  Searching Chain on Attr. No. 3              (d)  NOI  Searching Chain on Attr. No. 4 

 

 Figure 4.8  Searching Chain for NOI  Values on Image-Segmentation  at  0.4 
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           (e)  NOI  Searching Chain on Attr. No. 5              (f)  NOI  Searching Chain on Attr. No. 6     

 

         
           (g)  NOI  Searching Chain on Attr. No. 7              (h)  NOI  Searching Chain on Attr. No. 8  

 

         
           (i)  NOI  Searching Chain on Attr. No. 9                (j)  NOI  Searching Chain on Attr. No. 10 

 

Figure 4.8  Searching Chain for NOI  Values on Image-Segmentation  at  0.4 

                      (Continued) 
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            (k)  NOI  Searching Chain on Attr. No. 11           (l)  NOI  Searching Chain on Attr. No. 12 

 

         
           (m)  NOI  Searching Chain on Attr. No. 13           (n)  NOI  Searching Chain on Attr. No. 14 

 

         
           (o)  NOI  Searching Chain on Attr. No. 15             (p)  NOI  Searching Chain on Attr. No. 16 

 

Figure 4.8  Searching Chain for NOI  Values on Image-Segmentation  at  0.4 

                      (Continued) 
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           (q)  NOI  Searching Chain on Attr. No. 17          (r)  NOI  Searching Chain on Attr. No. 18 

  

          
           (s)  NOI  Searching Chain on Attr. No. 19   

                

Figure 4.8  Searching Chain for NOI  Values on Image-Segmentation  at  0.4 

                       (Continued) 

 

4.1.2  Experimental Results from Subspace Clustering Step 

The Subspace Clustering procedure recursively partitions data space into 

subspaces using one attribute at a time for a partitioning dimension. The sequence of 

attributes used for the recursive partitioning follows the ascending order given by the 

Dimension Ordering step. Each partitioning step uses the same gradient descent 

approach as in the Dimension Ordering step to find the optimal   value for the 

partitioning. After each of the partitioning, the residual   value continues 

decreasing or at least remains the same. The gradually improved   values during 

the recursive partitioning applied on the four datasets are shown in Table 4.5 and 

Table 4.6, at   value 0.1 and 0.4 respectively.        
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Table 4.5   Results Achieved during the Recursive Partitioning Step at  0.1 

 

(a) Iris-Plants   ( 0.1  
Attribute No. Q(x) Value  Attribute No. Q(x) Value 

4 0.04000  1 0.01333 
3 0.01333  2 0.00667 

(b) Pima-Indian Diabetes   ( 0.1  
Attribute No. Q(x) Value  Attribute No. Q(x) Value 

2 0.25260  7 0.13843 
8 0.24219  5 0.10338 
6 0.23017  4 0.06727 
1 0.19241  3 0.04218 

(c) Vehicle Silhouettes   ( 0.1  
Attribute No. Q(x) Value  Attribute No. Q(x) Value 

7 0.46432  4 0.03586 
8 0.44932  10 0.02759 
9 0.43204  18 0.02208 
12 0.42849  17 0.02090 
11 0.41313  13 0.01971 
3 0.29256  14 0.01853 
1 0.18064  15 0.01735 
2 0.07270  16 0.01735 
6 0.07225  5 0.01735 

(d) Image-Segmentation  ( 0.1  
Attribute No. Q(x) Value  Attribute No. Q(x) Value 

11 0.40742  14 0.03627 
10 0.39690  8 0.03627 
12 0.38785  6 0.03627 
17 0.37933  1 0.01640 
13 0.37933  4 0.01640 
18 0.26975  5 0.01640 
19 0.15246  7 0.01640 
16 0.14187  9 0.01640 
15 0.12664  3 0.01640 
2 0.03960    

 

 

Table 4.6    Results Achieved during the Recursive Partitioning Step  at  0.4 

 

(a) Iris-Plants   ( 0.4  
Attribute No. Q(x) Value  Attribute No. Q(x) Value 

4 0.04000  1 0.01333 
3 0.01333  2 0.00667 

(b) Pima-Indian Diabetes  ( 0.4  
Attribute No. Q(x) Value  Attribute No. Q(x) Value 

