
GRID-BASED SUPERVISED CLUSTERING ALGORITHM

USING GREEDY AND GRADIENT DESCENT METHODS

TO BUILD CLUSTERS

Pornpimol Bungkomkhun

A Dissertation Submitted in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Computer Science)

School of Applied Statistics

National Institute of Development Administration

2012

ABSTRACT

Title of Dissertation Grid-based Supervised Clustering Algorithm Using Greedy

and Gradient Descent Methods to Build Clusters

Author Mrs. Pornpimol Bungkomkhun

Degree Doctor of Philosophy (Computer Science)

Year 2012

Clustering analysis is one of the primary methods of data mining tasks with

the objective to understand the natural grouping (or structure) of data objects in a

dataset. The clustering tasks aim to segment the entire data set into relatively

homogenous subgroups or clusters where the similarities of the data objects within

clusters are maximized and the similarities of data objects belonging to different

clusters are minimized. For supervised clustering, not only attribute variables of data

objects but also the class variable of data objects take part in grouping or dividing

data objects into clusters in the manner that each cluster has high homogeneity in term

of classes of its data objects.

This dissertation proposes a grid-based supervised clustering algorithm that is

able to identify clusters of any shapes and sizes without presuming any canonical

form for data distribution. The algorithm not only needs no pre-specified number of

clusters but also is insensitive to the order of the input data objects. The proposed

algorithm gradually partitions data space into equal-size grid cells using one

dimension at a time. The greedy method is used to arrange the order of dimensions for

the gradual partitioning that would give the best quality of clustering, while the

gradient descent method is used to find the optimal number of intervals for each

partitioning. After all dimensions have been partitioned, any connected dense grid

cells containing majority of data objects from the same class are merged into a cluster.

By using the greedy and gradient descent methods as mentioned, the proposed

algorithm can produce high quality clusters while reduce time to find the best

 iv

partitioning and avoid the memory confinement problem during the process. On two-

dimensional synthetic datasets, the proposed algorithm can identify clusters with

different shapes and sizes correctly. The proposed algorithm also outperforms other

five supervised clustering algorithms when performed on some UCI datasets.

ACKNOWLEDGEMENTS

The author would like to express supreme thank to my advisor, Associate

Professor Dr. Surapong Auwatanamongkol, for his valuable advice and guidance in

every time of my irresolute conditions, and also for his intense encouragement

whenever I got enervated.

The author also wish to extend thanks and appreciation to all of the committee

members, Associate Professor Dr. Pipat Hiranvanichakorn, Assistant Professor Dr.

Ohm Sornil and Assistant Professor Dr. Rawiwan Tenissara, for their beneficial

comments and suggestions all through the progress of the dissertation.

Thank is also dedicated to Assistant Professor Dr. Apirak Jirayusakul for

sending me the synthetic datasets to be used in the experiments without any

hesitation.

Mrs. Pornpimol Bungkomkhun
 July 2012

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1 INTRODUCTION

 1.1 Problem Overview and Motivation

 1.2 Dissertation Objectives

CHAPTER 2 LITERATURE REVIEW
2.1 Traditional Clustering

 2.1.1 Partitioning Algorithm

 2.1.2 Hierarchical Algorithm

 2.1.3 Density-based Algorithm

 2.1.4 Grid-based Algorithm

2.2 Subspace Clustering
2.3 Supervised Clustering

CHAPTER 3 METHODOLOGY
3.1 Definitions

 3.1.1 Data Objects

 3.1.2 Grid Cells

 3.1.3 Clusters

3.2 Fitness Function

 Page

 iii

 v

 vi

 viii

 ix

 1

 1

 6

 8

 8

 8

 8

 9

 9

 12

 13

 18

 18

 18

 19

 19

 20

 vii

3.3 Discretization-based Supervised Clustering Algorithm
 3.3.1 Dimension Ordering Step
 3.3.1.1 Clustering Based on Each Individual

 Dimension

 3.3.1.2 Dimension Sequencing Task

 3.3.2 Subspace Clustering Step

 3.3.2.1 Grid Cells Creation Task

 3.3.2.2 Cluster Formation Task
CHAPTER 4 EXPERIMENTAL RESULTS

4.1 The Experiments on UCI Datasets

 4.1.1 Experimental Results from Dimension Ordering

 Step

 4.1.2 Experimental Results from Subspace Clustering

 Step

 4.1.3 Evaluation of the Clustering Performance

4.2 The Experiments on Synthetic Datasets
CHAPTER 5 CONCLUSION AND FUTURE WORKS

BIBLIOGRAPHY

BIOGRAPHY

 20

 21

 21

 23

 23

 24

 25

 26

 26

 27

 46

 65

 70

 74

 76

 80

LIST OF TABLES

Tables Page

 4.1 List of the Properties of UCI Datasets Used in the Experiments 26

 4.2 Results from Dimension Ordering Step at β = 0.1 27

4.3 Results from Dimension Ordering Step at β = 0.4 28

4.4 The Symbols and their Meanings Used in Figure 4.1 thru 4.8 29

 ሻ Results Achieved during the Recursive Partitioning Step 47࢞ሺࡽ 4.5

 at ࢼ ൌ ૙. ૚

 esults Achieved during the Recursive Partitioning Step 47-48܀ ሻ࢞ሺࡽ 4.6

 at ࢼ ൌ ૙. ૝

4.7 Performance Comparison on Iris-Plants Dataset 66

 4.8 Performance Comparison on Pima-Indian Diabetes Dataset 67

4.9 Performance Comparison on Vehicle Silhouettes Dataset 68

4.10 Performance Comparison on Image-Segmentation Dataset 69

4.11 Properties of the Synthetic Datasets Used in the Experiments 70

LIST OF FIGURES

Figures

1.1 Different Ways of Clustering

1.2 Example Result of Traditional Clustering Process

1.3 Example Result of Semi-supervised Clustering Process

1.4 Example Result of Supervised Clustering Process

4.1 Searching Chain for NOI Values on Iris-Plants at ߚ ൌ 0.1

4.2 Searching Chain for NOI Values on Pima-Indian Diabetes

 at ߚ ൌ 0.1

4.3 Searching Chain for NOI Values on Vehicle Silhouettes

 at ߚ ൌ 0.1

 4.4 Searching Chain for NOI Values on Image-Segmentation

 at ߚ ൌ 0.1

4.5 Searching Chain for NOI Values on Iris-Plants at ߚ ൌ 0.4

 4.6 Searching Chain for NOI Values on Pima-Indian Diabetes

 at ߚ ൌ 0.4

 4.7 Searching Chain for NOI Values on Vehicle Silhouettes

 at ߚ ൌ 0.4

 4.8 Searching Chain for NOI Values on Image-Segmentation

 at ߚ ൌ 0.4

4.9 Searching Chains for Subspace Partitioning on Iris-Plants at ߚ ൌ 0.1

 4.10 Searching Chains for Subspace Partitioning on Pima-Indian Diabetes

 at ߚ ൌ 0.1

4.11 Searching Chain for Subspace Partitioning on Vehicle Silhouettes

 at ߚ ൌ 0.1

 4.12 Searching Chains for Subspace Partitioning on

 Image-Segmentation at ߚ ൌ 0.1

4.13 Searching Chains for Subspace Partitioning on Iris-plants at ߚ ൌ 0.4

Page

2

3

4

5

30

30-31

32-34

35-38

38

39-40

40-43

43-46

49

49-50

51-53

54-56

57

 ix

 4.14 Searching Chains for Subspace Partitioning on Pima-Indian Diabetes

 at ߚ ൌ 0.4

4.15 Searching Chain for Subspace Partitioning on Vehicle Silhouettes

 at ߚ ൌ 0.4

 4.16 Searching Chains for Subspace Partitioning on Image-Segmentation

 at ߚ ൌ 0.4

4.17 Result on Test-1 dataset

4.18 Result on Test-2 dataset

4.19 Result on Test-3 dataset

4.20 Result on Test-4 dataset

57-58

59-61

62-64

71

71

72

72

CHAPTER 1

INTRODUCTION

1.1 Problem Overview and Motivation

Rapid advances in data collection methodologies have enabled the

accumulation of vast amount of data. Extracting meaningful information from these

data has been very beneficial as well as challenging. Data mining is the process of

automatically discovering useful information in large data repositories. Clustering

analysis is one of the primary methods of data mining tasks with the objective to

understand the natural grouping (or structure) of data objects in a dataset. The main

objective of clustering is to separate data objects into high quality groups (or clusters),

based on similarities among the data objects. The clustering tasks aim to segment the

entire data set into relatively homogeneous subgroups or clusters where similarities of

data objects within any clusters are maximized and similarities of data objects that

come from different clusters are minimized.

Cluster analysis has long played an important role in a variety of fields. In

biology, cluster analysis has been spent in creating the taxonomy or other words the

hierarchical classification of living things. More recently, biologists have applied

clustering to analyze the large amount of genetic information, as for example finding

groups of genes that have similar functions. Clustering methodologies have been used

in various schemes in information retrieval. One of the examples is grouping the

search results of the World Wide Web queries into a small number of clusters, each of

which captures a particular aspect of the query, in order to assist the web explorers in

gaining their relevant information.

Clustering has also been used in climate analysis in finding patterns in the

atmosphere and ocean that have a significant impact on land climate. In psychology

and medicine, cluster analysis has been used to identify the variations of illnesses in

forms of their different sub-categories. Even in the business areas, clustering has been

2

used to analyze large amounts of information on current and potential customers so as

to segment them into groups for approaching appropriate marketing activities.

Figure 1.1 illustrates the difficulty of deciding what constitutes a cluster (Tan,

Steinbach and Kumar, 2006: 490-491). Twenty points in the figure represent twenty

data objects that are divided into clusters in three different ways: two clusters in figure

1.1(b), four clusters in figure 1.1(c), and six clusters in figure 1.1(d). The boundaries

of clusters are identified by the surrounding circles. Clusters depicted in figure 1.1(b)

and 1.1(d) can be recognized apparently by human eyes, while clusters depicted in

figure 1.1(c) may be not.

Figure 1.1 Different Ways of Clustering

Source: Adapted from Tan et al., 2005: 491.

Clustering techniques can be subdivided into three groups (Zeidat, Eick and

Zhao, 2006: 1-2): traditional clustering, semi-supervised clustering, and supervised

clustering. Traditional clustering is performed in an unsupervised learning manner.

No class label attribute of data objects is used to guide clustering them into groups.

Figure 1.2 gives the view of performing traditional clustering upon the twenty-eight

demonstrative data objects. Four clearly tight clusters: A, B, C, and D are depicted.

Since the problem of finding the optimal clustering of data objects was proven to be

NP-complete (Fowler, Paterson and Tanimoto, 1981: 133-137; Megiddo and Supowit,

1984: 182-196 quoted in Procopiuc, 1997: 3), many heuristic methods have been

3

developed to solve the problem. Kotsiantis and Pintelas (2004: 74-78) categorized

traditional clustering algorithms into several methods, namely, partitioning methods,

hierarchical methods, density-based methods, grid-based methods, and model-based

methods.

Figure 1.2 Example Result of Traditional Clustering Process

Source: Adapted from Zeidat et al., 2006: 2.

Apart from using only the similarity information, there are cases when a small

amount of prior knowledge is available and is needed to be used as the guidance for

the clustering process. Such knowledge concerns either in the form of the class labels

of some data items or in the pair-wise constraints (in terms of ‘must-link’ or ‘cannot-

link’) between some data items. In this situation, the semi-supervised clustering can

be approached in order to focus not only on obtaining tight clusters but also on

satisfying the given constraints with respect to a small set of data objects. Figure 1.3

exhibits the result of semi-supervised clustering on an example scenario. The clusters

E, F, G, and H are generated where objects belonging to different classes are

separated into different clusters, whereas those belonging to the same classes are

grouped into the same clusters. Notice information of class labels of some objects are

used to guide the semi-supervised clustering.

4

Figure 1.3 Example Result of Semi-supervised Clustering Process

Source: Adapted from Zeidat et al., 2006: 2.

Unlike the goal of traditional unsupervised clustering, the goal of supervised

clustering is to identify class-uniform clusters that have high data densities (Zeidat et

al., 2006: 3). According to them, not only data attribute variables, but also a class

variable, take part in grouping or dividing data objects into clusters in the manner that

the class variable is used to supervise the clustering. Supervised clustering differs

from semi-supervised clustering in that the former method utilizes prior knowledge

(in terms of class labels) of all data objects, while the latter method needs the prior

knowledge of some data objects in a given dataset. At the end of supervised clustering

process, each cluster is assigned with specific class label corresponding to the

majority class of data objects inside the cluster. Eick, Zeidat and Zhenghong (2004:

774-776) proposed supervised clustering algorithm that uses a fitness function which

maximizes the purity of clusters while keeping the number of clusters low. The

example scenario describing the result of their supervised clustering is shown in

figure 1.4 where data objects are grouped into four clusters: I, J, K, and L, each of

which governs objects of the same class only.

