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ABSTRACT 
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Braid Groups in Ad Hoc Networks 

Author Thanongsak Aneksrup 

Degree Doctor of Philosophy (Computer Science) 

Year 2010 

 

 

As various applications of ad hoc networks have been proposed, security 

issues have become a central concern and are increasingly important. This research 

proposed a contributory group key management that approaches by using braid 

groups, key tree and the identity authentication system. Without any assumption of 

prefixed online trust relationship between nodes, the proposed method works in a self-

organizing way to provide the key generation and key management services using 

Tree-based Braid Groups. The using of the proposed Tree-based Braid Groups has 

following advantages: (1) the communication cost is minimized to constant time; (2) 

the complexity of computation is decreased to linear since the braid groups using just 

product and inverse operation by avoiding modular exponential operation. The using 

of identity authentication has the following advantages: (1) the storage space and the 

communication overheads can be reduced in that the certificate is unnecessary; (2) the 

computational costs can be decreased since it requires no public key verification; (3) 

there is no key escrow problem since the certificate authority (CA) does not know the 

user's private keys. The proposed protocols are more simple, secure and efficiency for 

group key management in mobile ad hoc networks. 



ACKNOWLEDGEMENTS 

 
I would like to express sincere thanks to my advisor, Associate Professor Dr. 

Pipat Hiranvanichakorn, for his valuable advice, encouragement and guidance in 

making this dissertation. I also wish to extend thanks and appreciation to all of the 

committee members, Assistant Professor Dr. Pramote Kuacharoen, Assistant 

Professor Dr. Ohm Sorni and Dr. Tossapon Boongoen for their comments and 

suggestions. Thank is also dedicated Dr. Supachot Lerdwarathum as my close friend 

and classmate. Family, special thanks are due to my wife for supporting me and 

taking care of our children, extremely well throughout my study.  

 

 

Thanongsak Aneksrup 

April 2011 



 

 

TABLE OF CONTENTS 
 

Page 
 
ABSTRACT iii 

ACKNOWLEDGEMENTS iv 

TABLE OF CONTENTS v 

LIST OF TABLES vii 

LIST OF FIGURES viii 

 

CHAPTER 1  INTRODUCTION 1 

1.1  Security on Mobile Ad-hoc Networks 1 

1.2  Related Works 3 

1.3  Concept of Purposed Protocol 7 

CHAPTER 2  LITERATURE REVIEW 9 

2.1  Network Security 10 

2.2  Cryptographic 13 

2.3  Group Key Agreement Protocol 19 

2.4  Authenticated Group Key Agreement Protocol 36 

2.5  Key agreement based on Braid Group 37 

2.6  Conceptual Model of Purposed Protocol 41 

CHAPTER 3  GROUP KEY AGREEMENT USING TREE-BASED BRAID 

GROUPS 48 

3.1  Key Tree Notation 49 

3.2  Braid Groups Key Exchange 50 

    3.3  Group Key Agreement on Tree-based  

Braid Groups (TBG) 53 

3.4  Security Analysis 69 

3.5  Complexity Analysis 70 



  

 

vi 

CHAPTER 4  AUTHENTICATED GROUP KEY AGREEMENT USING 

TREE-BASED BRAID GROUPS 74 

4.1  Two-party Key Agreement Protocol 75 

4.2  Authenticated Group Key Agreement Protocol on Tree-based 

Braid Groups (ATBG) 77 

4.3  Security Analysis 94 

4.4  Complexity Analysis 96 

CHAPTER 5  CONCLUSION 98 

5.1  Conclusion 98 

5.2  Future Works 99 

 

BIBLIOGRAPHY 100 

BIOGRAPHY 106 



LIST OF TABLES 

 

Tables Page 

 

3.1  Communication Cost of TBG Protocol 72 

3.2  Computation Cost of TBG Protocol 73 

4.1  Communication Cost of ATBG Protocol 97 

4.2  Computation Cost of ATBG Protocol 97 



 

 

LIST OF FIGURES 

 

Figures Page 

 

2.1  Symmetric encryption schemes 14 

2.2  Asymmetric key encryption schemes 15 

2.3  Example of a digital signature 16 

2.4  Hypercube protocol for n = 4 21 

2.5  TGDH tree 24 

2.6  An example of TGDH join 26 

2.7  An example of TGDH leave 27 

2.8  An example of 2-group TGDH merge 29 

2.9  An example of TGDH partition 30 

2.10  STR tree 31 

2.11  An example of STR join 33 

2.12  An example of STR leave 34 

2.13  An example of STR merge 35 

2.14  An example of STR partition 36 

2.15  Definition of braid groups 38 

2.16  The relation of braid groups 38 

2.17  Many-to-many Communication 41 

2.18  Multi-hop Communication with Non-member Nodes 43 

2.19  Key Tree 45 

3.1  Notation of key tree 50 

3.2  The example group key generating 52 

3.3  Braid Permutation Sequence of each Perspective 53 

3.4  Before tree updated: M4 join, M2 as director  58 

3.5  After tree updated: M4 join, M2 as director 59 

3.6  Before tree updated: M2 leave, M3 as director 60 

3.7  After tree updated: M2 leave, M3 as director 61



 

 

ix 

3.8  Before tree updated: Merge Protocol 63 

3.9  After tree updated: Merge Protocol 64 

3.10  Before tree updated: Partition Protocol 66 

3.11  After tree updated: Partition Protocol in first scheme 66 

3.12  After tree updated: Partition Protocol in second scheme 67 

3.12  After tree updated: Partition Protocol in third scheme 68 

4.1  Join protocol : Updated tree that new member received from director 81 

4.2  Join protocol : Authenticated key tree that M2 received from new member, 

M4 82 

4.3  Join protocol : After M1 computes keys and blinded keys 82 

4.4  Leave protocol : Before tree updated that M1 leaves 84 

4.5  Leave protocol : Authenticated key tree that M3 receives from director, 

M2 85 

4.6  Leave protocol : After M4 computes keys and blinded keys 85 

4.7  Merge Protocol : Before merging process 88 

4.8   Merge protocol : Authenticated key tree that merging director, M6, 

received from current group director, M4 89 

4.9  Merge protocol : Authenticated key tree that M3 received from merging 

group director, M6 89 

4.10  Merge Protocol : After M2 computes keys and blinded keys 90   

4.11  Before tree updated: Partition Protocol 92 

4.12  Partition protocol : Authenticated key tree that M4 received from 

director, M3 in G1 92 

4.13  Partition protocol : Authenticated key tree that M2 received from 

director, M5 in G2 93 

4.14  Partition Protocol : After M3, M2 computes keys and blinded keys in G1 

and  G2, respectively 93  

   



 

 

CHAPTER 1 

 

INTRODUCTION 

 

1.1  Security on Mobile Ad-hoc Networks 

 
Mobile ad-hoc networks (MANETs) are special type of wireless network in 

which a collection of mobile devices with wireless network interfaces may form 

temporary network, without the aid of any fixed infrastructure or centralized 

administration. A whole new generation of portable devices is commercially 

available, such as personal digital assistants (PDA), computer laptops, etc. In 

MANETs, nodes within their wireless transmitter range can communicate with each 

other directly, while nodes outside the range have to rely on some other nodes to relay 

messages. Thus a multi-hop scenario occurs, where packets of the source node are 

relayed by several intermediate nodes before reaching the destination node. Every 

node what the packet passed functions to be as a router. The success of 

communication highly depends on the other node’s cooperation. The MANETs are 

also regarded as ideal technology for creating instant communication networks for 

civilian and military applications. In recent years, MANETs have received a great 

deal of attention in both academia and industry. This emerging technology aims to 

provide “anytime-anywhere” networking services on a potentially large scale. 