2 0.25260  5 0.23307 
6 0.25260  7 0.22266 
1 0.25260  4 0.21615 
8 0.24219  3 0.19141 
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Table 4.6  (Continued) 

 

(c) Vehicle Silhouettes  ( 0.4  
Attribute No. Q(x) Value  Attribute No. Q(x) Value 

7 0.48495  6 0.08704 
8 0.47458  17 0.04803 
9 0.45865  18 0.03385 
12 0.45422  4 0.02912 
11 0.44226  13 0.02321 
3 0.33706  14 0.02203 
1 0.23006  15 0.01848 
10 0.11659  16 0.01730 
2 0.08704  5 0.01730 

(d) Image-Segmentation  ( 0.4  
Attribute No. Q(x) Value  Attribute No. Q(x) Value 

11 0.41397  14 0.05190 
12 0.40048  8 0.05190 
10 0.39714  6 0.05190 
17 0.39286  1 0.03571 
13 0.39286  4 0.03571 
19 0.21968  5 0.03571 
18 0.17333  7 0.03571 
15 0.16285  9 0.03571 
16 0.14131  3 0.03571 
2 0.05952    

 

 

Figure 4.9 (a)-(c) show the searching chains for the optimal residual  

during the second partitioning step till the last step for the Iris-Plants dataset, Figure 

4.10 (a)-(g) for the Pima-Indian Diabetes dataset, Figure 4.11 (a)-(q) for the Vehicle 

Silhouettes dataset, and Figure 4.12 (a)-(r) for the Image-Segmentation dataset, all at  

0.1. Notice that the first partitioning step has be performed during the Dimension 

Ordering step, so the chain is the same and therefore omitted. Figure 4.13 (a)-(c), 

Figure 4.14 (a)-(g), Figure 4.15 (a)-(q), and Figure 4.16 (a)-(r) demonstrates the same 

scenarios, but at 0.4. The meanings of the symbols used in the figures are the 

same as mentioned in section 4.1.1. 
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         (a)  NOI  Search Chain on the 2nd partitioning      (b)  NOI  Search Chain on the 3rd partitioning 

 

          
         (c)  NOI  Search Chain on the 4th partitioning   

      

Figure 4.9  Searching Chains for Subspace Partitioning on Iris-Plants at  0.1
. 

 

        
         (a)  NOI  Search Chain on the 2nd partitioning     (b)  NOI  Search Chain on the 3rd partitioning 

 

Figure 4.10  Searching Chains for Subspace Partitioning on Pima-Indian Diabetes  

                     at  0.1 
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        (c)  NOI  Search Chain on the 4th partitioning       (d)  NOI  Search Chain on the 5th partitioning 

 

        
        (e)  NOI  Search Chain on the 6th partitioning        (f)  NOI  Search Chain on the 7th partitioning 

 

      
        (g)  NOI  Search Chain on the 8th partitioning 

   

Figure 4.10  Searching Chains for Subspace Partitioning on Pima-Indian Diabetes  

                     at  0.1  (Continued) 
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         (a)  NOI  Search Chain on the 2nd partitioning      (b)  NOI  Search Chain on the 3rd partitioning 

 

        
        (c)  NOI  Search Chain on the 4th partitioning        (d)  NOI  Search Chain on the 5th partitioning 

 

        
        (e)  NOI  Search Chain on the 6th partitioning        (f)  NOI  Search Chain on the 7th partitioning 

 

Figure 4.11  Searching Chain for Subspace Partitioning on Vehicle Silhouettes at 

                          0.1 
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         (g)  NOI  Search Chain on the 8th partitioning      (h)  NOI  Search Chain on the 9th partitioning 

 

                 
         (i)  NOI  Search Chain on the 10th partitioning     (g)  NOI  Search Chain on the 11th partitioning 

 

        
        (k)  NOI  Search Chain on the 12th partitioning     (l)  NOI  Search Chain on the 13th partitioning 

 