5

Figure 1.4 Example Result of Supervised Clustering Process

Source: Adapted from Zeidat et al., 2006: 2.

Supervised clustering concept has been used in various applications. Dettling

(2003: 1-8) used supervised clustering technique in revealing groups of co-regulated

predictor variables (genes) in microarray data which are controlled by external

(supervised) information in order to predict a certain type of disease. His approach

yielded more effective result than any unsupervised techniques clustering. Aggarwal,

Gates and Yu (1999: 352-356) proposed methods for building categorization systems

to categorize documents by applying supervised clustering, using a priori knowledge

of the definition of each category. They built a categorization system using a set of

classes from the Yahoo! Taxonomy and showed that the supervised clustering created

a new set of classes which were surveyed to be as good as the original set of classes in

the Yahoo! Taxonomy, but which are naturally suited to automated categorization.

The result is a system which has much higher overall quality of categorization than

systems based on manual taxonomies. Zeidat et al. (2006) and Eick et al. (2004) used

supervised clustering information in creating background knowledge for a dataset.

This knowledge was used to analyze the distribution of the instances of classes in the

attribute space with the objective to discover the subclasses of each particular class.

They also proposed supervised clustering as a tool to select the minimal subset of

examples from a training dataset that would enhance the accuracy of a classifier. As

simple classifiers are known to exhibit low variances and high biases, Zeidat et al.

(2006) proposed using supervised clustering to enhance simple classifiers via class

decomposition.

6

1.2 Dissertation Objectives

Until recently, there have been quite a few previous works in the area of

supervised clustering algorithms. Due to the acknowledgment that no single clustering

method can adequately handle all sorts of cluster structures and that different

clustering approaches often define different definitions for clusters, it is impossible to

define either a universal algorithms or a universal fitness function to measure

clustering quality. However, most of the supervised clustering algorithms still contain

one or the other drawbacks. For a number of algorithms, the clustering results may

depend on the ordering of data objects that are presented, i.e. their result clusters may

be not identical if the ordering of input data differs. Some algorithms need to have

pre-specified number of clusters, or moreover the initialization of the cluster

representatives, as the guidance in the clustering process. Other algorithms may

decrease their clustering proficiency by restricting the result clusters to be within the

global shape boundaries.

As mentioned in Kotsiantis et al. (2004: 79) that “A solution for better results

could be instead of integrating all requirements into a single algorithm, to try to build

a combination of clustering algorithms.”, the contribution of this dissertation is to

propose the new idea of supervised clustering algorithm based on the combination of

two methods, i.e. grid-based approach to density clustering method and bottom-up

subspace clustering method. The proposed algorithm is intended to eliminate all

mention drawbacks occurred in the previous algorithms. The algorithm gradually

partitions data space into equal-size nonempty grid cells (containing data objects)

using one dimension at a time for partitioning, and merges the connected grid cells

with same data class majorities to form partial clusters until all dimensions have been

partitioned. This process follows the framework of bottom-up subspace clustering. To

gradually partition data space into nonempty grid cells, the proposed algorithm first

finds the order of dimensions to be used for the gradual subspace clustering by

considering each of the data dimensions as the only dimension for partitioning

(individual dimension subspace clustering). The optimal number of equal intervals to

achieve the best quality of supervised clustering for each partitioning of a dimension

is determined using the gradient descent search instead of sequential search as

7

presented in Pornpimol Bungkomkhun and Surapong Auwatanamongkol (2009: 539-

541). Next, the bottom up subspace clustering is performed by gradually partitioning

data space using one dimension at a time. Using the greedy approach, dimensions are

selected to be the next dimension for partitioning based on their clustering quality

fitness values achieved from individual dimension clustering. The optimal individual

dimension clustering is also performed using the same gradient descent method. Once

all dimensions have participated in the partitioning, grid cells are formed and all

connected nonempty cells containing the majority of data from a same class are

merged into a cluster. Finally, each cluster is then labeled with its majority class of

data.

CHAPTER 2

LITERATURE REVIEW

The proposed algorithm is the supervised clustering algorithm that relies on

grid-based clustering method in quantizing data space into grid cells in the bottom-up

fashion by gradually adding dimensions into the cells one at a time. All adjacent cells

whose classes are identical are finally merged into the same cluster by applying

density-based clustering concept. In this section, essential backgrounds on traditional

clustering, subspace clustering and supervised clustering are provided. Reviews on

clustering algorithms relevant to the proposed algorithm are also given.

2.1 Traditional Clustering

2.1.1 Partitioning Algorithm

The basic idea of partitioning algorithms is to partition the data objects into a

set of k clusters. Usually, the algorithms start with an initial partition and afterwards

use the iterative control strategy to assign each object to the closest cluster with regard

to optimizing the defined objective function. There are mainly two approaches, k-

means and k-medoid algorithms (Tan et al., 2006: 496-514), which are different in the

way the clusters are represented. In the k-means algorithm, each cluster is represented

by the center of its gravity, whereas in the k-mediod algorithm, one of the object

located near the center of the cluster is used as the representative of the cluster. The

partitioning algorithms are effective only in case of clusters that have convex shapes,

similar sizes, and commensurate densities, and are under the reasonably estimated

number of clusters (Kotsiantis et al., 2004: 79), however.

2.1.2 Hierarchical Algorithm

The hierarchical algorithms (Tan et al., 2006: 515-526) decompose data

objects into hierarchical levels of partitioning, usually represented by a dendrogram -

9

a tree keeping track of the splitting data objects in each level. The algorithm

recursively splits data objects into smaller subsets until the termination condition is

satisfied. The dendrogram can be created in either the top-down manner (divisive

approach) or in the bottom-up manner (agglomerative approach). Although having

ability to handle clusters of different sizes, for high-dimensional data the hierarchical

algorithms are expensive in terms of the computational and storage requirements

(Kotsiantis et al., 2004: 79).

2.1.3 Density-based Algorithm

In density-based clustering (Tan et al., 2006: 526-532), clusters are defined as

regions of higher density of data objects than their surrounding regions. The

algorithms locate regions of high density that are separated from one another by

regions of low density, and hence have major ability to form clusters of arbitrary

shapes and sizes. The most popular density-based clustering is DBSCAN which

proposes the idea that the density of the neighborhood of a given radius of each point

in the same cluster has to exceed the specified threshold. The density-based

algorithms, hence, can cope with clusters of any shapes and sizes, but still have

trouble with high-dimensional data, especially when dealing with large datasets

(Kotsiantis et al., 2004: 79).

2.1.4 Grid-based Algorithm

The idea of the grid-based clustering is to quantize data space into a number of

multi-dimensional (hyper-rectangular) cells and then perform the desired operations

on the data objects in each cell’s boundary, one cell at a time. The grid-based

clustering approaches are frequently used as the preliminary passageway for the

density-based clustering in the manner that data are separated into groups in

accordance with the cells’ structures, and only data in the dense cells are processed,

cell by cell. The clusters are finally formed from merging cells that are sufficiently

dense. The benefit of the grid-based approach to density clustering algorithms is their

fast processing time which depends on the number of grid cells only, not on the

number of data objects (Sheikholeslami, Chatterjee and Zhang, 1998: 430).

10

Wang, Yang and Muntz (1997) proposed the grid-based multi-resolution

clustering algorithm named STING (A Statistical Information Grid Approach to

Spatial Data). The algorithm aims to facilitate the region-oriented query processing in

such a manner that the classes of queries and clustering problems can be answered

with no need to access the full database. The algorithm divides data space into multi-

level rectangular cells represented by a hierarchical structure. Each cell in the parent

level is recursively partitioned into four child cells at the next lower level until the

size of the leaf cells is less than the pre-defined density of the cells. The statistical

information regarding the objects in each grid cell is captured and stored within the

cells’ structures, hence the statistical parameters of the higher level cells can easily be

computed from those of the lower level cells. When comes a spatial data mining

query, the algorithm first determines a layer from which the query processing

procedure is to start (it is not necessary to start with the root level), and then uses a

top-down approach to answer the query. For each cell in the layer, the algorithm

calculates the relevancy of the cell to the query at the specified confidence level, and

the irrelevant cells are then removed. After finish examining the current layer, the

cells in the next lower level of the relevant cells are repeated processed until the

lowest layer is reached. Through this approach, instead of going through all cells, the

algorithm looks only at those cells that are children of the relevant cells of the

previous layer. The algorithm finally identifies all the regions formed by relevant cells

and returns them as the answer to the query.

The WaveCluster (Sheikholeslami et al., 1998: 428-439) views the multi-

dimensional data objects as a multi-dimensional signal. The algorithm begins by

quantizing data space into multi-dimensional grid cells. The signal processing

technique, the wavelet transformation, is then applied to convert the data objects in

the region of each cell into the frequency domain. The WaveCluster identifies clusters

by means of detecting the connected components in the transformed space, and

afterwards map the cells in the transformed space back to the cells in the original

space.

Hinneburg and Keim (1998) proposed the algorithm to cluster large

multimedia databases called DENCLUE (DENsity-based CLUstEring). The influence

function, a function describing the impact of a data point to its neighborhoods, is

11

applied to each data point. The overall density function is the sum of the influence

function of all data points in the data space. Clusters are determined by identifying

density-attractors, the local maxima of the overall density function, by means of a

hill-climbing procedure guided by the gradient of the overall density function. The

DENCLUE algorithm consists of two steps. The pre-clustering step is aimed to speed

up the density function calculation by constructing a map of the relevant portion of

the data space. The data space is divided into equal size d-dimensional hypercubes,

with an edge-length of 2σ, and only the hypercubes containing data points are

connected to their neighboring cubes. In the actual clustering step, the density-

attractors and the corresponding density-attracted points are identified. Only the

highly populated cubes and their neighboring cubes are considered in determining

clusters.

Kunttu, Lepisto, Rauhamaa and Visa (n.d.) presents the hierarchical clustering

algorithm using multi-resolution grid-based clustering approach to enable the image

browsing and retrieval in hierarchical manner. The goal of image browsing is to show

the user a view of representative images of the database content. The images can be

browsed in different scales through moving back and forth between general view and

more specific image groups in the database, represented by different levels in

hierarchical structure. The algorithm enables users to either zoom in to select a

specific image type of interest, or zoom out to browse the variations in the image

contents. When a desired image type is found at a certain level, users can zoom in to

closer scrutinize the relevant clusters. The cells at a selected level are merged into

clusters of similar images using density-based clustering approach.

Liao, Liu and Choudhary (2004) proposed the idea that employing on a single-

level uniform grid only may not sufficient to obtain rational clustering quality. They

presented a multi-scale grid-based clustering algorithm using adaptive mesh

refinement (AMR) technique to automatically create different resolution grids based

on the regional density. According to the algorithm, the additional meshes with higher

resolution are recursively defined on each high density region until the desired density

is met. The AMR tree is created to represent the various levels of grid cells’ densities

in the manner that the denser regions are to be indicated by the nodes nearer to the

leaves. The clusters are created by using regions indicated by the leaves of the tree as

12

the cluster pivots in inducing the data objects underneath the region of their parent

nodes, on the minimum distance approach, to be the members of the clusters. In this

way, the AMR clustering algorithm can detect nested clusters at different level of

resolution.

Park and Lee (2004: 32-37) proposed a grid-based algorithm for clustering

data elements generated continuously and rapidly as a data stream. The algorithm

initially partitions data space into a set of mutually exclusive equal-size cells. Not the

physical data elements, but only the distribution statistics of which, are kept in the

corresponding grid cells. The statistics of each cell are updated whenever the new

generated data elements are within its boundary. The cells are recursively split out

when their support parameters are higher than a pre-defined value. One of the

dimensions of the data space is chosen as a dividing dimension based on the statistics

of the data elements in the cell, resulting in splitting the cell into mutually exclusive

smaller cells. The range of a dense cell can be partitioned by one of the three

methods: μ-partition, σ-partition and hybrid-partition. The clusters are finally

identified as groups of adjacent dense cells.

2.2 Subspace Clustering

Data objects may be related in different ways when different subsets of

dimensions are considered. Thus, different clusters might exist when different sets of

dimensions of the data objects are used for clustering. Subspace clustering aims to

reveal clusters lying in various subspaces of the dataset. Parsans, Haque and Liu

(2004: 90-105) classified subspace clustering algorithms into two major groups with

regard to the search technique employed: the bottom-up search method and the top-

down search method.

The bottom-up method searches for clusters from subspaces with smaller

subsets of dimensions to subspaces with larger subsets of dimensions, whereas the

top-down method does the other way around. Most of the bottom-up method used

grid-based clustering in finding dense units in all different lower dimensional

subspaces. In subsequently locating dense units in any higher dimensional subspaces,

the downward closure property of density was applied, in an APRIORI style, in order

13

to reduce the search space. Clusters were lastly formed by combining all adjacent

dense units together. Most of the researches in this field assume the search space to be

restricted to axis-parallel subspaces.