While MANETs can be quickly and inexpensive setup as needed, security is a 

critical issue compared to wired or other wireless counterparts. Many passive and 

actives security attacks could be launched from the outside by malicious nodes or 

from the inside by compromised nodes. There are five fundamental security issues 

which have to be addressed: confidentiality, integrity, non-repudiation, authentication 

and availability. Because of the high level of self-organization, dynamic topology, 

dynamic membership or vulnerable wireless link, MANETs are difficult to secure. In 

addition, security solutions applied in most traditional network with a static 
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configuration may not directly implement for protecting them according to the 

mobility of MANETs. 

Many applications of MANETs involve collaborative computing among a 

large number of nodes and are thus group-oriented in nature. Examples of such 

applications include coordination of fire fighters in a rescue task and coordination of 

soldier during battle. For deploying such applications in an adversarial environment 

such as battlefield or even in many civilian commercial scenarios, it is necessary to 

provide support for secure group communication.  

Secure group communication requires scalable and efficient group 

membership management with appropriate access control measures to protect data 

and to cope with potential compromises. To this end, a secret key for data encryption 

must be distributed securely and efficiently to current members. Each time a 

membership change occurs, the secret key must be changed to ensure backward and 

forward secrecy. Several proposals for group key management have been made 

recently. They range from key distribution schemes for large-scale single-sender 

multicast to contributory key agreement schemes for small any-to-any peer groups. 

Although most of them focus on wired networks, extensions to wireless networks 

(and MANETs) should be explored as such networks are becoming more common 

place. Due to the lack of fixed infrastructure and limited resources, it will be much 

more complex to adapt protocols and other technologies from the infrastructure based 

networks. 

The importance of secure group communication motivates the needs of 

common shared group key. There are three group key management schemes including 

centralized, distributed and contributory group key management. First scheme, the 

group key establishment can be centralized, where an entity is responsible for 

generating the group key and distributing to group members. This approach has 

advantage of being simple but it is claimed that is not appropriate for dynamic group 

communication since the central key server must be, at the same time, continuously 

available and present in every possible subset of a group in order to support continued 

operation in the event of arbitrary network partitions. Continuous availability can be 

addressed with fault-tolerance and replication techniques. Unfortunately, the omni-

presence issue is impossible to solve in a scalable and efficient manner.  Second 
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scheme, distributed group key management is more suitable to group communication, 

especially over unreliable networks. It involves dynamically selecting a group 

member that act as a key server. Although robust, this approach has a notable 

drawback in that it requires the key server to maintain long-term pairwise secure 

channels with all current group members in order to distribute group keys. Third 

scheme, contributory group key agreement requires each group members to contribute 

for the group key creation. This approach is fault tolerant and diminishes the risks of 

potential vicious key generating by a single entity to avoid the problem with the single 

point of trust and failure.  

In MANETs, key establishment protocols should also provide forward and 

backward secrecy, because the dynamic nature allows the joining and the leaving of 

member nodes. Most key establishment protocols are based on Diffie-Hellman key 

exchange protocol. Many group key agreement protocols were designed based on the 

natural extension of Diffie-Hellman key exchange protocol to the multiparty case, 

while inheriting all its security characteristics and providing a contributory group key 

establishment. 

The purpose of this research is to find an authenticated, secure and efficient 

key agreement protocol for a group communication in MANETs. The protocol was 

based on braid groups cryptographic and tree key techniques by using fully distributed 

authenticated without trusted third party such as CA. The protocol requires an off-line 

key server for approving public key as CA. The required computational processes in 

braid groups techniques are much faster than Diffie-Hellman and elliptic curve 

cryptographic techniques. The braid groups is applied in protocol just product and 

inverse operation by avoiding modular exponential operation. Therefore, the protocol 

reduces both communication and computation cost. 

 

1.2  Related Works 
Recently a number of protocols have been proposed to solve the problem of 

key management over wireless ad hoc networks. Key pre-distribution has been 

discussed in several approaches. Zhu, Xu, Setia, and Jajodia (2003) discuss a secure 

communication between two nodes in an ad hoc networks using probabilistic key 

sharing scheme in which enables two nodes to establish a pairwise shared key. The 
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protocol used the off-line key server in key pre-distribution phase what is used to 

initialize all the nodes.  Their protocol is based on two techniques including 

probabilistic key sharing and threshold secret sharing. A password based multi-party 

key agreement scheme was proposed Asokan and Ginzboorg (1999) where all the 

nodes are assumed to share a password. Basagni, Herrin, Rosti, and Bruschi (2001) 

described a secure ad hoc network in which all the nodes share a group identification 

key stored in tamper-resistant devices. Though all the above schemes perform 

efficiently, they require that all the nodes have some pre-determined knowledge. In ad 

hoc networks where mobile nodes do not grant the privilege of knowing other group 

members beforehand, assumption of such a pre-shared secret is invalid. 

The concept of mobile certificate authorities has been discussed by Yi and 

Kraverts (2002) and Kong, Zerfos, Luo, Lu, and Zhang (2001). In such schemes, the 

responsibilities of a CA are distributed among a set of wireless nodes. A subset 

(threshold) of such CAs must be contacted to obtain a valid certificate. Such schemes 

have several advantages such as providing data integrity, authentication and non-

repudiation. The drawbacks of such schemes are: (a) identifying nodes that perform 

the role of the CAs, consequently these nodes must spend more power; (b) constant 

availability of a threshold of CAs in a mobile network; and (c) the use of the 

computationally expensive public key encryption systems. Public key certificates are 

also used by Hubaux, Buttyan, and Capkun (2001), where all the nodes are assumed 

to maintain a local certificate repository and a probabilistic method is used to achieve 

a certificate chain between two nodes. This scheme requires that all nodes are 

preloaded with a set of certificates and it is possible that two nodes in the ad hoc 

network do not achieve a certificate chain. Also, the authors in (Yi et al., 2002; Kong 

et al., 2001; Habaux et al., 2001) did not address the distinct features of secure group 

communication such as group key formation and member join or leave. 

Key establishment using contributory key agreement protocols are discussed 

following.  Anton and Duarte (2002) discussed a number of such protocols previously 

used on wired networks and concluded that the CLIQUES protocol suite (Steiner, 

Tsudik, and Waidner, 1998) was best suited for ad hoc networks. Li, Wang, and 

Frieder (2002) also used the GDH (Group Diffie-Hellman) protocol, part of the 

CLIQUES protocol suite, for key agreement over ad hoc networks. GDH is an 
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efficient protocol with good support for member join and leave operations but it has 

some unfavorable features with regard to ad hoc networks. Most importantly, the 

GDH scheme requires that the members be serialized or structured in order to 

compute the group. Also, the last member in the group acts as a Group Controller 

(GC). Consequently the GC does more computation than the other members in the 

group. Thus, in using GDH for ad hoc networks deciding which member is going to 

perform the operation of a GC is an important problem. Kim, Perrig and Tsudik 

(2000; 2004) adapted it to a contributory key agreement protocol TGDH. Every group 

member creates a key tree separately. Each leaf node in key tree was associated with a 

real group member, while each non-leaf node corresponds to a subgroup of group G, 

considered a virtual member.  The protocol constructed the keys in key tree, which 

every node on the key tree has a Diffie-Hellman key pair.  The number of exponential 

in computation overhead is log2(N)The important problem of their approach is that 

the number of message in partition event is in the order of log2

Steiner, Tsudik, and Waidner (2000) proposed a family of Group Diffie-

Hellman (GDH) protocols for dynamic peer groups. Based on them, Ateniese, Steiner 

and Tsudik (2000) proposed a new multiparty authenticated key agreement protocol, 

which offers key authentication or integrity, key confirmation, and non-repudiation of 

group membership. However, some flaws in this protocol have been found by Pereira 

(N).  Another group 

key agreement developed for teleconferencing was proposed by Steer, Strawczynski, 

Diffie and Wiener (1988) in naming STR protocol. This protocol was of particular 

interest since the structure of its group key form a special case of the TGDH. STR is 

efficient for joining new group members as it takes only two rounds and two modular 

exponentiations. Member leaving, however, is relatively difficult. Due to the small 

number of rounds which results in a low communication overhead. Kim, Perrig, and 

Tsudik (2001) extended the STR protocol. Their researches have constructed protocol 

that supports dynamic group. However, its computation costs were quite expensive 

because the exponential depended on amount of member, but communication costs 

were constant round on all membership events and were not depending on the amount 

of members. The main disadvantage of TGDH and STR protocol is single point of 

failure at sponsor what had to existing in key tree. These protocols do not support this 

situation.  
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and Quisquater (2001). Lee, Lui and Yau (2006) extended tree-based group Diffie-

Hellman on distributed key agreement protocol, reducing the rekeying complexity by 

performing interval based rekeying including rebuild algorithm, batch algorithm and 

queue-batch algorithm. They also presented an authenticated key agreement protocol. 