Figure 4.11  Searching Chain for Subspace Partitioning on Vehicle Silhouettes at 

                          0.1  (Continued) 
 



 

 

53

        
        (m)  NOI  Search Chain on the 14th partitioning    (n)  NOI  Search Chain on the 15th partitioning 

 

        
         (o)  NOI  Search Chain on the 16th partitioning     (p)  NOI  Search Chain on the 17th partitioning 

 

      
         (q)  NOI  Search Chain on the 18th partitioning 

 

Figure 4.11  Searching Chain for Subspace Partitioning on Vehicle Silhouettes at 

                          0.1  (Continued) 
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         (a)  NOI  Searchg Chain on the 2nd partitioning    (b)  NOI  Search Chain on the 3rd partitioning 

 

        
         (c)  NOI  Search Chain on the 4th partitioning      (d)  NOI  Search Chain on the 5th partitioning 

 

        
        (e)  NOI  Search Chain on the 6th partitioning       (f)  NOI  Search Chain on the 7th partitioning 

 

Figure 4.12  Searching Chains for Subspace Partitioning on Image-Segmentation  

                      at   0.1 
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        (g)  NOI  Search Chain on the 8th partitioning       (h)  NOI  Search Chain on the 9th partitioning 

 

           
         (i)  NOI  Search Chain on the 10th partitioning    (j)  NOI  Search Chain on the 11th partitioning 

 

        
         (k)  NOI  Search Chain on the 12th partitioning     (l)  NOI  Search Chain on the 13th partitioning 

 

Figure 4.12  Searching Chains for Subspace Partitioning on Image-Segmentation  

                      at  0.1  (Continued) 
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        (m)  NOI  Search Chain on the 14th partitioning    (n)  NOI  Search Chain on the 15th partitioning 

 

        
         (o)  NOI  Search Chain on the 16th partitioning    (p)  NOI  Search Chain on the 17th partitioning 

 

            
        (q)  NOI  Search Chain on the 18th partitioning     (r)  NOI  Search Chain on the 19th partitioning 

 

Figure 4.12  Searching Chains for Subspace Partitioning on Image-Segmentation  

                      at  0.1  (Continued) 
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         (a)  NOI  Search Chain on the 2nd partitioning      (b)  NOI  Search Chain on the 3rd partitioning 

 

       
        (c)  NOI  Search Chain on the 4th partitioning  

 

Figure 4.13  Searching Chains for Subspace Partitioning on Iris-plants at  0.4 
  

      

        
         (a)  NOI  Search Chain on the 2nd partitioning      (b)  NOI  Search Chain on the 3rd partitioning 

 

Figure 4.14  Searching Chains for Subspace Partitioning on Pima-Indian Diabetes 

                      at   0.4 
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        (c)  NOI  Search Chain on the 4th partitioning        (d)  NOI  Search Chain on the 5th partitioning 

 

        
        (e)  NOI  Search Chain on the 6th partitioning       (f)  NOI  Search Chain on the 7th partitioning 

 

        
         (g)  NOI  Search Chain on the 8th partitioning 

                         

Figure 4.14   Searching Chains for Subspace Partitioning on Pima-Indian Diabetes 

                      at   0.4  (Continued) 
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         (a)  NOI  Search Chain on the 2nd partitioning      (b)  NOI  Search Chain on the 3rd partitioning 

 

        
        (c)  NOI  Search Chain on the 4th partitioning       (d)  NOI  Search Chain on the 5th partitioning 

 

         
         (e)  NOI  Search Chain on the 6th partitioning      (f)  NOI  Search Chain on the 7th partitioning 

 

Figure 4.15  Searching Chain for Subspace Partitioning on Vehicle Silhouettes at 

                          0.4 
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        (g)  NOI  Search Chain on the 8th partitioning       (h)  NOI  Search Chain on the 9th partitioning 

 

                
         (i)  NOI  Search Chain on the 10th partitioning    (j)  NOI  Search Chain on the 11th partitioning  

 

        
         (k)  NOI  Search Chain on the 12th partitioning    (l)  NOI  Search Chain on the 13th partitioning 

 