A number of subspace clustering algorithms were categorized and reviewed in

Parsans et al. (2004). One of them that the proposed algorithm is based on is CLIQUE

(Agrawal, Gehrke, Gunopulos and Raghavan, 1998). CLIQUE is one of the very first

subspace clustering algorithms. It is a grid-based clustering algorithm that provides

an efficient approach for bottom-up subspace clustering. It uses an APRIORI style

technique to find clusters in subspaces, based on the observation that dense areas in a

higher-dimensional space imply the existence of dense areas in lower-dimensional

space.

CLIQUE identifies dense clusters in a subspace of maximum dimensionality

by automatically identifying projections of the data objects onto various subsets of

dimensions where regions of high density with respect to those objects reside. The

algorithm uses bottom-up approach in generating grid cells and identifying dense

cells. It begins by finding dense units in all one-dimensional spaces, corresponding to

each individual attribute of dataset. The algorithm then proceeds level-by-level, in the

manner that the candidate k-dimensional dense cells can be determined using already

determined (k-1)-dimensional dense cells. Hence the set of candidate k-dimensional

cells that might possibly be dense can be found inside dense (k-1)-dimensional cells

only. The algorithm is terminated when no more candidates are discovered. To form

clusters, CLIQUE uses a depth-first search algorithm to find the connected dense

cells, then creates cluster descriptions in the form of DNF expression.

2.3 Supervised Clustering

Supervised clustering is applied on classified data objects with the aim of

identifying identical-class clusters that have high densities and have minimal

impurity, with respect to majority classes of the clusters. The clustering is performed

on attribute variables under the supervision of a target class variable. As a

consequence, each generated cluster is labeled with only one specific class that has

14

majority data objects inside the cluster. Supervised clustering procedure is therefore

used not only for knowledge discovery, but also for data classification, as the cluster

structure with class information can be used as a classification function.

Tishby, Pereira and Bialek (1999: 368-377), Slonim and Tishby (1999: 617-

623), and Aguilar, Ruiz, Riquelme and Giráldez (2001: 207-216) proposed supervised

clustering algorithms based on bottom-up agglomerative approach. The algorithm

proposed in Sinkkonen, Kaski and Nikkila (2002: 418-430) intended to find clusters

that are homogenous in target class variable using a probabilistic approach based on

discriminative clustering to minimize distortion within clusters. Qu and Xu (2004:

1905-1913) introduced supervised model-based clustering algorithms that were based

on multivariate Gaussian mixture model which employs EM algorithm to estimate

model parameters.

Finley and Joachims (2005: 217-224) proposed that supervised clustering can

be achieved by training a clustering algorithm to produce desirable clusters. An SVM

algorithm that could learn from an item-pair similarity measure to optimize clustering

performance based on a variety of performance measures was proposed. Al-Harbi and

Rayward-Smith (2006: 219-226) introduced supervised K-mean algorithm that

combined Simulated Annealing with K-mean algorithm.

CCAS algorithms were developed for detecting intrusions into computer

network system through intrusion signature recognition. The algorithms start by

learning data patterns based on supervised clustering procedure, and afterwards uses

these patterns for data classification. The original version of CCAS, namely CCA-S

(Clustering and Classification Algorithm - Supervised) (Ye and Li, 2001: 1-4), starts

with two dummy clusters and allows clusters of each individual class to spread over

the entire data space regardless of the training sequence of data objects. Li and Ye

(2002: 231-242) modified original CCAS with grid-based method to limit the search

space in splitting training data objects into smaller size clusters. The algorithm begins

with dividing data space into equal size grid cells. It then performed dummy-based

approach only on data objects lying in the same cell.

Li and Ye (2005: 498-509) enhanced the robustness of CCAS by strengthening

the algorithm with three post-processing steps: data redistribution, supervised

grouping of clusters, and removal of outliers. ECCAS (Li and Ye, 2006: 396-406)

15

enabled CCAS to handle data of the mixed type, by introducing two methods for

combining numerical and nominal variables in calculating distance measure. The first

method combines different distance measure for each type of variables into a single

distance measure ranging between 0 and 1. The second method is based on conversion

of nominal variables to binary variables, and then treats these binary variables as

numeric variables.

Three representative-based supervised clustering algorithms were introduced

in Eick et al. (2004: 774-776) and Zeidat et al. (2006): Supervised Partitioning

Arround Medoids (SPAM), Single Representative Insertion/Deletion Steepest Decent

Hill Climbing with Randomized Start (SRIDHCR), and Supervised Clustering using

Evolutionary Computing (SCEC). In their paper, the new fitness function used for

measuring the algorithms was proposed. Instead of relying only on the tightness of

objects in each cluster, like most of the traditional clustering algorithms, the three

algorithms weights cluster purity against the number of generated clusters in the

proposed fitness function.

SPAM, aimed to be the variation of PAM (Partitioning Around Medoids) that

uses the proposed fitness function, starts by randomly selecting a mediod of the most

frequent class data objects as the first representative. The algorithm then fills up the

initial set of representatives with non-representative objects. The number of

representatives is fixed by a pre-defined figure. SPAM later on repeatedly explores all

possible replacements of a single representative of the most current solution by a

single non-representative, provided that the new set of representatives induces

minimum fitness function value. The algorithm terminates if none of the replacement

can provide lower fitness function value.

In order to eliminate the limitation of SPAM that the number of

representatives must be fixed by the pre-defined parameter, SRIDHCR algorithm

permits either adding or removing any representatives into or from the current set of

cluster representatives, with respect to the proposed fitness function. SRIDHCR is

designed to be run r pre-specified times, with the intention to report the set of

representatives that produces the lowest value of fitness function as the final result.

At the beginning of each run, the algorithm randomly selects a pre-defined number of

objects into the set of representatives. It afterwards repeatedly computes the fitness

16

function of the intermediate set of clusters, resulting from either adding a single non-

representative into or removing a single representative from the current set of

representatives. Each repeated loop ends by replacing the current representative set by

the new set of representatives whose fitness function value is the lowest, providing

that the value is less than those of the current representative set. In each run, the

algorithm terminates whenever there is no significant improvement in the solution

quality (measured by the value of the fitness function).

Besides the above two greedy algorithms, Zeidat et al. (2006) also proposed an

evolutionary computing algorithm called SCEC. The algorithm evolves a population

of solutions, each of which is a set of representatives, over a pre-defined number of

generations. The best solution of the last generation is chosen to be the set of

representatives for the clustering. The SCEC’s population consists of the fixed (pre-

specified) number of solutions, each of which is a set of representatives. Each

solution in the initial population is randomly selected. Populations of the subsequent

generations are generated through three genetic operators: mutation, crossover, and

copy. SCEC used K-tournament selection method (with tournament size of K = 2) in

selecting potential solutions to participate in creating new population. Different

adaptive values are used to control the probabilities of applying each of the three

genetic operators to generate new solutions for the subsequent generations.

Apirak Jirayusakul (2007: 23-55) and Apirak Jirayusakul and Surapong

Auwatanamongkol (2007: 217-229) proposed two supervised clustering algorithms

based on prototype-based clustering methodology: Supervised Growing Neural Gas

(SGNG) and Robust Supervised Growing Neural Gas (RSGNG). The SGNG

incorporates Growing Neural Gas network with various techniques as Type Two

Learning Vector Quantization (LVQ2), adaptive learning rates, and cluster repulsion

mechanisms. The SGNG also proposed a new validity based on geometric

measurement paradigm in order to determine the optimal number of prototypes. Due

to drawbacks of the SGNG of being sensitive to the prototype initialization, the

sequence of input data objects, and the presence of noises, the RSGNG is intended to

be the robust version of SGNG. The RSGNG incorporates SGNG learning schema

with the outlier resistant strategy. Moreover, to determine the optimal number of

17

prototypes where data objects may include some outliers, a modified validity index

was proposed based on the Minimum Description Length technique.

CHAPTER 3

METHODOLOGY

The proposed algorithm is a bottom-up supervised clustering algorithm that

relies on many concepts such as grid-based clustering, density-based clustering, and

the downward closure property of density used in subspace clustering. The algorithm

uses heuristics to partition data spaces into grid cells, then group any adjacent hyper-

rectangle grid cells containing majority of data with a same class into a cluster. It can

automatically determine the number of intervals to be used to partition each of data

dimensions into grid cells clusters, which yields the best clustering in according with

a fitness function. The algorithm possesses all of the good clustering properties

mentioned in Sheikholeslami, et al. (1998: 428). That is, the algorithm has ability to

produce identical results regardless of neither the order of data objects to be processed

nor any pre-defined number of clusters. Also, it is able to handle clusters of arbitrary

shapes and sizes without making any assumption about the distribution of data

objects.

3.1 Definitions

3.1.1 Data Objects

A data object is considered a data point in a d-dimensional space. Formally,

each data point is a ሺ݀ ൅ 1ሻ-tuple in the form ሼܽଵ, ܽଶ, … , ܽௗ, ܶሽ , where ܽ௜ represents

the value of the ݅௧௛ predictor variable (or attribute) and T represents the value of the

target variable (or class label) of the data point (Ye and Li, 2005: 2-3) .

For instance, ሼ1.54, 270, 46.8, ሽ represents an object which values of the firstܣ

attribute, the second attribute, and the third attribute are 1.54, 270 and 46.8

respectively, and which class label is “A”.

19

3.1.2 Grid Cells

Let ܣଵ, ,ଶܣ … , ௗ be sets of dimensions (or attributes, or predictor variables) ofܣ

any datasets, and let ܣ ൌ ଵܣ ൈ ଶܣ ൈ … ൈ ௗ be the d-dimensional data space. Theܣ

problem is to divide the data space ܣ into ݉ ൌ ∏ ௜ܲ
ௗ
௜ୀଵ non-overlapping hyper-

rectangular grid cells, where ܲ݅ represents the number of intervals in the

݅௧௛ dimension of d-dimensional data space. A cell is defined by a set of d-dimensional

hyperplanes, all of which are parallel to ሺ݀ െ 1ሻ coordinate axes.

To accomplish this, the range of the value domain of each dimension ܣ௜ is

partitioned into ௜ܲ number of mutually exclusive equal-size right-opened intervals

௜ܫ
௝ ൌ උ݈௜

௝, ݄௜
௝൯, 1 ൑ ݆ ൑ ௜ܲ , where ݈௜

௝ and ݄௜
௝ respectively denotes the start value and end

value of the ݆௧௛ interval in the ݅௧௛ dimension, and hence each cell is represented in the

form ܷ ൌ ሼܫଵ, ,ଶܫ … , ܽ ௗሽ (Agrawal, et al., 1998: 95). A data objectܫ ൌ ሼܽଵ, ܽଶ, … , ܽௗሽ ,

where ܽ௜ is the value of the ݅௧௛ dimension, is said to lie in the cell ܷ only if

 ݈݅ ൑ ܽ݅ ൏ ݄݅ for all ܫ௜ .

3.1.3 Clusters

As defined by Agrawal, et al. (1998: 96), a cluster is a maximal set of

connected dense cells in d-dimensions. The problem is to separate all identified dense

cells ܦ into ܦଵ, ,ଶܦ … , ,௜ are said to be connectedܦ ௞ sets, such that all cells in the setܦ

and no two cells, ௜ܷ א ,௜ܦ ௝ܷ א ݅ ௝ withܦ ് ݆ are connected. Two d-dimensional cells

 ଵܷ and ܷଶ are declared connected, either in case they share at least one common

corner point, or there exists another d-dimensional cell ௦ܷ to which both ଵܷ and ܷଶ

are connected.

If a running number is assigned to each interval in all dimensions, starting

from 1 to ௜ܲ , where ௜ܲ is the number of intervals in the ݅௧௛dimension, each cell can

be represented in the form ௝ܷ ൌ ൛ܫଵ௝, ,ଶ௝ܫ … , ௜௝ is the interval number ofܫ ௗ௝ൟ , whereܫ

the cell ݆ in the ݅௧௛ dimension. Cells ଵܷ ൌ ሼܫଵଵ, ,ଶଵܫ … , ௗଵሽ and ܷଶܫ ൌ ሼܫଵଶ, ,ଶଶܫ … , ௗଶሽܫ

are claimed connected if all |ܫ௜ଵ െ |௜ଶܫ ൑ 1 , where ܫ௜ଵ and ܫ௜ଶ are the interval numbers

of the ݅௧௛ dimension of ଵܷ and ܷଶ respectively.

20

3.2 Fitness Function

The objective of supervised clustering is to identify groups of data objects, that

possess low impurities and few groups as possible. To accomplish this, Zeidat, et al.