As the success of their scheme was partially based on a certificate authority, their 

protocol encountered the same problems as centralized trust mechanisms. Yasinsac, 

Thakur, Carter, and Cubukcu (2002) proposed a key agreement protocol using the 

Diffie-Hellman key exchange concept. The main advantage of this protocol was that it 

did not involve member serialization. On the downside, the protocol did not 

efficiently support member join/leave operations and the protocol also involved the 

services of a group controller.  

In Wang and Wu (2006) and Abdel-Hafex, Miri, and Orozco-Barbosa (2004) 

the protocols were based on elliptic curve cryptographic (ECC). Wang et al. (2006) 

used identity-based with bilinear map over the elliptic curves. They used an identity 

tree instead of key tree and divided the large group to several subgroups that each 

subgroup nodes were independently maintained by the Subgroup Controller (SGC). 

Every node could act the subgroup controller.  The task of SGC was just to update the 

identity tree when there was a membership change. The function of session key 

generation and distribution was task of Key Generation Centers (KGCs). The 

drawback as centralized trust mechanism of this protocol presented at KGCs, if every 

node in subgroup was outside range of KGCs. Abdel-Hafex et al. (2004) extended 

authenticated two-party key agreement protocol from LQMSV protocol what was 

proposed by Law, Menezes, Qu, Solinas, and Vanstone (2003) to Group LMQSV 

(GLMQSV). This protocol also involved authentication process that was build-in key 

agreement process without extra communication among member nodes. They used 

logical ring in protocol that lead to problem because, in mobility network, the 

geometric of node do not correspond with logical ring. 

Braid groups what was introduced by Anshel, I.; Anshel M. and Fisher (2001) 

has changed the concept on number theory that widely implemented in cryptographic. 

Several researches proposed public key cryptosystem using braid groups based on the 

hardness of conjugacy problem. The computation cost of braid group can decrease to 

number of permutation on linear algebra rather than number of exponential in 
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traditional protocols. Ko, Lee, Cheon, Han, Kang and Park (2000) has proposed the 

key exchange protocol on braid groups that based on conjugacy problem in Diffie-

Hellman scheme (GDH) used multiply and inverse operations within braid groups, so 

called Ko-Lee problem. The proposed research was different from widely used 

cryptosystems on number of theory, even if there are some similarities in design. Kui 

and Gang (2004) designed protocol on ad hoc networks based on CLIQUES protocol 

with dynamic operation protocol composed of join, leave, merge, partition and refresh 

protocol. They applied braid group cryptographic in their protocol. Most importantly, 

the protocol required that the members be serialized to construct the group key similar 

as GDH protocol. 

Man-in-the-middle attack works on above protocols. The authenticated 

process can resistant to them. Sibert, Dehornoy and Girault (2006) introduced three 

authentication schemes on braid groups. The first of them was a two-pass protocol 

relying on a specific version of the conjugacy search problem, while the two other 

schemes were iterated three-pass protocols based on the conjugacy search problem 

and/or root problem. Shpilrain and Ushakov (2008) offered an authentication scheme 

whose security was based on the apparent hardness of the twisted conjugacy search 

problem.  The suggested parameters were quite large, so that a brute force attack by 

exhausting the key space is not feasible. In current, there is only authentication in 

two-party key agreement using braid groups. Chaturvedi and Lal (2008) proposed 

two-pass authenticated key agreement protocol (AKAP) based on braid groups. They 

used long term private and public key of entities for authentication. 

 

1.3  Concept of Purposed Protocol 
The purposed protocol is developed to prevent single point of failure, to 

reduce computation and communication cost, to satisfy the security requirement and 

to prevent security attack. There are two important techniques in protocol including 

key tree and braid groups. The protocol is designed based on STR protocol for 

reducing the communication cost to constant round. The braid groups is implemented 

for reducing the computation cost to avoid modular exponential operation. Moreover, 

the purposed protocol is researched as contributory key agreement protocol in key 

establishment, the group members compute the group key by themselves. The security 
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requirement is considered in all membership events including join, leave, merge, 

partition, and refreshing. There are two protocols in this research including the group 

key agreement protocol using tree-based braid groups and the extended protocol with 

authentication.  



 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 
There are some definitions and terminology regarding authenticated key 

agreement protocol. A key agreement protocol is a key establishment technique 

whereby a shared secret key is derived by two(or more) parties as a function of 

information contributed, or associated with, each of these, such that no party can 

predetermine the resulting value. A key agreement protocol is contributory if each 

party equally contributes to the key and guarantees its freshness. Let A and B be two 

honest parties i.e. legitimate who execute the steps of a protocol correctly. A key 

agreement protocol is said to provide implicit key authentication (of B to A) if the 

party A is assured that no other party aside from a specially identified second party B 

can possibly learn the value of a particular secret key. A key agreement protocol 

which provides implicit key authentication to both participating parties is called an 

authenticated key agreement protocol (A-KA). A protocol provides key confirmation 

if a party is assured that its peer (or a group thereof) actually has possession or a 

particular secret key. A contributory key agreement protocol provides key integrity if 

a party is assured that its particular secret key is a function of only the individual 

contributions of all protocol parties. In particular, extraneous contribution(s) to the 

group key cannot be tolerated even if it does not afford the attacker(s) with any 

additional knowledge. A protocol is said to have perfect forward secrecy if 

compromise of long-term keys does not compromise past session keys. A protocol is 

said to be vulnerable to known-key attack if compromise of past session keys allows 

either a passive adversary to compromise future session keys, or an active adversary 

to impersonate one of the protocol parties. 
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2.1  Network Security 
 

When discussing network security, three aspects is covered; the services 

required, the potential attacks and the security mechanisms. 

The security services aspect includes the functionality that is required to 

provide a secure networking environment, while the security attacks cover the 

methods that could be employed to break these security services. Finally the security 

mechanisms are the basic building blocks used to provide the security services. 

 

2.1.1  Security Services 

In providing a secure networking environment some or all of the following 

services may be required:  

2.1.1.1  Confidentiality 

To ensure that transmitted information can only be accessed by the 

intended receivers.  

2.1.1.2  Authentication 

To allow the communicating parties to be assured of the others identity. 

2.1.1.3  Integrity 

To ensure that the data has not been altered during transmission. 

2.1.1.4  Non-repudiation 

To ensure that parties can prove the transmission or reception of 

information by another party, i.e. a party cannot falsely deny having received or sent 

certain data. 

2.1.1.5  Availability 

To ensure that the intended network services are available to the 

intended parties when required. Depending on the capabilities of any potential 

attacker different mechanisms may be used to provide the services above. 