Figure 4.15  Searching Chain for Subspace Partitioning on Vehicle Silhouettes at 

                          0.4  (Continued) 
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         (m)  NOI  Search Chain on the 14th partitioning   (n)  NOI  Search Chain on the 15th partitioning 

 

        
         (o)  NOI  Search Chain on the 16th partitioning    (p)  NOI  Search Chain on the 17th partitioning 

 

        
         (q)  NOI  Search Chain on the 18th partitioning  

                      

Figure 4.15  Searching Chain for Subspace Partitioning on Vehicle Silhouettes at 

                           0.4  (Continued) 
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         (a)  NOI  Search Chain on the 2nd partitioning      (b)  NOI  Search Chain on the 3rd partitioning 

 

        
         (c)  NOI  Search Chain on the 4th partitioning      (d)  NOI  Search Chain on the 5th partitioning 

 

        
         (e)  NOI  Search Chain on the 6th partitioning       (f)  NOI  Search Chain on the 7th partitioning 

 

Figure 4.16  Searching Chains for Subspace Partitioning on Image-Segmentation  

                      at   0.4 
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         (g)  NOI  Search Chain on the 8th partitioning       (h)  NOI  Search Chain on the 9th partitioning 

 

        
         (i)  NOI  Search Chain on the 10th partitioning      (j)  NOI  Search Chain on the 11th partitioning 

 

                 
         (k)  NOI  Search Chain on the 12th partitioning     (l)  NOI  Search Chain on the 13th partitioning 

 

Figure 4.16  Searching Chains for Subspace Partitioning on Image-Segmentation  

                     at   0.4  (Continued) 
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         (m)  NOI  Search Chain on the 14th partitioning   (n)  NOI  Search Chain on the 15th partitioning 

 

        
         (o)  NOI  Search Chain on the 16th partitioning     (p)  NOI  Search Chain on the 17th partitioning 

 

                
         (q)  NOI  Search Chain on the 18th partitioning    (r)  NOI  Search Chain on the 19th partitioning 

 

Figure 4.16  Searching Chains for Subspace Partitioning on Image-Segmentation  

                     at   0.4  (Continued) 
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4.1.3  Evaluation of the Clustering Performance 

The clustering performance of the proposed algorithm on the four UCI 

datasets are finally evaluated in terms of the number of generated clusters, the 

clusters’ purity (averaged ratio between the number of majority class data objects and 

the number of data objects in a cluster) , and the fitness function  value. The 

evaluation measurements are compared with those of the other five representative-

based supervised clustering algorithms, which are Supervised Partitioning Around 

Medoids (SPAM), the Single Representative Insertion/Deletion Steepest Decent Hill 

Climbing with Randomized Start (SRIDHCR), and the Supervised Clustering using 

Evolutionary Computing (SCEC), all in Zeidat et al. (2006), the Supervised Growing 

Neural Gas (SGNG) and the Robust Supervised Growing Neural Gas (RSGNG) in 

Apirak Jirayusakul (2007).    The performance comparisons on the Iris-Plants, the 

Pima-Indian Diabetes, the Vehicle Silhouettes, and the Image-Segmentation dataset 

are shown in Table 4.7, Table 4.8, Table 4.9, and Table 4.10 respectively, for 0.1 and 

0.4 of β ’s values. Note that only the first three of the five algorithms are compared 

with the proposed algorithm for 0.4 ofβ ’s value since the three measurements are 

available on the three algorithms. In addition, the experiments on the proposed 

algorithm were also conducted with varying values of parameters, i.e. maxnoi, η and 

γ, to see how these parameters can affect the performances of the proposed algorithm. 
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Table 4.7  Performance Comparison on Iris-Plants Dataset 

 
(a) Iris-Plants  [on β = 0.1] 