(2006: 3-4) proposed the following fitness function, ݍሺݔሻ , as a validity measurement

to evaluate the performance of a supervised clustering algorithm,

ሻ࢞ሺࢗ ൌ ሻ࢞ሺ࢚࢟࢏࢛࢘࢖࢓ࡵ ൅ ࢼ כ ሻ࢑ሺ࢚࢟࢒ࢇ࢔ࢋࡼ

ሻ࢞ሺ࢚࢟࢏࢛࢘࢖࢓ࡵ ݁ݎ݄݁ݓ ൌ ࢙࢚ࢉࢋ࢐࢈࢕ ࢚࢟࢏࢘࢕࢔࢏࢓ ࢌ࢕ ࢘ࢋ࢈࢓࢛࢔
࢔

ሻ࢑ሺ࢚࢟࢒ࢇ࢔ࢋࡼ ൌ ቐ ටࢉି࢑
࢔

 , ࢑ ൐ ܿ

 ૙ , ࢑ ൑ ࢉ

where parameter k, c, and n represent the number of generated clusters, the number

of classes, and the number of data objects respectively.

The proposed fitness function consists of 2 contradictory parts, ݕݐ݅ݎݑ݌݉ܫሺሻ

and ݈ܲ݁݊ܽݕݐሺሻ. Due to the objective of supervised clustering, the ݍሺݔሻ value must be

kept as low as possible. Further split of data objects into more clusters may cause a

decrease on ݕݐ݅ݎݑ݌݉ܫሺሻ value but an increase in ݈ܲ݁݊ܽݕݐሺሻ value. The parameter ߚ

puts a weight on the significance of the ݈ܲ݁݊ܽݕݐሺሻ part against the ݕݐ݅ݎݑ݌݉ܫሺሻ part,

i.e. the higher the ߚ value, the higher the significance of the ݈ܲ݁݊ܽݕݐሺሻ part.

Normally, the ߚ value is chosen between 0 and 5.

Under the consideration that the above fitness function can certainly lead

supervised clustering to yield the most effective solution, this ݍሺݔሻ function is chosen

to be the fitness function for the proposed algorithm.

3.3 Grid-based Supervised Clustering Algorithm

The proposed algorithm is a bottom-up supervised clustering algorithm relying

on the combination of the concepts of grid-based clustering, density-based clustering,

21

and subspace clustering. The basic idea of the proposed algorithm is to create uniform

size grid cells over the whole data space, resulting in partitioning data objects into a

number of groups abiding by the region of each cell. Clusters are afterward defined by

merging together all connected nonempty cells with the same class labels. In

consequence, the data objects lying inside the region of such connected cells are

claimed to be in the same cluster. For the proposed algorithm, each dimension is

partitioned into same-size intervals, under the condition that the numbers of intervals

of different dimensions are allowed to be different.

The key to the success of the algorithm is to use the proper number of intervals

for each partitioning of a dimension. The number of intervals for each dimension must

be carefully selected so the smallest value of the fitness function ݍሺݔሻ is achieved. To

fulfill this, the proposed algorithm comprises 2 steps: Dimension Ordering step and

Subspace Clustering step.

3.3.1 Dimension Ordering Step

This step is aimed to be the preparatory part of the next step, with the objective

to re-arrange the order of dimensions to be processed sequentially in the subspace

clustering procedure. This step determines the order of dimensions to be processed

sequentially in the subspace clustering step. The step considers partitioning each

dimension independently into a number of equal intervals which yields the smallest

fitness function, ݍሺݔሻ. A linear search for the number of intervals that produces the

smallest fitness ݍሺݔሻ value can be done by starting the search from the number of

intervals equal to one, and keeping incrementing the number until there is an obvious

increase on the fitness value. Using the linear search method, the number of iterations

needed for searching the optimal number of intervals is rather high. To save the

processing time, the algorithm still proposes a search for the optimal number of

intervals that is based on the gradient descent concept. The Dimension Ordering step

comprises two tasks: clustering based on each individual dimension and dimension

sequencing.

 3.3.1.1 Clustering Based on Each Individual Dimension

 Consider that different sets of data have particular characteristic that

might result in non-equivalent competence in the clustering activities. The first task of

22

the Dimension Ordering step is to approximate the clustering potential hidden in each

dimension when employed solely in the clustering process. The individual potential

for each of a dimension is measured by mean of the value of the possible smallest

fitness function, ݍሺݔሻ, each specific dimension can produce. To determine the

individual potential, a subspace clustering based on each dimension is performed and

the fitness function value is evaluated.

 With the intention to find the optimal number of intervals ሺ݊݅݋ሻ for the

dimension partitioning as quickly as possible, the gradient descent method is used in

searching for the optimal ݊݅݋ value. During the search, let ݊݅݋௡ represents the

current ݊݅݋ value and ݍ௡ be the corresponding ݍሺݔሻ value of the ݊݅݋௡ , the new ݊݅݋

value, represented by ݊݅݋ሺ௡ାଵሻ, is calculated by the following formula,

ା૚ሻ࢔ሺ࢏࢕࢔ ൌ ࢔࢏࢕࢔ െ ࣁ ൤
࢔ࢗ∆

࢔࢏࢕࢔∆ ⁄࢏࢕࢔࢞ࢇ࢓ ൨ ൅ ࢔ ࢌ࢏ , ࢓࢛࢚࢔ࢋ࢓࢕࢓ ൐ 1

ሺ૙ሻ࢏࢕࢔ ൌ ૚ ܽ݊݀ ሺ૚ሻ = 2࢏࢕࢔

where ∆ݍ௡ represents the difference between the current ݍሺݔሻ value ሺݍ௡ሻ and its

previous value ൫ݍሺ௡ିଵሻ൯, as well as ∆݊݅݋௡ represents the difference between the

current ݊݅݋ value, ݊݊݅݋, and its previous value, ݊݅݋ሺ௡ିଵሻ.

 Since the ݍሺݔሻ values are certainly less than 1.0, whereas the ݊݅݋ values

are higher than 1, the value of ∆݊݅݋௡ is normalized by a maximum value of ݊݅݋, i.e.

 ௡ andݍ∆ in order to correctly determine the gradient or the ratio between ,݅݋݊ݔܽ݉

 ௡. The learning rate of the gradient descent formula is represented by the݅݋݊∆

symbol ߟ. The momentum term is employed to give weight on the current

increment/decrement of the ݊݅݋ in order to avoid the convergence to local optima.

The term is formularized as

 ԃ ሺ|∆࢔࢏࢕࢔|ሻ

where ԃ is the momentum weight of the momentum term.

 The ݊݅݋ value calculated from the formula is always round to an integer

value. When the ݊݅݋ value gets incremented, the ݊݅݋ value is always round up in

23

order to facilitate the forward move during early stages of the search. However, when

it is decremented, it is round to the nearest integer.

 The gradient descent search for the optimal ݊݅݋ value for each individual

dimension clustering is terminated when either of the two conditions occurs two times

consecutively. We assume when such event happens the optima has been reached,

therefore, the search should be terminated. The first condition is that there is no

decrement of ݍሺݔሻ value. The second condition is when the recommended ݊݅݋ results

in deficient decrement in the ݍሺݔሻ values. This condition is measured by dividing the

absolute value of the latest slope, computed as ฬ
ሺ݊െ1ሻݍሺ݊ሻെݍ

ሺ݊െ1ሻ݅݋ሺ݊ሻെ݊݅݋݊
ฬ, by the absolute value of

the initial slope, computed as ฬ
ሺ1ሻݍሺ2ሻെݍ

ሺ1ሻ݅݋ሺ2ሻെ݊݅݋݊
ฬ. In case the result value is less than 0.001,

the algorithm claims that such decrease of the ݍሺݔሻ value is not worth-while the

increase in the ݊݅݋ value.

 In addition, when the search goes backward, i.e. ݊݅݋ is decremented, the

current value of ݊݅݋ and the new ݊݅݋ (after decremented from the current ݊݅݋) will

mark the range of ݊݅݋ to be searched. If the search moves current ݊݅݋ value beyond

the range, the search is also terminated. This is similar to the movement of a

pendulum which can swing only back and forth with gradually reduced range to

swing.

 3.3.1.2 Dimension Sequencing Task

 Abide by the observation, the dimensions possessing lower ݍሺݔሻ values

when working individually have tendency to yield better result when working

mutually in the subspace clustering. Using greedy approach, such dimensions should

be given higher priority in being used early in the subspace clustering process.

Hence, the last task of the Dimension Ordering step is to sort the dimensions into a

list in ascending order on their smallest ݍሺݔሻ values achieved from the first task. The

list will be used to guide the subspace clustering in the next step.

3.3.2 Subspace Clustering Step

The intention of this step is to find out the delineation of grid cells that would

produce clustering with the possible smallest ݍሺݔሻ value when all dimensions are

24

considered together. The Subspace Clustering step comprises two tasks: Grid Cell

Creation task and Cluster Formation task.

 3.3.2.1 Grid Cells Creation Task

 In this task, grid cells are created in bottom up fashion by gradually and

repeatedly partition data space using one additional dimension at a time. Using the

heuristic mentioned in section 3.3.1.1, the partitioning performs on the dimensions in

sequence based on the order list created by the first step. The partitioning starts from

creating the first-level grid cells using the first dimension in the list together with the

optimal number of intervals for the dimension previously derived in the first step.

Only data objects residing in each of the first-level grid cells as well as the grid cell

information are then written into the external file, cell by cell. Next, the nonempty

first-level grid cells, retrieved from the external file, will be partitioned using the

second dimension in the list.

 Since the grid space has already been partitioned by the first dimension,

the optimal number of intervals for the second dimension can be different from the

one derived in the first step. Hence, the optimal number of intervals for the second

dimension must be derived again using the same gradient descent method as in the

first step, except that clusters are formed using the first and the second dimensions

and the number of intervals of the first dimension is fixed. The process then continues

on the third dimension and so on until all dimensions have been partitioned.

 Refer to the fact that the number of generated grid cells can be computed

as ∏ ௜ܲ
ௗ
௜ୀଵ where ݀ represents the number of dimensions and ௜ܲ represents the

number of intervals in the ݅௧௛ dimensions of d-dimensional space, the number of

created cells increases dramatically whenever the number of dimensions increases.

When the number of dimensions is large, not all grid cells contain data objects, and

the number of grid cells containing data objects is usually tremendously small when

compared with the number of created cells.

 As only nonempty cells in the current dimensional-level grid space are

kept for the processing of the subsequent higher dimensional level, this procedure

results in saving a lot of processing time since large parts of search space are

discarded. As a consequence, the proposed algorithm allows only ሺ݀ െ 1ሻ

25

dimensional nonempty grid cells to be candidates for the generation of d-dimensional

nonempty grid cells.

 3.3.2.2 Cluster Formation Task

 To create final clusters (or partial clusters formed during the first or the

second step), connected nonempty same-class labeled cells are merged into a same

cluster. The input for the cluster formation task is a set of cell blocks ܦ, each of

which consists of cell’s information, cell’s class label, and data objects belonging to

that cell. Starting from any cell ܷ א as the seed cell to form a cluster, the task ܦ

searches in ܦ to find for all ௝ܷ א which are connected with ܷ, or any members of ,ܦ

ܷ, and have the same class label as ܷ. All ௝ܷs are then put into a same cluster as well

as removed from ܦ. The task arbitrary selects the next seed cell ܷ from ܦ. It then

performs the same process to form the next cluster. The iterative process stops when

all cells have been removed from ܦ.

 With this cluster formation procedure, the proposed algorithm can generate

clusters of any shapes and sizes without presuming any specific mathematical form

for data distribution, and can produce identical results regardless of the order in which

input data objects are presented.

CHAPTER 4

EXPERIMENTAL RESULTS

The objective of this chapter is to illustrate the experiments designed to

evaluate the effectiveness of the proposed algorithm. Two sets of experiments were

performed. The first set was performed on datasets obtained from University of

California at Irving Machine Learning repository. The experimental results are

compared to those reported in Zeidat et al. (2006: 14-15) and Apirak Jirayusakul

(2007: 96). The second one was performed on two-dimension synthetic datasets under

the permission of the author of Apirak Jirayusakul (2007: 61-62, 66, 69-70, 73-74).

4.1 The Experiments on UCI Datasets

The objective of this experiment is to evaluate the performance of the

proposed algorithm in the comparative manner, with the other supervised clustering

algorithms. The experiments were performed on four datasets obtained from

University of California at Irving Machine Learning repository: Iris-Plans, Pimma-

Indian Diabetes, Vehicle Silhouettes, and Image-Segmentation, using the following

parameters: ߚ ൌ ߟ ,0.1 ൌ 0.5, ݅݋݊ݔܽ݉ ൌ 100, ԃ ൌ 0.3. The properties of the four

datasets are shown in Table 4.1. The results in term of the fitness function values ݍሺݔሻ

from the experiments are compared with those results from SPAM, SREDHCR, and

SCEC reported in Zeidat et al. (2006: 14-15), and the best solutions from SGNG and

RSGNG in Apirak Jirayusakul (2007: 96).

Table 4.1 List of the Properties of UCI Datasets Used in the Experiments

 Dataset Name No. of Examples No. of Attributes No. of Classes

 Iris-Plants 150 4 3

 Pima-Indian Diabetes 768 8 2

 Vehicle Silhouettes 846 18 4

 Image-Segmentation 2100 19 7

27

4.1.1 Experimental Results from Dimension Ordering Step

The task of the Dimension Ordering step is to find out the potential ݍሺݔሻ value

each attribute (or dimension) could give when each is considered alone for the grid

space partitioning. The attributes are then ordered in the ascending sequence based on

their ݍሺݔሻ values. Table 4.2 (a)-(d) and Table 4.3 (a)-(d) show the ordering results of

the attributes for the four datasets, when ߚ is set at 0.1 and 0.4 respectively.