 

2.1.2  Security Attacks 

Security attacks can be classified in the following two categories depending on 

the nature of the attacker. 
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2.1.2.1  Passive attacks 

The attacker can only eavesdrop or monitor the network traffic. 

Typically this is the easiest form of attack and can be performed without difficulty in 

many networking environments, e.g. broadcast type networks such as Ethernet and 

wireless networks.  

2.1.2.1  Active attacks 

The attacker is not only able to listen to the transmission but is also able 

to actively alter or obstruct it. 

 

2.1.3  Majority of attacks 

Furthermore depending on the attacker actions, the following subcategories 

can be used to cover the majority of attacks. 

2.1.3.1  Eavesdropping 

This attack is used to gain knowledge of the transmitted data. This is a 

passive attack which is easily performed in many networking environments as 

mentioned above. This attack can easily be prevented by using an encryption scheme 

to protect the transmitted data. 

2.1.3.2  Traffic analysis 

The main goal of this attack is not to gain direct knowledge about the 

transmitted data, but to extract information from the characteristics of the 

transmission, e.g. amount of data transmitted, identity of the communicating nodes 

etc. This information may allow the attacker to deduce sensitive information, e.g. the 

roles of the communicating nodes, their position etc. Unlike the previously described 

attacks this one is more difficult to prevent. 

2.1.3.3  Impersonation 

Here the attacker uses the identity of another node to gain unauthorized 

access to a resource or data. This attack is often used as a prerequisite to 

eavesdropping. By impersonating a legitimate node, the attacker can try to gain access 

to the encryption key used to protect the transmitted data. Once this key is known by 

the attacker, he can successfully perform the eavesdropping attack. 
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2.1.3.4  Modification 

This attack modifies data during the transmission between the 

communicating nodes, implying that the communicating nodes do not share the same 

view of the transmitted data. An example could be when the transmitted data 

represents a financial transaction where the attacker has modified the transactions 

value. 

2.1.3.5  Insertion 

This attack involves an unauthorized party, who inserts new data 

claiming that it originates from a legitimate party. This attack is related to that of 

impersonation. 

2.1.3.6  Replay 

The attacker retransmits data previously transmitted by a legitimate 

node. 

2.1.3.7  Denial of service 

This active attack aims at obstructing or limiting access to a certain 

resource. This resource could be a specific node or services or the whole network. 

 

2.1.4  Security Mechanisms 

Most of the security services previously mentioned can be provided using 

different cryptographic techniques. The following subsections give an overview of 

which techniques are used to provide each of the services. 

2.1.4.1  Confidentiality 

It prevents all but those authorized from having the content of the 

message. There are multiple possibilities to provide confidentiality. They vary from 

physical to mathematical methods. For example the information to be protected, such 

as the key, is stored in a room that can only be accessed by the authorized users. 

Using some encryption algorithms the information can be encrypted so that only the 

user who has the proper keys and knows the algorithms is able to decrypt it. 

Encryption can further be roughly classified into two categories: symmetric key 

encryption and asymmetric key encryption. 
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2.1.4.2  Integrity 

It prevents unauthorized users from altering data. To assure data 

integrity, one must be able to detect any unauthorized manipulation of data, such as 

deletion and insertion. One of the cryptographic approaches to achieve integrity is 

digital signatures. Another possibility is given by hash functions. 

2.1.4.3  Non-repudiation 

It prevents an entity from denying previous actions. In other words, it is 

a method by which the sender of data is provided with proof of delivery and the 

recipient is assured of the sender’s identity, so that neither can later deny having 

processed the data. For example, someone who submits electronic order should not be 

able to deny it later. One of the cryptographic approaches to achieve non-repudiation 

is digital signatures. 

2.1.4.4  Availability 

The service should be available all the time. It must be robust enough to 

tolerate network failures and must be resistant against Denial-of-Service (DoS) 

attacks.  

2.1.4.5  Authentication 

Authentication is classified into two categories: entity authentication 

and data origin authentication. In the first case any party entering into a 

communication session must identify themselves to other participants. In the second 

case, sent data should be authenticated with respect to its content, time of sending, etc. 

 

2.2  Cryptographic 

 

A cryptographic solution to achieve confidentiality is using encryption. An 

encryption function maps a plain text into a chipper text (meaningless data) for given 

key. An encryption scheme is said to be symmetric-key if encrypting key is equal to 

decrypting key, it is computationally easy. Thus two parties wishing to communicate 

securely need to share the key over some secure channel before they can use the 

encryption scheme to communicate over an insecure channel. In contrast, in 

asymmetric-key systems it is infeasible to determine decrypting key from given 

encrypting key. Thus every user in such a system has a key pair both encrypting and 
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decrypting key which is unique to them. This scheme does away with the need for a 

secure channel at any time. While symmetric-key techniques are much faster than 

asymmetric ones, they require the parties to have a pre-shared secret. Thus a common 

solution is to exchange a symmetric key using asymmetric technique. This holds 

particularly true for mobile ad hoc networks as the use of asymmetric-key 

cryptography for securing all communication is practically impossible.  

 

2.2.1  Symmetric Key Encryption 

Symmetric encryption is illustrated in Figure 2.1. The plain text message m is 

encrypted using the shared key k, resulting in the cipher text c. To recover the plain 

text message the cipher text is decrypted using the same key used to for the 

encryption. Symmetric encryption schemes can be used to provide confidentiality, 

integrity and authentication. The non-repudiation can provide, if it uses digital 

signature with Big Brother. The shared key must be distributed over a secure 

communication channel. 

 
Figure 2.1  Symmetric encryption schemes 
 

2.2.2  Asymmetric Key Encryption 

Unlike conventional encryption schemes where the involved parties share a 

common encryption/decryption key, asymmetric key encryption schemes depend on 

the use of two different but mathematically related keys. One of the keys is used for 

encryption and the other for decryption. The asymmetric key encryption scheme is 

illustrated in Figure 2.2. Bob generates a pair of keys, his public/private key pair 

PkBob/SkBob. The public key is related to the private key, but in such a way that the 

private key cannot be derived from it without additional information. 
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If Alice wants to send an encrypted message to Bob, she first needs to obtain 

his public key. As the name implies Bob’s public key does not need to be kept secret, 

however it must be authenticated, i.e. Alice must be assured that the public key she 

believes belongs to Bob is really his. 

Once Alice has Bob’s authentic public key PkBob, she encrypts the plain text 

message m using it. The resulting cipher text c can then only be decrypted using 

Bob’s private key SkBob which only Bob knows. 

 Figure 2.2  Asymmetric key encryption schemes 

 

Compared with symmetric key encryption, asymmetric key encryption has a 

weaker requirement for the communication channel over which the key distribution is 

performed. Asymmetric key encryption only requires an authenticated channel as 

opposed to a secure channel that is required for the distribution of symmetric 

encryption keys. Asymmetric key encryption can also provide non-repudiation along 

with confidentiality, integrity and authentication. However, asymmetric key 

encryption requires much more computational resources than symmetric encryption 

and therefore has much lower performance. Therefore public key encryption is 

typically only used to encrypt small amounts of data, e.g. symmetric encryption keys 

and digital signatures. 

 

2.2.3  Digital Signature 

A digital signature is a data structure that provides proof of origin, i.e. 

authentication and integrity, and depending on how it is used, it can also provide non-

repudiation. Figure 2.3 illustrates how a digital signature is used. Alice wants to send 

a message to Bob, however she doesn’t want it to be modified during transmission 
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and Bob wants to be sure that the message really came from Alice. What Alice does is 

that she computes a hash digest of the message which she encrypts with her private 

key SkAlice. She then sends both the message and the encrypted digest which is here 

signature. Bob can then verify the signature by computing the hash digest of the 

message he received and comparing it with the digest he gets when decrypting the 

signature using Alice’s public key PkAlice. If the digests are equal Bob knows that 

Alice sent the message and that it has not been modified since she signed it. 