Algorithm No. of 
Clusters 

Cluster 
Purity Q(x) Value 

SCEC 5 0.993 0.018 
SREDHCR 3 0.980 0.020 

SPAM 3 0.973 0.027 

SGNG 3 0.973 0.027 
5 0.986 0.026 

RSGNG 3 0.973 0.027 
5 0.986 0.026 

Proposed Algorithm    
( η = 0.5,  maxnoi = 100,  γ = 0.3 ) 3 0.993 0.007 
( η = 0.4,  maxnoi = 100,  γ = 0.3 ) 3 0.987 0.013 
( η = 0.6,  maxnoi = 100,  γ = 0.3 ) 3 0.987 0.013 
( η = 0.5,  maxnoi = 50,  γ = 0.3 ) 3 0.987 0.013 

( η = 0.5,  maxnoi = 200,  γ = 0.3 ) 6 1.000 0.014 
( η = 0.5,  maxnoi = 100,  γ = 0.2 ) 3 0.987 0.013 
( η = 0.5,  maxnoi = 100,  γ = 0.4 ) 3 0.987 0.013 

       

(b) Iris-Plants  [on β = 0.4] 
Algorithm No. of 

Clusters 
Cluster 
Purity Q(x) Value 

SCEC 3 0.987 0.013 
SREDHCR 3 0.987 0.013 

SPAM 3 0.973 0.027 
Proposed Algorithm    

( η = 0.5,  maxnoi = 100,  γ = 0.3 ) 3 0.993 0.007 
( η = 0.4,  maxnoi = 100,  γ = 0.3 ) 3 0.987 0.013 
( η = 0.6,  maxnoi = 100,  γ = 0.3 ) 3 0.987 0.013 
( η = 0.5,  maxnoi = 50,  γ = 0.3 ) 3 0.987 0.013 

( η = 0.5,  maxnoi = 200,  γ = 0.3 ) 6 1.000 0.057 
( η = 0.5,  maxnoi = 100,  γ = 0.2 ) 3 0.987 0.013 
( η = 0.5,  maxnoi = 100,  γ = 0.4 ) 3 0.987 0.013 

 

 

As shown in Table 4.7, on the Iris-Plants dataset whose same class data 

objects are grouped in the well-defined oval shape clusters, the performance of the 

proposed algorithm is better than those of the other five algorithms both at  0.1  

and  0.4, except at  maxnoi  value 200.    

 

 

 

 



 

 

67

Table 4.8  Performance Comparison on  Pima-Indian Diabetes Dataset 

 
(a) Pima-Indian Diabetes  [on β = 0.1] 

Algorithm No. of 
Clusters 

Cluster 
Purity Q(x) Value 

SCEC 64 0.893 0.135 
SREDHCR 45 0.859 0.164 

SPAM 45 0.822 0.202 
 45 0.880 0.144 

SGNG 64 0.919 0.109 
 75 0.941 0.090 
 45 0.863 0.161 

RSGNG 64 0.898 0.130 
 75 0.911 0.120 

Proposed Algorithm    
( η = 0.5,  maxnoi = 100,  γ = 0.3 ) 37 0.979 0.042 
( η = 0.4,  maxnoi = 100,  γ = 0.3 ) 30 0.974 0.045 
( η = 0.6,  maxnoi = 100,  γ = 0.3 ) 60 0.990 0.038 
( η = 0.5,  maxnoi = 50,  γ = 0.3 ) 20 0.939 0.077 

( η = 0.5,  maxnoi = 200,  γ = 0.3 ) 63 0.982 0.046 
( η = 0.5,  maxnoi = 100,  γ = 0.2 ) 25 0.961 0.056 
( η = 0.5,  maxnoi = 100,  γ = 0.4 ) 20 0.961 0.054 

 
 

(b) Pima-Indian Diabetes  [on β = 0.4] 

Algorithm No. of 
Clusters 

Cluster 
Purity Q(x) Value 

SCEC 9 0.819 0.219 
SREDHCR 2 0.776 0.224 

SPAM 2 0.772 0.227 
Proposed Algorithm    

( η = 0.5,  maxnoi = 100,  γ = 0.3 ) 2 0.809 0.191 
( η = 0.4,  maxnoi = 100,  γ = 0.3 ) 2 0.802 0.198 
( η = 0.6,  maxnoi = 100,  γ = 0.3 ) 2 0.809 0.191 
( η = 0.5,  maxnoi = 50,  γ = 0.3 ) 2 0.797 0.203 