Table 4.2 Results from Dimension Ordering Step at ߚ ൌ 0.1

 (a) Iris-Plants [on β=0.1]

(b) Pima-Indian Diabetes [on β=0.1]

(c) Vehicle Silhouettes [on β=0.1]

(d) Image-Segmentation [on β=0.1]

Oder
No.

Attribute
No. NOI Q(x) Value Oder

No.
Attribute

No. NOI Q(x) Value

1 4 3 0.04000 3 1 4 0.26488
2 3 3 0.04667 4 2 2 0.42000

Oder
No.

Attribute
No. NOI Q(x) Value Oder

No.
Attribute

No. NOI Q(x) Value

1 2 7 0.25260 5 7 7 0.33713
2 8 3 0.32783 6 5 2 0.34115
3 6 3 0.33333 7 4 3 0.34766
4 1 2 0.33594 8 3 1 0.34896

Oder
No.

Attribute
No. NOI Q(x) Value Oder

No.
Attribute

No. NOI Q(x) Value

1 7 14 0.46432 10 4 11 0.58406
2 8 17 0.46868 11 10 8 0.58524
3 9 12 0.47614 12 18 14 0.58642
4 12 7 0.51171 13 17 10 0.58870
5 11 11 0.51786 14 13 11 0.59907
6 3 12 0.53205 15 14 13 0.61243
7 1 12 0.55308 16 15 9 0.66194
8 2 10 0.58161 17 16 8 0.66325
9 6 10 0.58397 18 5 6 0.68203

Oder
No.

Attribute
No. NOI Q(x) Value Oder

No.
Attribute

No. NOI Q(x) Value

1 11 16 0.40742 11 14 15 0.50762
2 10 14 0.43456 12 8 26 0.71361
3 12 14 0.44000 13 6 23 0.71631
4 17 18 0.44381 14 1 8 0.76952
5 13 16 0.44429 15 4 4 0.83143
6 18 15 0.44547 16 5 3 0.84190
7 19 14 0.44905 17 7 6 0.85000
8 16 15 0.46714 18 9 4 0.85333
9 15 16 0.46714 19 3 1 0.85714
10 2 10 0.49524

28

Table 4.3 Results from Dimension Ordering Step at ߚ ൌ 0.4

(a) Iris-Plants [on β=0.4]

(b) Pima-Indian Diabetes [on β=0.4]

(c) Vehicle Silhouettes [on β=0.4]

(d) Image-Segmentation [on β=0.4]

The proposed algorithm proposes the methodology to reduce the execution

time by neglecting the processing on the possibly trivial number of intervals (݊݅݋)

values and going directly to the worthy ݊݅݋ values. The methodology has been

explained in section 3.3.1. Figure 4.1 (a)-(d) illustrates the searching chain in

acquiring the prospective ݊݅݋ values performing on each individual attribute of the

Iris-Plants dataset. Figure 4.2 (a)-(h) are for the Pima-Indian Diabetes dataset, Figure

4.3 (a)-(r) are for the Vehicle Silhouettes dataset, and Figure 4.4 (a)-(s) are for the

Image-Segmentation dataset, at 0.1=ߚ. Figure 4.5 (a)-(d), Figure 4.6 (a)-(h), Figure

Oder
No.

Attribute
No. NOI Q(x) Value Oder

No.
Attribute

No. NOI Q(x) Value

1 4 3 0.04000 3 1 4 0.29952
2 3 3 0.04667 4 2 2 0.42000

Oder
No.

Attribute
No. NOI Q(x) Value Oder

No.
Attribute

No. NOI Q(x) Value

1 2 7 0.25260 5 5 2 0.34115
2 6 3 0.33333 6 7 2 0.34766
3 1 2 0.33594 7 4 3 0.34766
4 8 3 0.33865 8 3 1 0.34896

Oder
No.

Attribute
No. NOI Q(x) Value Oder

No.
Attribute

No. NOI Q(x) Value

1 7 14 0.48495 10 6 10 0.60183
2 8 17 0.49174 11 17 10 0.60656
3 9 12 0.49677 12 18 8 0.60875
4 12 7 0.52203 13 4 4 0.61229
5 11 11 0.53245 14 13 11 0.61970
6 3 12 0.54664 15 14 6 0.63357
7 1 12 0.56340 16 15 9 0.66194
8 10 8 0.59983 17 16 2 0.67967
9 2 6 0.60004 18 5 6 0.68203

Oder
No.

Attribute
No. NOI Q(x) Value Oder

No.
Attribute

No. NOI Q(x) Value

1 11 16 0.41397 11 14 15 0.50762
2 12 14 0.44000 12 8 25 0.71857
3 10 14 0.44111 13 6 18 0.73397
4 17 18 0.44381 14 1 8 0.76952
5 13 16 0.44429 15 4 4 0.83143
6 19 14 0.44905 16 5 3 0.84190
7 18 15 0.45473 17 7 6 0.85000
8 15 16 0.46714 18 9 4 0.85333
9 16 19 0.47016 19 3 1 0.85714
10 2 10 0.49524

29

4.7 (a)-(r), and Figure 4.8(a)-(s) show the results from the same scenarios, but at

 values, and values on the ݅݋݊ Values on the x-axis in the figures represent the .0.4=ߚ

y-axis represent the ݍሺݔሻ values achieved for the given ݊݅݋. The meanings of the

symbols used in the figures are described in Table 4.4.

As can be seen from the figures, the ݍሺݔሻ value achieved from the

corresponding prospective ݊݅݋ value is gradually decreased by the gradient descent

where the current gradient is negative. However, it can pass through the optimal value

where ݍሺݔሻ is minimal and the ݊݅݋ value is as small as possible. The ݊݅݋ value can

get increased as the current gradient becomes positive and eventually settled down at

the optimal value where the current gradient becomes almost zero.

Table 4.4 The Symbols and their Meanings Used in Figure 4.1 thru 4.8

Symbol Symbol Meanings

green point the skipped noi value

blue circle the prospective noi value that generates the lower
 q(x) value than the previous value

magenta circle the prospective noi value that generates the
 higher q(x) value than the previous value

yellow circle the swinging range

red five-pointed star the final result noi value

black six-pointed star the q(x) value that might proposed by the
 ordinary searching procedure (Figure 3.2)

blue square the termination point

green dotted line the linkage between every value of noi

yellow dotted line The linkage between the swung noi values

blue solid line the linkage between the prospective noi values

30

 (a) NOI Searching Chain on Attr. No. 1 (b) NOI Searching Chain on Attr. No. 2

 (c) NOI Searching Chain on Attr. No. 3 (d) NOI Searching Chain on Attr. No. 4

Figure 4.1 Searching Chain for NOI Values on Iris-Plants at ߚ ൌ 0.1

 (a) NOI Searching Chain on Attr. No. 1 (b) NOI Searching Chain on Attr. No. 2

Figure 4.2 Searching Chain for NOI Values on Pima-Indian Diabetes at ߚ ൌ 0.1

31

 (c) NOI Searching Chain on Attr. No. 3 (d) NOI Searching Chain on Attr. No. 4

 (e) NOI Searching Chain on Attr. No. 5 (f) NOI Searching Chain on Attr. No. 6

 (g) NOI Searching Chain on Attr. No. 7 (h) NOI Searching Chain on Attr. No. 8

Figure 4.2 Searching Chain for NOI Values on Pima-Indian Diabetes at ߚ ൌ 0.1

 (Continued)

32

 (a) NOI Searching Chain on Attr. No. 1 (b) NOI Searching Chain on Attr. No. 2

 (c) NOI Searching Chain on Attr. No. 3 (d) NOI Searching Chain on Attr. No. 4

 (e) NOI Searching Chain on Attr. No. 5 (f) NOI Searching Chain on Attr. No. 6

Figure 4.3 Searching Chain for NOI Values on Vehicle Silhouettes at ߚ ൌ 0.1

33

 (g) NOI Searching Chain on Attr. No. 7 (h) NOI Searching Chain on Attr. No. 8

 (i) NOI Searching Chain on Attr. No. 9 (j) NOI Searching Chain on Attr. No. 10

 (k) NOI Searching Chain on Attr. No. 11 (l) NOI Searching Chain on Attr. No. 12

Figure 4.3 Searching Chain for NOI Values on Vehicle Silhouettes at ߚ ൌ 0.1

 (Continued)

34

 (m) NOI Searching Chain on Attr. No. 13 (n) NOI Searching Chain on Attr. No. 14

 (o) NOI Searching Chain on Attr. No. 15 (p) NOI Searching Chain on Attr. No. 16

 (q) NOI Searching Chain on Attr. No. 17 (r) NOI Searching Chain on Attr. No. 18

Figure 4.3 Searching Chain for NOI Values on Vehicle Silhouettes at ߚ ൌ 0.1

 (Continued)

35

 (a) NOI Searching Chain on Attr. No. 1 (b) NOI Searching Chain on Attr. No. 2

 (c) NOI Searching Chain on Attr. No. 3 (d) NOI Searching Chain on Attr. No. 4

 (e) NOI Searching Chain on Attr. No. 5 (f) NOI Searching Chain on Attr. No. 6

Figure 4.4 Searching Chain for NOI Values on Image-Segmentation at ߚ ൌ 0.1

36

 (g) NOI Searching Chain on Attr. No. 7 (h) NOI Searching Chain on Attr. No. 8

 (i) NOI Searching Chain on Attr. No. 9 (j) NOI Searching Chain on Attr. No. 10

 (k) NOI Searching Chain on Attr. No. 11 (l) NOI Searching Chain on Attr. No. 12

Figure 4.4 Searching Chain for NOI Values on Image-Segmentation at ߚ ൌ 0.1

 (Continued)

37

 (m) NOI Searching Chain on Attr. No. 13 (n) NOI Searching Chain on Attr. No. 14

 (o) NOI Searching Chain on Attr. No. 15 (p) NOI Searching Chain on Attr. No. 16

 (q) NOI Searching Chain on Attr. No. 17 (r) NOI Searching Chain on Attr. No. 18

Figure 4.4 Searching Chain for NOI Values on Image-Segmentation at ߚ ൌ 0.1

 (Continued)

38

 (s) NOI Searching Chain on Attr. No. 19

 Figure 4.4 Searching Chain for NOI Values on Image-Segmentation at ߚ ൌ 0.1

 (Continued)

 (a) NOI Searching Chain on Attr. No. 1 (b) NOI Searching Chain on Attr. No. 2

 (c) NOI Searching Chain on Attr. No. 3 (d) NOI Searching Chain on Attr. No. 4

Figure 4.5 Searching Chain for NOI Values on Iris-Plants at ߚ ൌ 0.4

39

 (a) NOI Searching Chain on Attr. No. 1 (b) NOI Searching Chain on Attr. No. 2

 (c) NOI Searching Chain on Attr. No. 3 (d) NOI Searching Chain on Attr. No. 4

 (e) NOI Searching Chain on Attr. No. 5 (f) NOI Searching Chain on Attr. No. 6

 Figure 4.6 Searching Chain for NOI Values on Pima-Indian Diabetes at β = 0.4

40

 (g) NOI Searching Chain on Attr. No. 7 (h) NOI Searching Chain on Attr. No. 8

Figure 4.6 Searching Chain for NOI Values on Pima-Indian Diabetes at β = 0.4

 (Continued)

 (a) NOI Searching Chain on Attr. No. 1 (b) NOI Searching Chain on Attr. No. 2

 (c) NOI Searching Chain on Attr. No. 3 (d) NOI Searching Chain on Attr. No. 4

Figure 4.7 Searching Chain for NOI Values on Vehicle Silhouettes at ߚ ൌ 0.4

41

 (e) NOI Searching Chain on Attr. No. 5 (f) NOI Searching Chain on Attr. No. 6

 (g) NOI Searching Chain on Attr. No. 7 (h) NOI Searching Chain on Attr. No. 8

 (i) NOI Searching Chain on Attr. No. 9 (j) NOI Searching Chain on Attr. No. 10

Figure 4.7 Searching Chain for NOI Values on Vehicle Silhouettes at ߚ ൌ 0.4

 (Continued)

42

 (k) NOI Searching Chain on Attr. No. 11 (l) NOI Searching Chain on Attr. No. 12

 (m) NOI Searching Chain on Attr. No. 13 (n) NOI Searching Chain on Attr. No. 14

 (o) NOI Searching Chain on Attr. No. 15 (p) NOI Searching Chain on Attr. No. 16

Figure 4.7 Searching Chain for NOI Values on Vehicle Silhouettes at ߚ ൌ 0.4

 (Continued)