 
Figure 2.3  Example of a digital signature 

 

2.2.4  Key Establishment 

Key establishment may be broadly divided into key transport and key 

agreement. A key transport protocol or mechanism is a key establishment technique 

where one party creates or otherwise obtains a secret value, and securely transfers it to 

the other(s). A key agreement protocol or mechanism is a key establishment technique 

in which a shared secret is derived by two (or more) parties as a function of 

information contributed by, or associated with, each of these, (ideally) such that no 

party can predetermine the resulting value. Thus in scenarios, where there is no 

central authority and the task of key generation cannot be assigned to a single (or few) 

participant(s)(as is most often the case in ad hoc networks), key agreement is a good 

alternative to key transport. But more often in a key agreement protocol, it is required 

that a participating member be assured that no other party aside from a specially 

identified party (or parties) may gain access to a particular secret key. Such a protocol 
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is known as an authenticated key agreement protocol. It is worth noting here that the 

term authentication, in this context, means to have the knowledge of the identity of 

parties who may gain access to the key. To corroborate the fact that the same 

identities actually participated in the protocol, one has to rely on other mechanisms 

like entity authentication. Key agreement protocols can be designed using symmetric 

or asymmetric techniques. To further illustrate the above concepts present the two-

party Diffie-Hellman key agreement protocol. 

2.2.4.1  The Diffie-Hellman Key Agreement 

Developed by Diffie and Hellman, this algorithm allows the 

establishment of a cryptographic secret key between two entities by means of data 

exchange through an insecure communication channel. The algorithm executed 

between two entities A and B is defined as follows: 

1)  A and B agree on two randomly chosen numbers p and g, so 

that p is a large prime number and g < p; 

2)  A chooses a secret random number SA and B chooses a 

secret random number SB; 

3)  A computes a public value TA = gSA mod p and B computes 

a public value TB = gSB mod p; 

4)  A sends TA to B and B sends TB to A; 

5)  A computes TB
SA mod p = (gSB)SA mod p and B computes 

TA
SB mod p = (gSA)SB mod p. 

Since (gSA)SB mod p = (gSB)SA  mod p = K, these two entities share a 

secret cryptographic key K.  

In other works, two entities are able to exchange information through a 

channel that anyone can listen to and at the end of the process the two entities, and 

only the two entities, share the same secret key. 

The security of this algorithm is based on the difficulty to calculate the 

secret key K = gSASB mod p, despite of knowing the public values gSA mod p and gSB

This algorithm has a weakness that consists on the lack of 

authentication between the two entities. Even though they are able to establish a secret 

 

mod p, when the prime number p is sufficiently large. 
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key, there is no guarantee that these entities are who they claim to be. This weakness 

is man-in-the-middle attack problem. 

2.2.4.2  Group Key Agreement 

Key agreement protocols for more than two parties are known as Group 

Key Agreement (GKA) protocols. These get a bit involved as the two-party Diffie-

Hellman key agreement does not extend trivially to more than two parties. They are 

well suited to the security needs of small, dynamic, collaborative groups as they offer 

the possibility of creating session keys for each group session, thus adjusting well to 

group membership changes. Key features of a GKA (Group Key Agreement) protocol 

are: 

1)  Contributory 

GKA protocols are contributory in nature which means that all 

members participating in the protocol contribute towards the secret and even in the 

absence of one contribution it is infeasible to derive the secret. 

2)  Lack of a central authority 

There is no single member controlling the execution of the 

protocol. Even if there is some “leader” it is short-lived and restricted to that 

particular execution of the protocol. 

3)  Key Freshness 

The secret key derived cannot be predicted in advance (even by 

one of the protocol participants).  

The key derived from the GKA protocol needs to meet the following 

security features: 

1)  Group key secrecy 

It simply means that the derived secret should not be derivable 

by a non-participant. 

2)  Forward key secrecy 

 Merely knowing one of the current group keys, one should not 

be able to compute previous group keys. 

3)  Backward  key secrecy 

Merely knowing one of the current group keys, one should not 

be able to compute future group keys. 
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4)  Key independence 

Knowledge of a subset of group keys in the life-cycle of a 

group (by a participant or outsider) should not enable knowledge of any key outside 

this subset. 

5)  Perfect forward secrecy 

Knowledge of a long-term secret should not enable one to 

compute past group keys. 

Thus in the context of ad hoc networks, GKA protocols provide a 

mechanism to derive a (symmetric) group key in the absence of a third party. 

 

2.3  Group Key Agreement Protocol 
 

Group Key Agreement protocols find applications in many group applications 

including telephone and video conferences, remote consultation and diagnosis 

systems for medical applications, contract negotiation, multi-party games, 

collaborative work places, electronic commerce environments such as on-line real-

time auctions, and information dissemination of stock quotes. Many GKA protocols 

have been proposed in the literature. While some are only suitable for static groups 

others work in case of certain kinds of groups only (for instance groups with certain 

number of members or groups with the ability to listen to multiple broadcasts in a 

single round). While security flaws have been found in some others. This study 

presents here protocols which work in case of dynamic groups and are very generic in 

their assumptions about the group sizes and dynamics and with no known security 

flaws in them. Each protocol is defined in terms of the following operations: 

• Initial Key Agreement (IKA): This refers to the setup stage when a number 

of new users decide to derive a new group key. 

• Auxiliary Key Agreement (AKA): This refers to the group modification 

procedures (after a group is formed). It is essential that each of these operations lead 

to a change in the group key (to maintain key independence). These operations are: 

Join: One new member wishes to join an already established group. 

Delete: A member leaves (voluntarily or otherwise) a group. 
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Partition: A group is divided into two (or more) smaller groups. It can also be 

viewed as a “Delete” of more than one member. 

Merge: Two (or more) groups get together to form a single group. It can also 

be viewed as a “Join” by more than one member. 

 

2.3.1  The Burmester and Desmedt Protocol 

This protocol was presented by Burmester and Desmedt (1994) and was 

executed in three rounds. Each participant Mi, i ∈ [1, n] executes the following 

operations: 

1)  To generate a secret random value ri

The Hypercube protocol was presented by Becker and Willie (1998) and intent 

to overcome the high number of messages needed by logically arranging the nodes in 

a hypercube. For a network consisting of four nodes positioned as a square, a key is 

established between A and B (i.e. gSaSb), and another key between C and D (i.e. gScSd). 

These keys are used to establish a single key,  ggSaSb·gScSd, among the four entities, as 

presented in Figure 2.4. This behavior can be generalized for higher numbers of 

 and broadcasts Zi = gri mod p to the 

other participants; 

2)  To compute and broadcasts Xi=(Zi+1/Zi-1)ri to the other participants; 

3)  To compute the group key Kn=Zi-1
nri·Xi

n-1·Xi+1
n-2·…·Xi+(n-2)

    

This group key has the form Kn= gr1r2+r2r3+…+rn-1rn mod p and shares the 

security characteristics presented by the Diffie-Hellman algorithm. This protocol is 

efficient with respect to the total number of rounds. This characteristic could allow 

faster execution, but each round requires n simultaneous broadcasts. Simultaneous 

broadcasts are usually not possible, even in wireless networks, because there can be 

only one broadcast message at a given moment. Due to this characteristic, the 

deployment of this protocol must use sequential broadcast messages. Since each 

broadcast message acts like a round, there is no longer a low number of rounds 

advantage. Another disadvantage is that this protocol makes use of a high number of 

exponential operations. 

 

2.3.2  The Hypercube and Octopus Protocols 
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nodes, as long as the number of participants equals 2d

A

B

C

D

gSaSb gScSd

A

B

C

D

(gSaSb)(gScSd)g

, for d ∈ I. This protocol 

executes in d rounds. 