( η = 0.5,  maxnoi = 200,  γ = 0.3 ) 18 0.943 0.115 
( η = 0.5,  maxnoi = 100,  γ = 0.2 ) 2 0.802 0.198 
( η = 0.5,  maxnoi = 100,  γ = 0.4 ) 2 0.802 0.198 

          

 

On the Pima-Indian Diabetes dataset, shown in table 4.8, the proposed 

algorithm performs the best among the six algorithms in terms of both the  value 

and the cluster’s purity when using β value 0.1. On  β value of 0.4, its performance is 

rather comparable with the other three algorithms. 
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Table 4.9 shows that the proposed algorithm outperforms the other algorithms 

on the Vehicle Silhouettes dataset in terms of the q(x) value, the cluster purity, and the 

number of clusters generated, on both values of  β. 

 
Table 4.9  Performance Comparison on Vehicle Silhouettes Dataset 

 
(a) Vehicle Silhouettes  [on β = 0.1] 

Algorithm No. of 
Clusters 

Cluster 
Purity Q(x) Value 

SCEC 132 0.923 0.116 
SREDHCR 65 0.835 0.192 

SPAM 65 0.764 0.263 
 65 0.861 0.166 

SGNG 109 0.920 0.115 
 132 0.946 0.093 
 65 0.873 0.154 

RSGNG 109 0.937 0.098 
 132 0.955 0.084 

Proposed Algorithm    
( η = 0.5,  maxnoi = 100,  γ = 0.3 ) 43 1.000 0.021 
( η = 0.4,  maxnoi = 100,  γ = 0.3 ) 23 0.998 0.017 
( η = 0.6,  maxnoi = 100,  γ = 0.3 ) 33 0.996 0.022 
( η = 0.5,  maxnoi = 50,  γ = 0.3 ) 34 0.999 0.020 

( η = 0.5,  maxnoi = 200,  γ = 0.3 ) 64 0.996 0.030 
( η = 0.5,  maxnoi = 100,  γ = 0.2 ) 10 0.998 0.011 
( η = 0.5,  maxnoi = 100,  γ = 0.4 ) 21 1.000 0.014 

 
(b) Vehicle Silhouettes  [on β = 0.4] 

Algorithm No. of 
Clusters 

Cluster 
Purity Q(x) Value 

SCEC 61 0.857 0.247 
SREDHCR 56 0.835 0.265 

SPAM 56 0.754 0.345 
Proposed Algorithm    

( η = 0.5,  maxnoi = 100,  γ = 0.3 ) 11 0.993 0.043 
( η = 0.4,  maxnoi = 100,  γ = 0.3 ) 5 0.992 0.022 
( η = 0.6,  maxnoi = 100,  γ = 0.3 ) 7 0.988 0.036 
( η = 0.5,  maxnoi = 50,  γ = 0.3 ) 9 0.988 0.043 

( η = 0.5,  maxnoi = 200,  γ = 0.3 ) 16 0.994 0.054 
( η = 0.5,  maxnoi = 100,  γ = 0.2 ) 9 0.995 0.035 
( η = 0.5,  maxnoi = 100,  γ = 0.4 ) 9 0.995 0.035 
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Still in Table 4.10, the proposed algorithm gives better performance on the 

image-Segmentation dataset for both the q(x) values and the number of clusters on 

both β values. 

 

Table 4.10  Performance Comparison on Image-Segmentation Dataset 

 

(a) Image-Segmentation  [on β = 0.1] 

Algorithm No. of 
Clusters 

Cluster 
Purity Q(x) Value 

SCEC 60 0.989 0.026 
SREDHCR 53 0.980 0.035 

SPAM 53 0.944 0.071 
 42 0.967 0.046 

SGNG 53 0.971 0.044 
 60 0.977 0.039 
 42 0.959 0.054 

RSGNG 53 0.963 0.052 
 60 0.969 0.047 

Proposed Algorithm    
( η = 0.5,  maxnoi = 100,  γ = 0.3 ) 19 0.990 0.018 
( η = 0.4,  maxnoi = 100,  γ = 0.3 ) 17 0.990 0.017 
( η = 0.6,  maxnoi = 100,  γ = 0.3 ) 28 0.995 0.015 
( η = 0.5,  maxnoi = 50,  γ = 0.3 ) 30 0.995 0.016 