43

 (q) NOI Searching Chain on Attr. No. 17 (r) NOI Searching Chain on Attr. No. 18

Figure 4.7 Searching Chain for NOI Values on Vehicle Silhouettes at ߚ ൌ 0.4

 (Continued)

 (a) NOI Searching Chain on Attr. No. 1 (b) NOI Searching Chain on Attr. No. 2

 (c) NOI Searching Chain on Attr. No. 3 (d) NOI Searching Chain on Attr. No. 4

 Figure 4.8 Searching Chain for NOI Values on Image-Segmentation at ߚ ൌ 0.4

44

 (e) NOI Searching Chain on Attr. No. 5 (f) NOI Searching Chain on Attr. No. 6

 (g) NOI Searching Chain on Attr. No. 7 (h) NOI Searching Chain on Attr. No. 8

 (i) NOI Searching Chain on Attr. No. 9 (j) NOI Searching Chain on Attr. No. 10

Figure 4.8 Searching Chain for NOI Values on Image-Segmentation at ߚ ൌ 0.4

 (Continued)

45

 (k) NOI Searching Chain on Attr. No. 11 (l) NOI Searching Chain on Attr. No. 12

 (m) NOI Searching Chain on Attr. No. 13 (n) NOI Searching Chain on Attr. No. 14

 (o) NOI Searching Chain on Attr. No. 15 (p) NOI Searching Chain on Attr. No. 16

Figure 4.8 Searching Chain for NOI Values on Image-Segmentation at ߚ ൌ 0.4

 (Continued)

46

 (q) NOI Searching Chain on Attr. No. 17 (r) NOI Searching Chain on Attr. No. 18

 (s) NOI Searching Chain on Attr. No. 19

Figure 4.8 Searching Chain for NOI Values on Image-Segmentation at ߚ ൌ 0.4

 (Continued)

4.1.2 Experimental Results from Subspace Clustering Step

The Subspace Clustering procedure recursively partitions data space into

subspaces using one attribute at a time for a partitioning dimension. The sequence of

attributes used for the recursive partitioning follows the ascending order given by the

Dimension Ordering step. Each partitioning step uses the same gradient descent

approach as in the Dimension Ordering step to find the optimal ݊݅݋ value for the

partitioning. After each of the partitioning, the residual ݍሺݔሻ value continues

decreasing or at least remains the same. The gradually improved ݍሺݔሻ values during

the recursive partitioning applied on the four datasets are shown in Table 4.5 and

Table 4.6, at ߚ value 0.1 and 0.4 respectively.

47

Table 4.5 ܳሺݔሻ Results Achieved during the Recursive Partitioning Step at ߚ ൌ 0.1

(a) Iris-Plants (ߚ ൌ 0.1ሻ
Attribute No. Q(x) Value Attribute No. Q(x) Value

4 0.04000 1 0.01333
3 0.01333 2 0.00667

(b) Pima-Indian Diabetes (ߚ ൌ 0.1ሻ
Attribute No. Q(x) Value Attribute No. Q(x) Value

2 0.25260 7 0.13843
8 0.24219 5 0.10338
6 0.23017 4 0.06727
1 0.19241 3 0.04218

(c) Vehicle Silhouettes (ߚ ൌ 0.1ሻ
Attribute No. Q(x) Value Attribute No. Q(x) Value

7 0.46432 4 0.03586
8 0.44932 10 0.02759
9 0.43204 18 0.02208
12 0.42849 17 0.02090
11 0.41313 13 0.01971
3 0.29256 14 0.01853
1 0.18064 15 0.01735
2 0.07270 16 0.01735
6 0.07225 5 0.01735

(d) Image-Segmentation (ߚ ൌ 0.1ሻ
Attribute No. Q(x) Value Attribute No. Q(x) Value

11 0.40742 14 0.03627
10 0.39690 8 0.03627
12 0.38785 6 0.03627
17 0.37933 1 0.01640
13 0.37933 4 0.01640
18 0.26975 5 0.01640
19 0.15246 7 0.01640
16 0.14187 9 0.01640
15 0.12664 3 0.01640
2 0.03960

Table 4.6 ܳሺݔሻ Results Achieved during the Recursive Partitioning Step at ߚ ൌ 0.4

(a) Iris-Plants (ߚ ൌ 0.4ሻ
Attribute No. Q(x) Value Attribute No. Q(x) Value

4 0.04000 1 0.01333
3 0.01333 2 0.00667

(b) Pima-Indian Diabetes (ߚ ൌ 0.4ሻ
Attribute No. Q(x) Value Attribute No. Q(x) Value

2 0.25260 5 0.23307
6 0.25260 7 0.22266
1 0.25260 4 0.21615
8 0.24219 3 0.19141

48

Table 4.6 (Continued)

(c) Vehicle Silhouettes (ߚ ൌ 0.4ሻ
Attribute No. Q(x) Value Attribute No. Q(x) Value

7 0.48495 6 0.08704
8 0.47458 17 0.04803
9 0.45865 18 0.03385
12 0.45422 4 0.02912
11 0.44226 13 0.02321
3 0.33706 14 0.02203
1 0.23006 15 0.01848
10 0.11659 16 0.01730
2 0.08704 5 0.01730

(d) Image-Segmentation (ߚ ൌ 0.4ሻ
Attribute No. Q(x) Value Attribute No. Q(x) Value

11 0.41397 14 0.05190
12 0.40048 8 0.05190
10 0.39714 6 0.05190
17 0.39286 1 0.03571
13 0.39286 4 0.03571
19 0.21968 5 0.03571
18 0.17333 7 0.03571
15 0.16285 9 0.03571
16 0.14131 3 0.03571
2 0.05952

Figure 4.9 (a)-(c) show the searching chains for the optimal residual ݍሺݔሻ

during the second partitioning step till the last step for the Iris-Plants dataset, Figure

4.10 (a)-(g) for the Pima-Indian Diabetes dataset, Figure 4.11 (a)-(q) for the Vehicle

Silhouettes dataset, and Figure 4.12 (a)-(r) for the Image-Segmentation dataset, all at

ߚ ൌ 0.1. Notice that the first partitioning step has be performed during the Dimension

Ordering step, so the chain is the same and therefore omitted. Figure 4.13 (a)-(c),

Figure 4.14 (a)-(g), Figure 4.15 (a)-(q), and Figure 4.16 (a)-(r) demonstrates the same

scenarios, but at ߚ ൌ 0.4. The meanings of the symbols used in the figures are the

same as mentioned in section 4.1.1.

49

 (a) NOI Search Chain on the 2nd partitioning (b) NOI Search Chain on the 3rd partitioning

 (c) NOI Search Chain on the 4th partitioning

Figure 4.9 Searching Chains for Subspace Partitioning on Iris-Plants at ߚ ൌ 0.1
.

 (a) NOI Search Chain on the 2nd partitioning (b) NOI Search Chain on the 3rd partitioning

Figure 4.10 Searching Chains for Subspace Partitioning on Pima-Indian Diabetes

 at ߚ ൌ 0.1

50

 (c) NOI Search Chain on the 4th partitioning (d) NOI Search Chain on the 5th partitioning

 (e) NOI Search Chain on the 6th partitioning (f) NOI Search Chain on the 7th partitioning

 (g) NOI Search Chain on the 8th partitioning

Figure 4.10 Searching Chains for Subspace Partitioning on Pima-Indian Diabetes

 at ߚ ൌ 0.1 (Continued)

51

 (a) NOI Search Chain on the 2nd partitioning (b) NOI Search Chain on the 3rd partitioning

 (c) NOI Search Chain on the 4th partitioning (d) NOI Search Chain on the 5th partitioning

 (e) NOI Search Chain on the 6th partitioning (f) NOI Search Chain on the 7th partitioning

Figure 4.11 Searching Chain for Subspace Partitioning on Vehicle Silhouettes at

ߚ ൌ 0.1

52

 (g) NOI Search Chain on the 8th partitioning (h) NOI Search Chain on the 9th partitioning

 (i) NOI Search Chain on the 10th partitioning (g) NOI Search Chain on the 11th partitioning

 (k) NOI Search Chain on the 12th partitioning (l) NOI Search Chain on the 13th partitioning

Figure 4.11 Searching Chain for Subspace Partitioning on Vehicle Silhouettes at

ߚ ൌ 0.1 (Continued)

53

 (m) NOI Search Chain on the 14th partitioning (n) NOI Search Chain on the 15th partitioning

 (o) NOI Search Chain on the 16th partitioning (p) NOI Search Chain on the 17th partitioning

 (q) NOI Search Chain on the 18th partitioning

Figure 4.11 Searching Chain for Subspace Partitioning on Vehicle Silhouettes at

ߚ ൌ 0.1 (Continued)

54

 (a) NOI Searchg Chain on the 2nd partitioning (b) NOI Search Chain on the 3rd partitioning

 (c) NOI Search Chain on the 4th partitioning (d) NOI Search Chain on the 5th partitioning

 (e) NOI Search Chain on the 6th partitioning (f) NOI Search Chain on the 7th partitioning

Figure 4.12 Searching Chains for Subspace Partitioning on Image-Segmentation

 at ߚ ൌ 0.1

55

 (g) NOI Search Chain on the 8th partitioning (h) NOI Search Chain on the 9th partitioning

 (i) NOI Search Chain on the 10th partitioning (j) NOI Search Chain on the 11th partitioning

 (k) NOI Search Chain on the 12th partitioning (l) NOI Search Chain on the 13th partitioning

Figure 4.12 Searching Chains for Subspace Partitioning on Image-Segmentation

 at ߚ ൌ 0.1 (Continued)

56

 (m) NOI Search Chain on the 14th partitioning (n) NOI Search Chain on the 15th partitioning

 (o) NOI Search Chain on the 16th partitioning (p) NOI Search Chain on the 17th partitioning

 (q) NOI Search Chain on the 18th partitioning (r) NOI Search Chain on the 19th partitioning

Figure 4.12 Searching Chains for Subspace Partitioning on Image-Segmentation

 at ߚ ൌ 0.1 (Continued)

57

 (a) NOI Search Chain on the 2nd partitioning (b) NOI Search Chain on the 3rd partitioning

 (c) NOI Search Chain on the 4th partitioning

Figure 4.13 Searching Chains for Subspace Partitioning on Iris-plants at ߚ ൌ 0.4

 (a) NOI Search Chain on the 2nd partitioning (b) NOI Search Chain on the 3rd partitioning

Figure 4.14 Searching Chains for Subspace Partitioning on Pima-Indian Diabetes

 at ߚ ൌ 0.4

58

 (c) NOI Search Chain on the 4th partitioning (d) NOI Search Chain on the 5th partitioning

 (e) NOI Search Chain on the 6th partitioning (f) NOI Search Chain on the 7th partitioning

 (g) NOI Search Chain on the 8th partitioning

Figure 4.14 Searching Chains for Subspace Partitioning on Pima-Indian Diabetes

 at ߚ ൌ 0.4 (Continued)

59

 (a) NOI Search Chain on the 2nd partitioning (b) NOI Search Chain on the 3rd partitioning

 (c) NOI Search Chain on the 4th partitioning (d) NOI Search Chain on the 5th partitioning

 (e) NOI Search Chain on the 6th partitioning (f) NOI Search Chain on the 7th partitioning

Figure 4.15 Searching Chain for Subspace Partitioning on Vehicle Silhouettes at

ߚ ൌ 0.4

60

 (g) NOI Search Chain on the 8th partitioning (h) NOI Search Chain on the 9th partitioning

 (i) NOI Search Chain on the 10th partitioning (j) NOI Search Chain on the 11th partitioning

 (k) NOI Search Chain on the 12th partitioning (l) NOI Search Chain on the 13th partitioning

Figure 4.15 Searching Chain for Subspace Partitioning on Vehicle Silhouettes at

ߚ ൌ 0.4 (Continued)

61

 (m) NOI Search Chain on the 14th partitioning (n) NOI Search Chain on the 15th partitioning

 (o) NOI Search Chain on the 16th partitioning (p) NOI Search Chain on the 17th partitioning

 (q) NOI Search Chain on the 18th partitioning

Figure 4.15 Searching Chain for Subspace Partitioning on Vehicle Silhouettes at

ߚ ൌ 0.4 (Continued)

62

 (a) NOI Search Chain on the 2nd partitioning (b) NOI Search Chain on the 3rd partitioning

 (c) NOI Search Chain on the 4th partitioning (d) NOI Search Chain on the 5th partitioning

 (e) NOI Search Chain on the 6th partitioning (f) NOI Search Chain on the 7th partitioning

Figure 4.16 Searching Chains for Subspace Partitioning on Image-Segmentation

 at ߚ ൌ 0.4

63

 (g) NOI Search Chain on the 8th partitioning (h) NOI Search Chain on the 9th partitioning

 (i) NOI Search Chain on the 10th partitioning (j) NOI Search Chain on the 11th partitioning

 (k) NOI Search Chain on the 12th partitioning (l) NOI Search Chain on the 13th partitioning