The Octopus protocol is an extension of the Hypercube protocol for networks 

with an arbitrary number of nodes. A subgroup of nodes is arranged in a hypercube, 

composing a core. Each core node establishes a key with each nearby non-core node 

using the Diffie-Hellman protocol. The product of these keys is used to establish a 

key among the core nodes as specified by the Hypercube protocol. This key is then 

distributed to the other nodes. 

 

 
 

Figure 2.4  Hypercube protocol for n = 4 
 

2.3.3  The CLIQUES Protocol Suite 

Developed by Steiner et al. (1998), the CLIQUES protocol suite consists of 

key management protocols for dynamic groups. Two of these protocols, IKA.1 and 

IKA.2 (Initial Key Agreement 1 and 2), are defined for group key establishment. 

Other protocols are specified for member and subgroup addition and exclusion and 

key refresh. The protocols from this suite can provide member authentication, which 

solves the Diffie-Hellman authentication vulnerability. 

2.3.3.1  IKA.1 Protocol 

The IKA.1 protocol executes in two stages: 

1)  Mi  Mi+1 :  

{g
S1S2∙∙∙Si

Sk
 
 | k ∈ [1, i] }, gS1S2∙∙∙Si  

2)  Mn  Mi  :  

{ g
S1S2∙∙∙Sn

Si
  | i ∈ [1, n - 1] }, 

for i ∈ [1, n - 1]. 
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At the first stage contributions are collected from all group members 

throughout n - 1 rounds. Each group member (except the first) receives a data set that 

represents the partial contributions from all the group members that have already 

executed this first stage. The member adds its contribution and sends a new data set to 

the next group member. 

The last group member, Mn, is called the group controller. At the end 

of the first stage it receives a data set whose cardinal value is gS1S2∙∙∙Sn-1  and computes 

the group key Kn= gS1S2∙∙∙Sn. 

At the second stage, the group controller adds its contribution to each 

intermediate value and broadcasts this new data set to every other node in the 

network. Each intermediate value now consists of the contribution of all group 

members except one. In order to compute the group key, each group member Mi 

identifies the appropriate intermediate value (the one that does not contain its 

contribution) and raises it to its contribution Si, obtaining Kn. 

2.3.3.2  IKA.2 Protocol 

The IKA.1 protocol requires i + 1 exponential operations when 

executed by the ith node. In some environments it is desirable to minimize the 

computational effort demanded from each group member. Some examples of these 

environments are groups with a high number of members and groups whose members 

have limited computational capacity. The IKA.2 protocol was proposed in order to 

minimize the demanded computational cost. It is similar to the IKA.1 protocol but is 

executed in four stages: 

1)  Mi  Mi+1 ; i ∈ [1, n - 2] : 

gS1S2∙∙∙Si  

2)  Mn-1  Mi ; i ∈  [1, n - 2] : 

gS1S2∙∙∙Sn-1  

3)  Mi  Mn ; i ∈ [1, n - 1] : 

 g
S1S2∙∙∙Sn-1

Si
  

 

4)  Mn  Mi; i ∈ [1, n - 1] : 

{ g
S1S2∙∙∙Sn

Si
  | i ∈ [1, n - 1] }. 
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At the first stage contributions are collected from the n-2 first group 

members by means of a single message sent from one member to the next that gathers 

all the previous contributions. At the second stage, Mn-1 adds its contribution to the 

received message and broadcasts this new message to the n - 2 first members. At the 

third stage each member factors out its own contribution and sends this result to the 

last group member. At the last stage, Mn collects all the sets from the previous stage, 

raises each one of them to its contribution Sn and broadcasts these results to the other 

group members, allowing them to compute the group key.  

These two protocols have the advantage of requiring a low number of 

messages. The IKA.2 protocol has reduced the number of exponential operations 

required for group key establishment. Unlike the other presented protocols, this 

protocol suite provides mechanisms for group addition and exclusion, making it 

unnecessary to execute the entire key establishment protocol. This characteristic 

reduces the involved costs and provides backward and forward secrecy. 

2.3.3.3  Join Protocol 

To handle a join event, a group controller is needed. It can be any 

member in the group. The group controller has usually higher performance capability 

than other members. Let Mc be the group controller, and let Mi+1 be the potential 

member. In first step, Mc chooses a new random secret exponent Sc. The message 

will be sent by Mc to the new member Mi+1. Mi+1 generates randomly its secret Si+1 

and embeds Si+1 in the message which it then broadcasts to all members in group. 

After running join protocol, all members compute the new group key. 

2.3.3.4  Leave Protocol 

The leave protocol in CLIQUES is relatively simple. It needs only one 

round. Let Mc be group controller, and Ml be the member which leaves the group. 

First, Mc updates its secret Sc. Mc constructs then a broadcast message by embedding 

its new secret. Finally Mc broadcasts the message to the group. After running leave 

protocol, all remaining members compute the new group key. Although the 

contribution Sl is still factored into the new group key, the left member Ml is unable 

to compute the new group key, due to the absence of the subkey  g
ScS1S2∙∙∙Sn

Sl
 
. 
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2.3.4  Tree-based Group Key Agreement (TGDH) Protocol 

TGDH is an adaptation of key trees (Kim et al. 2000;2004) in the context of 

fully distributed, contributory group key agreement. TGDH computes a group key 

derived from the contributions of all group members using binary tree.  

In a TGDH key tree, the node located at level 0, node (0, 0), is the root. The 

height h of a tree equals the shallowest level. A member is associated with a leaf 

node. A non-leaf node is called an internal node with two children. The left child of 

node (l, v) is node (l + 1, 2v), and the right one is node (l + 1, 2v + 1). A node (l, v) is 

associated with a key K(l,v) and the corresponding blinded key BK(l,v)= gK(l,v)  mod p. 

The key K(l,v) can be recursively computed as follows: 

K(l,v)  =   BK(l+1,2v)
K(l+1,2v+1)  mod p 

=   BK(l+1,2v+1)
K(l+1,2v)  mod p 

=   gK(l+1,2v)K(l+1,2v+1)  mod p 

Figure 2.5 gives an example of a key tree of a group with six members. The 

group key for this group is  

K(0,0)= ggS3∙gS1∙S2 ∙gS6∙g
S4∙S5

 mod p, where S1, · · · , S6 are the keys of members 

M1, · · · , M6 

[0,0]

[1,0] [1,1]

[2,1][2,0]

M3

M4M1

[3,1][3,0]

[2,3][2,2]

[3,5][3,4]

M5M2

M6

l = 0

l = 1

l = 2

l = 3

h = 3

respectively. 

 
Figure 2.5  TGDH tree 

 

The overhead of the TGDH protocol depends on many factors, e.g. tree height, 

balance of the key tree, location of insertion points and leaving members. Hence some 
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characteristics can only be estimated for the worst case, and some issues can even not 

be estimated. 

Assume that it has a TGDH tree with n members, there are n − 1 internal 

nodes. Each member must know all blinded keys of all nodes except for the root, and 

all keys along the path from that member node to the root node.   

The rest of this section gives an overview of the protocols setup, join, leave, 

merge and partition, and refresh in TGDH. 

2.3.4.1  Join protocol 

Assume that a new member Mn+1 joins to a group of n members             

{ M1, · · · , Mn }. The new member broadcasts its join-request with its own BKn+1. 

After receiving the join-request, each member in current group determines the 

insertion point. If the tree is fully balanced, the new member joins to the root node. 

Otherwise, the shallowest rightmost leaf node is the insertion point. The reason of 

such selection is to keep the key tree as balanced as possible. 

The tree must be first updated. The sponsor is the shallowest rightmost 

leaf in the subtree rooted at the insertion node. A new intermediate node is created. 