( η = 0.5,  maxnoi = 200,  γ = 0.3 ) 37 0.995 0.017 
( η = 0.5,  maxnoi = 100,  γ = 0.2 ) 21 0.989 0.019 
( η = 0.5,  maxnoi = 100,  γ = 0.4 ) 29 0.993 0.017 
 

(b) Image-Segmentation  [on β = 0.4] 
Algorithm No. of 

Clusters 
Cluster 
Purity Q(x) Value 

SCEC 28 0.969 0.069 
SREDHCR 32 0.970 0.074 

SPAM 32 0.940 0.103 
Proposed Algorithm    

( η = 0.5,  maxnoi = 100,  γ = 0.3 ) 14 0.984 0.039 
( η = 0.4,  maxnoi = 100,  γ = 0.3 ) 13 0.980 0.041 
( η = 0.6,  maxnoi = 100,  γ = 0.3 ) 15 0.990 0.034 
( η = 0.5,  maxnoi = 50,  γ = 0.3 ) 13 0.985 0.037 

( η = 0.5,  maxnoi = 200,  γ = 0.3 ) 25 0.986 0.051 
( η = 0.5,  maxnoi = 100,  γ = 0.2 ) 14 0.988 0.035 
( η = 0.5,  maxnoi = 100,  γ = 0.4 ) 13 0.984 0.038 
 

 

As a conclusion, the results reported in Table 4.7 thru Table 4.10 do show that 

the proposed algorithm yields the best solutions among the six algorithms in both 

values of β. Furthermore, the numbers of clusters generated by the other five 



 

 

70

algorithms in the last three datasets are remarkably higher than those by the proposed 

algorithm. These may due to the natures of representative-based clustering algorithms 

of the other five algorithms that incline to create a large number of global-shape 

clusters. The parameter value of maxnoi has a few effects on the performances of the 

proposed algorithm if the value is too large. The maxnoi acts as a normalization factor 

for the noi value. So, when the maxnoi value becomes too large, the noi value as well 

as the gradient of the noi value become too small, and therefore can reduce the 

effectiveness of the gradient search. Also, it is possible that different dimensions can 

have different maxnoi values. 

 

4.2  The Experiments on Synthetic Datasets 

 

The experiments in this section are intended to affirm the effectiveness of the 

proposed algorithm under various proclaimed situations through 2-D geometrical 

presentations.  The algorithm was performed on four 2-D synthetic datasets from 

Apirak Jirayusakul (2007) representing 4 different scenarios: Test-1, Test-2, Test-3, 

and Test-4. The properties of the datasets are shown in Table 4.11. The parameters 

used in the experiments are as follows: 

                               0.1 ,   0.5 , 100 , 0.3 

The results of the experiments are graphically displayed in Figure 4.17 thru 4.20 

where objects claimed as impurities are encircled with the dark color. 

 

 Table 4.11  Properties of the Synthetic Datasets Used in the Experiments 

 
Dataset Name No. of Examples No. of  Attributes No. of Classes 

Test-1 1,250 2 2 
Test-2 1,000 2 6 
Test-3 4,185 2 4 
Test-4 3,421 2 4 

 

 

Figure 4.17 illustrates the result from the experiment on Test-1 dataset. It 

shows two pure cross-board shape clusters: A and B, one cluster per one individual 

class. This result confirms that the proposed algorithm has ability to identify any 
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irregular shape clusters. The result is quite different from those from Apirak 

Jirayusakul (2007: 61-62), the optimal value of which renders 25 prototypes, due to 

the representative-based nature which inclines to generate global shape clusters.   