Figure 4.16 Searching Chains for Subspace Partitioning on Image-Segmentation

 at ߚ ൌ 0.4 (Continued)

64

 (m) NOI Search Chain on the 14th partitioning (n) NOI Search Chain on the 15th partitioning

 (o) NOI Search Chain on the 16th partitioning (p) NOI Search Chain on the 17th partitioning

 (q) NOI Search Chain on the 18th partitioning (r) NOI Search Chain on the 19th partitioning

Figure 4.16 Searching Chains for Subspace Partitioning on Image-Segmentation

 at ߚ ൌ 0.4 (Continued)

65

4.1.3 Evaluation of the Clustering Performance

The clustering performance of the proposed algorithm on the four UCI

datasets are finally evaluated in terms of the number of generated clusters, the

clusters’ purity (averaged ratio between the number of majority class data objects and

the number of data objects in a cluster) , and the fitness function ݍሺݔሻ value. The

evaluation measurements are compared with those of the other five representative-

based supervised clustering algorithms, which are Supervised Partitioning Around

Medoids (SPAM), the Single Representative Insertion/Deletion Steepest Decent Hill

Climbing with Randomized Start (SRIDHCR), and the Supervised Clustering using

Evolutionary Computing (SCEC), all in Zeidat et al. (2006), the Supervised Growing

Neural Gas (SGNG) and the Robust Supervised Growing Neural Gas (RSGNG) in

Apirak Jirayusakul (2007). The performance comparisons on the Iris-Plants, the

Pima-Indian Diabetes, the Vehicle Silhouettes, and the Image-Segmentation dataset

are shown in Table 4.7, Table 4.8, Table 4.9, and Table 4.10 respectively, for 0.1 and

0.4 of β ’s values. Note that only the first three of the five algorithms are compared

with the proposed algorithm for 0.4 ofβ ’s value since the three measurements are

available on the three algorithms. In addition, the experiments on the proposed

algorithm were also conducted with varying values of parameters, i.e. maxnoi, η and

γ, to see how these parameters can affect the performances of the proposed algorithm.

66

Table 4.7 Performance Comparison on Iris-Plants Dataset

(a) Iris-Plants [on β = 0.1]

Algorithm No. of
Clusters

Cluster
Purity Q(x) Value

SCEC 5 0.993 0.018
SREDHCR 3 0.980 0.020

SPAM 3 0.973 0.027

SGNG 3 0.973 0.027
5 0.986 0.026

RSGNG 3 0.973 0.027
5 0.986 0.026

Proposed Algorithm
(η = 0.5, maxnoi = 100, γ = 0.3) 3 0.993 0.007
(η = 0.4, maxnoi = 100, γ = 0.3) 3 0.987 0.013
(η = 0.6, maxnoi = 100, γ = 0.3) 3 0.987 0.013
(η = 0.5, maxnoi = 50, γ = 0.3) 3 0.987 0.013

(η = 0.5, maxnoi = 200, γ = 0.3) 6 1.000 0.014
(η = 0.5, maxnoi = 100, γ = 0.2) 3 0.987 0.013
(η = 0.5, maxnoi = 100, γ = 0.4) 3 0.987 0.013

(b) Iris-Plants [on β = 0.4]
Algorithm No. of

Clusters
Cluster
Purity Q(x) Value

SCEC 3 0.987 0.013
SREDHCR 3 0.987 0.013

SPAM 3 0.973 0.027
Proposed Algorithm

(η = 0.5, maxnoi = 100, γ = 0.3) 3 0.993 0.007
(η = 0.4, maxnoi = 100, γ = 0.3) 3 0.987 0.013
(η = 0.6, maxnoi = 100, γ = 0.3) 3 0.987 0.013
(η = 0.5, maxnoi = 50, γ = 0.3) 3 0.987 0.013

(η = 0.5, maxnoi = 200, γ = 0.3) 6 1.000 0.057
(η = 0.5, maxnoi = 100, γ = 0.2) 3 0.987 0.013
(η = 0.5, maxnoi = 100, γ = 0.4) 3 0.987 0.013

As shown in Table 4.7, on the Iris-Plants dataset whose same class data

objects are grouped in the well-defined oval shape clusters, the performance of the

proposed algorithm is better than those of the other five algorithms both at ߚ ൌ 0.1

and ߚ ൌ 0.4, except at maxnoi value 200.

67

Table 4.8 Performance Comparison on Pima-Indian Diabetes Dataset

(a) Pima-Indian Diabetes [on β = 0.1]

Algorithm No. of
Clusters

Cluster
Purity Q(x) Value

SCEC 64 0.893 0.135
SREDHCR 45 0.859 0.164

SPAM 45 0.822 0.202
 45 0.880 0.144

SGNG 64 0.919 0.109
 75 0.941 0.090
 45 0.863 0.161

RSGNG 64 0.898 0.130
 75 0.911 0.120

Proposed Algorithm
(η = 0.5, maxnoi = 100, γ = 0.3) 37 0.979 0.042
(η = 0.4, maxnoi = 100, γ = 0.3) 30 0.974 0.045
(η = 0.6, maxnoi = 100, γ = 0.3) 60 0.990 0.038
(η = 0.5, maxnoi = 50, γ = 0.3) 20 0.939 0.077

(η = 0.5, maxnoi = 200, γ = 0.3) 63 0.982 0.046
(η = 0.5, maxnoi = 100, γ = 0.2) 25 0.961 0.056
(η = 0.5, maxnoi = 100, γ = 0.4) 20 0.961 0.054

(b) Pima-Indian Diabetes [on β = 0.4]

Algorithm No. of
Clusters

Cluster
Purity Q(x) Value

SCEC 9 0.819 0.219
SREDHCR 2 0.776 0.224

SPAM 2 0.772 0.227
Proposed Algorithm

(η = 0.5, maxnoi = 100, γ = 0.3) 2 0.809 0.191
(η = 0.4, maxnoi = 100, γ = 0.3) 2 0.802 0.198
(η = 0.6, maxnoi = 100, γ = 0.3) 2 0.809 0.191
(η = 0.5, maxnoi = 50, γ = 0.3) 2 0.797 0.203

(η = 0.5, maxnoi = 200, γ = 0.3) 18 0.943 0.115
(η = 0.5, maxnoi = 100, γ = 0.2) 2 0.802 0.198
(η = 0.5, maxnoi = 100, γ = 0.4) 2 0.802 0.198

On the Pima-Indian Diabetes dataset, shown in table 4.8, the proposed

algorithm performs the best among the six algorithms in terms of both the ݍሺݔሻ value

and the cluster’s purity when using β value 0.1. On β value of 0.4, its performance is

rather comparable with the other three algorithms.

68

Table 4.9 shows that the proposed algorithm outperforms the other algorithms

on the Vehicle Silhouettes dataset in terms of the q(x) value, the cluster purity, and the

number of clusters generated, on both values of β.

Table 4.9 Performance Comparison on Vehicle Silhouettes Dataset

(a) Vehicle Silhouettes [on β = 0.1]

Algorithm No. of
Clusters

Cluster
Purity Q(x) Value

SCEC 132 0.923 0.116
SREDHCR 65 0.835 0.192

SPAM 65 0.764 0.263
 65 0.861 0.166

SGNG 109 0.920 0.115
 132 0.946 0.093
 65 0.873 0.154

RSGNG 109 0.937 0.098
 132 0.955 0.084

Proposed Algorithm
(η = 0.5, maxnoi = 100, γ = 0.3) 43 1.000 0.021
(η = 0.4, maxnoi = 100, γ = 0.3) 23 0.998 0.017
(η = 0.6, maxnoi = 100, γ = 0.3) 33 0.996 0.022
(η = 0.5, maxnoi = 50, γ = 0.3) 34 0.999 0.020

(η = 0.5, maxnoi = 200, γ = 0.3) 64 0.996 0.030
(η = 0.5, maxnoi = 100, γ = 0.2) 10 0.998 0.011
(η = 0.5, maxnoi = 100, γ = 0.4) 21 1.000 0.014

(b) Vehicle Silhouettes [on β = 0.4]

Algorithm No. of
Clusters

Cluster
Purity Q(x) Value

SCEC 61 0.857 0.247
SREDHCR 56 0.835 0.265

SPAM 56 0.754 0.345
Proposed Algorithm

(η = 0.5, maxnoi = 100, γ = 0.3) 11 0.993 0.043
(η = 0.4, maxnoi = 100, γ = 0.3) 5 0.992 0.022
(η = 0.6, maxnoi = 100, γ = 0.3) 7 0.988 0.036
(η = 0.5, maxnoi = 50, γ = 0.3) 9 0.988 0.043

(η = 0.5, maxnoi = 200, γ = 0.3) 16 0.994 0.054
(η = 0.5, maxnoi = 100, γ = 0.2) 9 0.995 0.035
(η = 0.5, maxnoi = 100, γ = 0.4) 9 0.995 0.035

69

Still in Table 4.10, the proposed algorithm gives better performance on the

image-Segmentation dataset for both the q(x) values and the number of clusters on

both β values.

Table 4.10 Performance Comparison on Image-Segmentation Dataset

(a) Image-Segmentation [on β = 0.1]

Algorithm No. of
Clusters

Cluster
Purity Q(x) Value

SCEC 60 0.989 0.026
SREDHCR 53 0.980 0.035

SPAM 53 0.944 0.071
 42 0.967 0.046

SGNG 53 0.971 0.044
 60 0.977 0.039
 42 0.959 0.054

RSGNG 53 0.963 0.052
 60 0.969 0.047

Proposed Algorithm
(η = 0.5, maxnoi = 100, γ = 0.3) 19 0.990 0.018
(η = 0.4, maxnoi = 100, γ = 0.3) 17 0.990 0.017
(η = 0.6, maxnoi = 100, γ = 0.3) 28 0.995 0.015
(η = 0.5, maxnoi = 50, γ = 0.3) 30 0.995 0.016

(η = 0.5, maxnoi = 200, γ = 0.3) 37 0.995 0.017
(η = 0.5, maxnoi = 100, γ = 0.2) 21 0.989 0.019
(η = 0.5, maxnoi = 100, γ = 0.4) 29 0.993 0.017

(b) Image-Segmentation [on β = 0.4]
Algorithm No. of

Clusters
Cluster
Purity Q(x) Value

SCEC 28 0.969 0.069
SREDHCR 32 0.970 0.074

SPAM 32 0.940 0.103
Proposed Algorithm

(η = 0.5, maxnoi = 100, γ = 0.3) 14 0.984 0.039
(η = 0.4, maxnoi = 100, γ = 0.3) 13 0.980 0.041
(η = 0.6, maxnoi = 100, γ = 0.3) 15 0.990 0.034
(η = 0.5, maxnoi = 50, γ = 0.3) 13 0.985 0.037

(η = 0.5, maxnoi = 200, γ = 0.3) 25 0.986 0.051
(η = 0.5, maxnoi = 100, γ = 0.2) 14 0.988 0.035
(η = 0.5, maxnoi = 100, γ = 0.4) 13 0.984 0.038

As a conclusion, the results reported in Table 4.7 thru Table 4.10 do show that

the proposed algorithm yields the best solutions among the six algorithms in both

values of β. Furthermore, the numbers of clusters generated by the other five

70

algorithms in the last three datasets are remarkably higher than those by the proposed

algorithm. These may due to the natures of representative-based clustering algorithms

of the other five algorithms that incline to create a large number of global-shape

clusters. The parameter value of maxnoi has a few effects on the performances of the

proposed algorithm if the value is too large. The maxnoi acts as a normalization factor

for the noi value. So, when the maxnoi value becomes too large, the noi value as well

as the gradient of the noi value become too small, and therefore can reduce the

effectiveness of the gradient search. Also, it is possible that different dimensions can

have different maxnoi values.

4.2 The Experiments on Synthetic Datasets

The experiments in this section are intended to affirm the effectiveness of the

proposed algorithm under various proclaimed situations through 2-D geometrical

presentations. The algorithm was performed on four 2-D synthetic datasets from

Apirak Jirayusakul (2007) representing 4 different scenarios: Test-1, Test-2, Test-3,

and Test-4. The properties of the datasets are shown in Table 4.11. The parameters

used in the experiments are as follows:

ߚ ൌ ߟ , 0.1 ൌ 0.5 , ݅݋݊ݔܽ݉ ൌ 100 , ԃ ൌ 0.3

The results of the experiments are graphically displayed in Figure 4.17 thru 4.20

where objects claimed as impurities are encircled with the dark color.

 Table 4.11 Properties of the Synthetic Datasets Used in the Experiments

Dataset Name No. of Examples No. of Attributes No. of Classes

Test-1 1,250 2 2
Test-2 1,000 2 6
Test-3 4,185 2 4
Test-4 3,421 2 4

Figure 4.17 illustrates the result from the experiment on Test-1 dataset. It

shows two pure cross-board shape clusters: A and B, one cluster per one individual

class. This result confirms that the proposed algorithm has ability to identify any

71

irregular shape clusters. The result is quite different from those from Apirak

Jirayusakul (2007: 61-62), the optimal value of which renders 25 prototypes, due to

the representative-based nature which inclines to generate global shape clusters.