Node at the insertion point becomes the left child of the new intermediate node, and 

the new member becomes the right child. The process of join protocol in TGDH is 

illustrated as follows: 

1)  The new member broadcasts its join-request with its blinded 

key. 

2) Every member updates key tree, removes all keys and 

blinded keys from sponsor to the root node. The sponsor Ms

Figure 2.6 gives an example of a group with three members when a new 

member M

 additionally, updates its 

share, computes then all keys and blinded keys in its key-path, and broadcasts the 

updated tree with all blinded keys. 

3)  Every member computes the group key using new key tree. 

4 joins into this group. Member M3 is selected as the sponsor. Each 

member in the old tree updates the tree by inserting M4 and removes the keys and 

blinded keys in M3’s key-path. The sponsor M3 additionally updates its share and 

computes K(1,1), BK(1,1), and K(0,0), and then broadcasts the updated tree with all 

blinded keys (i.e. BK(2,0), BK(2,1), BK(2,2), BK(2,3), BK(1,0)  and BK(1,1)). Equipped with 
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the broadcast message, M1 and M2 computes the new K(0,0), and M4 computes K(1,1) 

and K(0,0)

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[0,0]+ [0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2

M3

M4

Sponser

M1 M2 M3 M4

Sponser

New intermediate node

. 

 
Figure 2.6  An example of TGDH join 

 

2.3.4.2  Leave Protocol 

The leave protocol is relatively simple. Assume that it has a group of n 

members and member Ml leaves the group. The rightmost leaf node of Ml’s sibling 

subtree is selected as the sponsor. After notification from system about the leave 

event, each remaining member updates its key tree by deleting Ml. The former sibling 

of Md is promoted to replace Md’s parent node. The sponsor must additionally refresh 

keys in its key-path. The process of leave protocol is illustrated as follows: 

1)  Each member removes the leaving member and relevant 

parent node, removes all keys and blinded keys pairs from sponsor to root node. The 

Sponsor Ms additionally, updates its share, computes then all keys and blinded keys in 

its key-path, and broadcasts updated key tree including all blinded keys. 

2)  Every member computes the group key using new key tree. 

Figure 2.7 gives an example of a group of five members when M3 

leaves this group. M5 is selected as the sponsor. The remaining members M1, M2, 

M4, and M5 remove the nodes (2,2) and (1,1). M5 additionally updates its share and 

computes K(1,1), BK(1,1), K(0,0), and then broadcasts the updated tree with all blinded 

keys. Equipped with this broadcast message, M1 and M2 compute new K(0,0),  and M4 

computes K(1,1), and K(0,0). 

 



 

 

27 

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2 M3

M4

Sponser

[3,7][3,6]

M5

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2 M4

Sponser

M5

 
Figure 2.7  An example of TGDH leave 

 

2.3.4.3  Merge Protocol 

Compared to CLIQUES, the main virtue of TGDH is that it is much 

simpler to merge two or more groups. Multiple join can be processed as follows. The 

protocol assumes that m members want to join group G1. The m individual members 

form a TGDH group G2. Then G2 merges with G1. The protocol considers first the 

merge of two groups. It can be simply extended to the merge of more than two 

groups, say k > 2, groups by executing the two-group merge k − 1 times. 

First the two trees are ordered from the highest to lowest, denoted T1 

and T2. If they are of the same height, they are ordered according to some other 

criteria. T2 joins to T1, and the insertion point is determined. If the two trees are of the 

same height, it joins simply T2 to the root node of T1. Otherwise it first tries to find 

the rightmost shallowest node where the join would not increase the overall tree 

height. If no such node exists, the insertion point is the root node. 

Assume that we have m trees to be merged. They can be ordered from 

the highest to the lowest: T1, · · · , Tm. To perform merge, each tree Ti has its 

rightmost shallowest leaf node as sponsor Msi . The process is illustrated as follows: 

1)  Each sponsor Msi in tree Ti updates its share, computes all 

keys and blinded keys in the key-path of Ti (including BK(0,0)), broadcasts updated 

tree Ti including only all blinded keys. For i = 1, 2, · · · , m. Each member 

additionally, updates the key tree and determinates the new sponsors Ms1 , · · · , Msm 

, removes all keys and blinded keys in sponsors’ key-paths. 
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2)  To repeat this step until any sponsor computes group key. 

Each sponsor Msi with 1 ≤ i ≤ m, computes all keys and blinded keys pairs in the key-

path as far as possible, and broadcasts updated tree with all blinded keys. 

3)  Every member computes the group key new key tree. 

An example of the merge of two groups is given in Figure 2.8. Both 

sponsors M5 and M7 first update their shares respectively. Then M5 computes new 

K(1,1), BK(1,1), K(0,0), and BK(0,0)  in tree T5, and M7 computes K(0,0), and BK(0,0) in 

tree T7. Both sponsors M5 and M7 broadcast their updated trees with all blinded keys. 

Each member merges both trees independently, and chooses M2 as the new sponsor. 

All members then remove all keys and blinded keys in M2’s key-path. M2 

additionally updates its share and computes new K(2,1), BK(2,1), K(1,0), BK(1,0), and 

K(0,0). M2 then broadcasts the updated tree with all blinded keys. Equipped with the 

broadcast message, M1 computes K(2,0), K(1,0), and K(0,0). M6 and M7 compute K(1,0), 

and K(0,0). All other members M3, M4, and M5 compute only the new group key 

K(0,0). Since there is only one sponsor for the merge of two groups, M2

2) To repeat this step until any sponsor computes the group 

key. Each sponsor Ms

 knows all 

blinded keys in its co-path so that it is able to compute all keys and blinded keys in its 

key-path. 

2.3.4.4  Partition Protocol 

Assume that it has a group of n members and k of them leave the group. 

In the first round, every remaining member updates its tree by deleting all partitioned 

members as well as their respective parent nodes. In other words, if all leaf nodes of a 

subtree leave the group, the root node of this subtree is marked as leaving (namely the 

whole subtree is marked as leaving) and its leaf nodes are removed from the leaving 

nodes list. For each leaving node it identifies a sponsor using the same criteria as 

described in Section 2.3.4.2. The process of partition protocol is illustrated as follows: 

   1)  Every member updates key tree by deleting all leaving 

member nodes and their parent nodes, removes all keys and blinded keys from 

sponsors to the root node. The shallowest rightmost sponsor additionally updates its 

share. 

i computes all keys and blinded keys in the key-path as far as 

possible, broadcasts updated tree including all blinded keys. 
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3) Every member computes the group key using new key tree 
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[0,0]

[1,0] [1,1]+ Sponser

M6 M7

Tree T5 Tree T7
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M5

M6 M7

[3,3][3,2][3,1][3,0]

New intermediate node

New 
sponser

Merged Tree

 

Figure 2.8  An example of 2-group TGDH merge 

 

An example of TGDH partition is given in Figure 2.9. A group of seven 

members M1, · , M7 is partitioned. From the perspective of M5, members M2, M4, M6 

and M7 leave the group, so M5 is in tree T5 after the partition, the same for M1 and 

M3. However from the perspective of M4, the leaving members are M1, M3, and M5. 

So M4 is in tree T4 after the partition, the same manner is for M2, M6, and M7. 
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Figure 2.9  An example of TGDH partition 

 

2.3.5  STR Protocol 

STR is basically an “extreme” version of TGDH, where the key tree structure 

is completely imbalanced or stretched out. This protocol and its features are described 

in details (Steer et al.,1998; Kim et al, 2001). Like TGDH, the STR protocol uses a 

tree structure that associates the leaves with individual random session contributions 

of the group members. Every internal (non-leaf) node has an associated secret key and 

a public blinded key. The secret key is the result of a Diffie-Hellman key agreement 

between the node’s two children. The group key is the key associated with the root 

node.  