 

                                
 

Figure 4.17  Result on  Test-1  Dataset   

 

The result on Test-2 dataset is shown in Figure 4.18. The proposed algorithm 

depicts 12 sparse various shape and density clusters:  A1, A2, B1, B2, C1, C2, C3, D1, 

D2, E1, E2 and F, with sparse-and-scattered impurity objects.  There are two clusters 

which contain only single data object:  A3 and E3, and hence may be counted as 

outliers. The result is analogous to the optimal result generated by Apirak Jirayusakul 

(2007: 66), with the trivial exception that the clusters A3 and E3 are included into 

their major clusters.  

 

                          
 

Figure 4.18  Result on  Test-2  Dataset. 

 

The set of clusters shown in Figure 4.19 is the result from running the 

proposed algorithm on Test-3 dataset.  Fourteen crowded similar shape, size, and 

density clusters are delineated: A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4, D1, 
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and D2, most of which are overlapped, as can be seen surrounded by considerable 

number of impurity objects. The result is comparable to the optimal result from 

Apirak Jirayusakul (2007: 69-70), except that the number of clusters is higher due to 

the separation of the clusters C3 into 2 adjacent clusters, according to its 

representative-based nature. 

 

                          
 

Figure 4.19  Result on  Test-3  Dataset.   

 

The results from the experiment performed on Test-4 dataset is shown in 

Figure 4.20. The proposed algorithm can identify 17 various size and density clusters:  

A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, C1, C2, C3, C4, C5, D1, and D2. Some 

contain a small number of impurity objects in various locations inside the clusters. In 

Apirak Jirayusakul (2007: 73-74), the separation of both the cluster A2 and B3 into 2 

adjacent clusters does confirm its representative-based concept. 

 

                          
 

Figure 4.20  Result on  Test-4  Dataset. 
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As the conclusion, the results from the four experiments hence endorse the 

ability of the proposed algorithm in identifying clusters of any shapes and sizes 

without presuming any canonical form of data distribution. 



 

CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 
In this dissertation, a new approach in clustering data objects in the supervised 

manner is proposed. The proposed algorithm blends together the advantages of the 

grid-based clustering method and bottom-up subspace clustering method. This enables 

the algorithm to alleviate some of the drawbacks that exist in most of the recent 

clustering algorithms. That is, the proposed algorithm has ability to identify clusters 

of any shapes and sizes without presuming any canonical form for data distribution, 

needs no pre-specified number of clusters, and is insensitive to the order of the input 

data objects. 

The proposed algorithm begins by gradually partitioning data space into equal-

size non-empty grid cells using one dimension at a time. The greedy method is used to 

determine the order of dimensions that would give the best quality of clustering from 

the gradual partitioning, while, the gradient descent method is used to find the optimal 

number of intervals to be used for each partitioning.  After all dimensions have been 

partitioned, any connected grid cells containing majority of data from the same class 

are merged into a cluster. By using the greedy and gradient descent methods in 

performing grid cell partitioning, the proposed algorithm can produce high quality 

clusters while reduce time to find the best partitioning and avoid the memory 

confinement problem during the process.  

The results from the experiments do confirm that the proposed algorithm can 

cope with datasets of any shapes and sizes. On two-dimensional synthetic datasets, the 

proposed algorithm can identify clusters with different shapes and sizes correctly. On 

UCI datasets, the proposed algorithm also outperforms all other five supervised 

clustering algorithms, with smaller numbers of created clusters and lower degrees of 

impurity, especially on irregular-shape datasets.    

A method to manage outliers is not mentioned in the proposed algorithm. 

Nevertheless, the algorithm can simply identify outliers by checking for clusters that 
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contain data objects fewer than the pre-defined value and reporting the data objects 

inside the clusters as outliers. A more sophisticated method can be developed based 

on some statistical characteristics of grid cells which might contain only outliers. For 

instance, during the Grid Cell Creation task, the mean and standard deviation values 

of the numbers of data objects of all grid cells can be computed. The grid cells with 

numbers of data objects significantly fewer than most other grid cells , e.g. less than 

the mean by more than four times of the standard deviation, can be considered as the 

grid cells with too few number of data objects and can be considered to contain only 

outliers. Therefore, they can then be deprived from further partitioning. 
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