Figure 4.17 Result on Test-1 Dataset

The result on Test-2 dataset is shown in Figure 4.18. The proposed algorithm

depicts 12 sparse various shape and density clusters: A1, A2, B1, B2, C1, C2, C3, D1,

D2, E1, E2 and F, with sparse-and-scattered impurity objects. There are two clusters

which contain only single data object: A3 and E3, and hence may be counted as

outliers. The result is analogous to the optimal result generated by Apirak Jirayusakul

(2007: 66), with the trivial exception that the clusters A3 and E3 are included into

their major clusters.

Figure 4.18 Result on Test-2 Dataset.

The set of clusters shown in Figure 4.19 is the result from running the

proposed algorithm on Test-3 dataset. Fourteen crowded similar shape, size, and

density clusters are delineated: A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4, D1,

72

and D2, most of which are overlapped, as can be seen surrounded by considerable

number of impurity objects. The result is comparable to the optimal result from

Apirak Jirayusakul (2007: 69-70), except that the number of clusters is higher due to

the separation of the clusters C3 into 2 adjacent clusters, according to its

representative-based nature.

Figure 4.19 Result on Test-3 Dataset.

The results from the experiment performed on Test-4 dataset is shown in

Figure 4.20. The proposed algorithm can identify 17 various size and density clusters:

A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, C1, C2, C3, C4, C5, D1, and D2. Some

contain a small number of impurity objects in various locations inside the clusters. In

Apirak Jirayusakul (2007: 73-74), the separation of both the cluster A2 and B3 into 2

adjacent clusters does confirm its representative-based concept.

Figure 4.20 Result on Test-4 Dataset.

73

As the conclusion, the results from the four experiments hence endorse the

ability of the proposed algorithm in identifying clusters of any shapes and sizes

without presuming any canonical form of data distribution.

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, a new approach in clustering data objects in the supervised

manner is proposed. The proposed algorithm blends together the advantages of the

grid-based clustering method and bottom-up subspace clustering method. This enables

the algorithm to alleviate some of the drawbacks that exist in most of the recent

clustering algorithms. That is, the proposed algorithm has ability to identify clusters

of any shapes and sizes without presuming any canonical form for data distribution,

needs no pre-specified number of clusters, and is insensitive to the order of the input

data objects.

The proposed algorithm begins by gradually partitioning data space into equal-

size non-empty grid cells using one dimension at a time. The greedy method is used to

determine the order of dimensions that would give the best quality of clustering from

the gradual partitioning, while, the gradient descent method is used to find the optimal

number of intervals to be used for each partitioning. After all dimensions have been

partitioned, any connected grid cells containing majority of data from the same class

are merged into a cluster. By using the greedy and gradient descent methods in

performing grid cell partitioning, the proposed algorithm can produce high quality

clusters while reduce time to find the best partitioning and avoid the memory

confinement problem during the process.

The results from the experiments do confirm that the proposed algorithm can

cope with datasets of any shapes and sizes. On two-dimensional synthetic datasets, the

proposed algorithm can identify clusters with different shapes and sizes correctly. On

UCI datasets, the proposed algorithm also outperforms all other five supervised

clustering algorithms, with smaller numbers of created clusters and lower degrees of

impurity, especially on irregular-shape datasets.

A method to manage outliers is not mentioned in the proposed algorithm.

Nevertheless, the algorithm can simply identify outliers by checking for clusters that

75

contain data objects fewer than the pre-defined value and reporting the data objects

inside the clusters as outliers. A more sophisticated method can be developed based

on some statistical characteristics of grid cells which might contain only outliers. For

instance, during the Grid Cell Creation task, the mean and standard deviation values

of the numbers of data objects of all grid cells can be computed. The grid cells with

numbers of data objects significantly fewer than most other grid cells , e.g. less than

the mean by more than four times of the standard deviation, can be considered as the

grid cells with too few number of data objects and can be considered to contain only

outliers. Therefore, they can then be deprived from further partitioning.

BIBLIOGRAPHY

Aggarwal, C.C.; Gates, S.C. and Yu, P.S. 1999. On the Merits of Building

Categorization Systems by Supervised Clustering. In Proceedings of the

fifth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining KDD 99. San Diego, CA: ACM. Pp. 352-356.

Agrawal, R.; Gehrke, J.; Gunopulos, D. and Raghavan, P. 1998. Automatic Subspace

Clustering of High Dimensional Data for Data Mining Applications.

In Proceedings of ACM-SIGMOD International Conference on

Management of Data (SIGMOD). Seattle, WA: ACM. Pp. 94-105.

Aguilar, J.S.; Ruiz, R.; Riquelme, J.C. and Giráldez, R. 2001. SNN: A Supervised

Clustering Algorithm. In Proceedings of the 14th International

Conference on Industrial and Engineering Applications of Artificial

Intelligence and Expert Systems (IEA/AIE 2001). Budapest: Springer-

Verlag. Pp. 207-216.

Al-Harbi, S.H. and Rayward-Smith, V.J. 2006. Adapting K-means for Supervised

Clustering. Applied Intelligence. 24(June): 219-226.

Apirak Jirayusakul. 2007. Supervised Growing Neural Gas Algorithm in

Clustering Analysis. Doctoral dissertation, National Institute of

Development Administration.

Apirak Jirayusakul and Surapong Auwatanamongkol. 2007. A Supervised Growing

Neural Gas Algorithm for Cluster Analysis. International Journal of

Hybrid Intelligent Systems. 4(December): 217-229.

Dettling, M. 2003. Revealing Predictive Gene Groups with Supervised Algorithms. In

Proceedings of the Conference in Distributed Statistical Computing,

DSC 2003. Vienna: DSC. Pp. 1-8.

Eick, C.F.; Zeidat, N. and Zhenghong, Z. 2004. Supervised Clustering - Algorithms

and Benefits. In Proceedings of the 16th IEEE International Conference

on Tools with Artificial Intelligence (ICTAI04). Boca Raton, FL: IEEE.

Pp. 774-776.

77

Finley, T. and Joachims, T. 2005. Supervised Clustering with Support Vector

Machines. In Proceedings of the International Conference on Machine

Learning (ICML). Bonn: ICML. Pp. 217-224.

Hinneburg, A. and Keim, D.A. 1998. An Efficient Approach to Clustering in Large

Multimedia Databases with Noise. Retrieved April 15, 2008 from

http://www.cs.ecu.edu/~dingq/CSCI6905/readings/kdd98-DENCLUE.pdf.

Hornik, K.; Leisch, F., and Zeileis, A. Eds. 2003. In Proceedings of the 3rd

International Workshop on Distributed Statistical Computing (DSC

2003). Vienna: DSC.

Kotsiantis, S.B. and Pintelas, P.E. 2004. Recent Advances in Clustering: A Brief

Survey. WSEAS Transactions on Information Science and

Applications. 1(1): 73-81.

Kunttu, I.; Lepisto, L.; Rauhamaa, J. and Visa A. n.d. Grid-based Clustering in the

Content-based Organization of Large Image Databases. Retrieved April 15,

2008 from

http://www.cs.tut.fi/~avisa/digger/Publications/WIAMIS2004_Kunttu.pdf.

Li, X. and Ye ,N. 2002. Grid-and Dummy-Cluster-Based Learning of Normal and

Intrusive Clusters of Computer Intrusion Detection. Journal of Quality

and Reliability Engineering International. 18(3): 231-242.

Li, X. and Ye, N. 2005. A Supervised Clustering Algorithm for Computer Intrusion

Detection. Knowledge and Information Systems. 8(4): 498–509.

Li, X. and Ye ,N. 2006. A Supervised Clustering and Classification Algorithm for

Mining Data with Mixed Variables. IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans. 36(March): 396-

406.

Liao, W.K.; Liu, Y. and Choudhary, A. 2004. A Grid-based Clustering Algorithm

Using Adaptive Mesh Refinement. In the 7th Workshop on Mining

Scientific and Engineering Data Sets 2004. Held in conjunction with the

4th SIAM International Conference on Data Mining at Lake Buena Vista,

Florida, April 24, 2004.

Park, N.H. and Lee, W.S. 2004. Statistical Grid-based Clustering over Data Streams.

SIGMODD Record. 33(March): 32-37.

78

Parsans, L.; Haque, E. and Liu, H. 2004. Subspace Clustering for High Dimensional

Data: A Review. ACM SIGKDD Explorations. 6(1): 90–105.

Pornpimol Bungkomkhun and Surapong Auwatanamongkol. 2009. Grid-based

Supervised Clustering. In Proceedings of December 2009 International

Conference on Applied Mathematics and Computer Science, World

Academy of Science, Engineering and Technology. Bangkok: WASET.

Pp. 536-543.

Procopiuc, C.M. 1997. Applications of Clustering Problems. Retrieved May 30, 2009

from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.2592&rep=rep

1&type=pdf.

Sheikholeslami, G.; Chatterjee, S. and Zhang, A. 1998. WaveCluster: A Multi-

Resolution Clustering Approach for Very Large Spatial Databases. In

Proceedings of the 24th International Conference on Very Large

Databases (VLDB). New York: VLDB. Pp. 428-439.

Sinkkonen, J.; Kaski, S. and Nikkila, J. 2002. Discriminative Clustering: Optimal

Contingency Tables by Learning Metrics. In Proceedings of the 13th

European Conference on Machine Learning (ECML). Springer-Verlag:

ECLM. Pp. 418-430.

Slonim, N. and Tishby, N. 1999. Agglomerative Information Bottleneck. In

Proceedings of the 13rd Neural Information Processing Systems (NIPS).

Pp. 617-623.

Tan, P-N.; Steinbach, M. and Kumar, V. 2006. Introduction to Data Mining.

Hudson, NY: Hamilton.

Tishby, N.; Pereira, F.C. and Bialek, W. 1999. The Information Bottleneck Method.

In Proceedings of the 37th Annual Allerton Conference on

Communication, Control, and Computing. Urbana, IL. Pp. 368-377.

Qu, Y. and Xu, Z. 2004. Supervised Clustering Analysis for Microarray Data Based on

Multivariate Gaussian Mixture. Bioinformatics. 20(12): 1905-1913.

University of California at Irving. 2008. Machine Learning Repository. Retrieved

October 10, 2008 from http://www.ics.uci.edu/~mlearn/MLRepository.html.

79

Wang, W.; Yang, J. and Muntz, R. 1997. STING : A Statistical Information Grid

Approach to Spatial Data Mining. Retrieved April 15, 2009 from

http://fmdb.cs.ucla.edu/Treports/970006.pdf.

Ye, N. and Li, X. 2001. A Scalable Clustering Technique for Intrusion Signature

Recognition. In Proceedings of the 2nd IEEE Systems, Man, and

Cybernetics Information Assurance Workshop. West Point, NY: IEEE.

Pp. 1-4.

Ye, N. and Li, X. 2005. Method for Classifying Data Using Clustering and

Classification Algorithm Supervised. Retrieved April 15, 2009 from

http://www.patentstorm.us/patents/6907436/fulltext.html.

Zeidat, N.; Eick, C.F. and Zhao, Z. 2006. Supervised Clustering: Algorithms and

Application. Retrieved March 21, 2008 from

http://www.cs.uh.edu/docs/cosc/technical-reports/2006/06_10.pdf.

BIOGRAPHY

NAME Pornpimol Bungkomkhun

ACADEMIC BACKGROUND B.S.(Statistics), Chulalongkorn University,

1979

M.S.(Business Computer Information System),

North Texas State University, 1984

PRESENT POSITION Associate Director, Leam Chabang Engineering

Technological College

EXPERIENCES Programmer, Data Processing Division,

Metropolitan Electricity Authority

Head of Software Maintenance Department,

Metropolitan Electricity Authority

Special Instructor, Statistic Department, Faculty

of Commerce and Accountancy, Chulalongkorn

University

Visitor Lecturer, Thai-Nichi Institute of

Technology

Head of Business Computer Department, South-

East Asia Universi

81

Head of Computer Science Department, South-

East Asia University

Associate Director, Leam Chabang Engineering

Technological College

Conference: ‘Grid-based Supervised

Clustering’, in International Conference on

Applied Mathematics and Computer Science,

World Academy of Science, Engineering and

Technology (WASET), December 2009

Publication: 'Grid-based Supervised Clustering

Algorithm Using Greedy and Gradient Descent

Methods to Build Clusters', in International

Journal of Computer Science Issues (IJCSI)

Volume 9, Issue 3, May 2012

	GRID-BASED SUPERVISED CLUSTERING ALGORITHMUSING GREEDY AND GRADIENT DESCENT METHODSTO BUILD CLUSTERS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1
INTRODUCTION
	CHAPTER 2
LITERATURE REVIEW
	CHAPTER 3
METHODOLOGY
	CHAPTER 4
EXPERIMENTAL RESULTS
	CHAPTER 5
CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY
	BIOGRAPHY