STR uses a key tree to manage the key group. The tree has two types of nodes, 

namely leaf and internal nodes. Each specific group member Mi is associated with a 

leaf node LN i, while an internal node INi has two children: the left child INi−1, and 

the right child LN i. Each leaf node LNi generates randomly a session random si

br

 

which should be kept secretly, and computes the corresponding blinded session 

random 

i = gsi. An internal node INi has a secret key k i and the corresponding public 

blinded key bki = gki. The difference is that ki is not randomly chosen, but the result 

of a two-party DH key exchange between its two children: 
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ki= bki-1
si = bri

ki-1  ≡ gki-1si  mod p, i > 1.     (2.1) 

The internal node with the greatest index is considered to be the root. The 

secret key of the root is the shared group key. For a group of n members, the root is 

INn, and the group key kn can be recursively computed using Equation 2.1. If n = 4, 

its group key is      

             KG= gs4∙gs3∙gs2s1
 mod p. 

Looking at the STR key tree with n members in Figure 2.10, the member Mc, 

1 ≤ i ≤ n, must know its own session random, all blinded keys and blinded session 

random, and keys of the path from its parent node to root node. More formally, it 

must store sc, bri, bk i for i = 1, · · · , n (br1 = bk1), and ki

kn

LN1/M1

kn-1, bkn-1 sn, brn

sn-1, brn-1

s1/k1, br1/bk1

k2, bk2

s2, br2

LN2/M2

IN1

IN2

INn-1

INn

LNn-1/Mn-1

LNn/Mn

 for i = c, · · · , n. The rest of 

this section describes how STR deals with the group operations 

 

 
Figure 2.10  STR tree 

 

2.3.5.1  Join Protocol 

The current group has n members, the new member is identified with 

Mn+1. The tree will be updated by incrementing n = n + 1 and adding a new internal 

node INn with two children: the root node INn−1 of the prior tree Ti on the left and the 

new leaf node LNn on the right. This node becomes the new root node. Figure 2.11 

gives an example of addition of a new member to a group with four members.  
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For simplicity, it uses n in the following to denote the number of group 

members before operation join. To deal with the join operation, the member Mn is 

chosen as the sponsor. The new member Mn+1 broadcasts a join request containing its 

own blinded key bkn+1. All members Mi with 1 ≤ i ≤ n can compute the new group 

key. The sponsor unicasts all blinded keys to Mn+1. Equipped with this message the 

new member can also compute the new group key. 

However this join protocol does not provide key independence since 

knowledge of a previous group key can be used to compute the new group key. To 

remedy the situation, they suggest that the sponsor updates its session random. The 

changed information will then be broadcasted to all members. The process is 

illustrated as follows: 

  1)  The new member broadcasts its own blinded session 

random brn+1. 

  2)  The sponsor Ms(s = n) updates its session random ss and 

brs, computes new kn, bkn, and broadcasts the updated tree with all blinded keys and 

blinded session random. 

3)  Every member Mi updates the tree by inserting Mn+1

• if i = 1, · · · , n − 2, computes kj= brj
kj-1  for j = n − 1, 

, sets     

n = n + 1, and computes the keys: 

• if i = n (new member), computes kn= bkn-1
sn , 

• if i = s (sponsor), computes kn= brn
kn-1 . 

Figure 2.11 shows the example of M5 join the existing group. 

2.3.5.2  Leave Protocol 

Like in CLIQUES, the leave protocol in STR is relatively simple, only 

one round is needed. Suppose it has a group of n members and the member Ml with   

1 ≤ l ≤ n leaves the group. Again it needs a sponsor Ms to update its session random. 

If l > 1, the sponsor is the leaf node directly below the leaving member, i.e. Ml−1, 

otherwise the sponsor is M2. Since the tree will be updated and renumbered (see 

below), if M1 leaves the group, the sponsor is also M1 after renumbering. 
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Figure 2.11  An example of STR join 

 

After notification of the leave event from the group communication 

system, each remaining member updates the key tree by deleting the nodes LN l and 

INl, and then renumbers the nodes above Ml. The process is illustrated as follows: 

 1)  Every member updates the tree by removing the leaving 

member Ml, sets n = n − 1. 

2)  The sponsor Ms additionally updates its session random ss 

and brs, computes kn and k i and bki, ∀i ∈ [max(2, s), n − 1], and broadcasts the 

updated tree with all blinded keys and brs. 

3)  Every member Mi, computes the group key. 

Figure 2.12 gives an example of the exclusion of a member from a 

group of four members. 

2.3.5.3  Merge Protocol 

The key tree allows relatively simple merge of two groups. The merge 

protocol covers also the multiple join.  

The smaller group is merged onto the larger one, i.e. to place a smaller 

key tree directly on top of the larger one. If group sizes are equal, it can order them 

according to some other criteria. A new intermediate node N with two children is 

created. The root of the larger tree becomes the left child of N, while the lowest-

numbered leaf of the smaller trees becomes the right child of N. The root of smaller 

tree becomes the root of the new tree. 
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Figure 2.12  An example of STR leave 

 

It needs a sponsor for each group, the same as in join protocol, the 

topmost leaf node is selected as sponsor. Both sponsors exchange key their respective 

key trees containing all blinded keys in the first round, the sponsor of the larger key 

tree becomes then the new sponsor in round 2. The new sponsor updates first its 

session random, and then computes all key and blinded key pair up to the new root 

node. It then broadcasts the new tree with all blinded keys and blinded session 

random. 

Figure 2.13 gives an example of the merge of two groups, with three 

and two members respectively. 

Assume It has two trees, the larger one T1 with n1 members, and the 

less one T2 with n2 members. The sponsors of both trees are denoted by Ms1 and Ms2 

respectively. The process to merge two groups is illustrated as follows: 

 1)  Both sponsors Ms1 and Ms2 exchange T1 and T2 with all 

blinded keys and blinded session random respectively 

2)  The sponsor Ms (formerly Ms1) updates its session random, 

computes (ki, bk i), i = n1 − 1, · · · , n1 + n2 − 1 , and  kn1+n2 , and broadcasts the 

updated tree with all blinded keys. 

3) Every member Mi computes the group key. 
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Figure 2.13  An example of STR merge 

 

The merge protocol provides backward secrecy since all members are 

only given blinded keys of the other groups. However, the merge protocol does not 

provide key independence, since knowledge of a group key of tree T1 used before 

merge can be used to compute the group key used after the merge. This problem will 

be remedied, if the sponsor in the second round updates its session random. 

2.3.5.4  Partition Protocol 

The partition protocol is similar to the leave protocol. The only 

difference is the choice of the sponsor. They usually choose the surviving leaf node 

directly below the lowest-numbered leaving member. If no such leaf node exists, in 

other words, if M1 leaves the group, they choose the lowest-numbered surviving leaf 

node as sponsor. An example is given in Figure 2.14. 

Suppose there are a group of n members when p of them leave the 

group. The process is illustrated as follows: 

 1)  Every member updates the tree by removing the leaving 

members, sets n = n − p. 

2)  The sponsor Ms additionally updates its session random ss 

and the blinded one brs, computes new kn, and (ki, bki), ∀i ∈ [max(2, s), n − 1], and 

broadcasts the updated tree with all blinded keys and its new blinded session random. 

3)  Every member Mi computes the group key. 
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Figure 2.14  An example of STR partition 

 

2.4  Authenticated Group Key Agreement Protocol 
  

2.4.1  Authenticated Group Deffie-Hellman Protocol (A-GDH) 

 The Authenticated group Deffie-Hellman protocol is proposed by Ateniese et 

al. (2000). The extended the solution from GDH (Steiner et al., 1998). The implicit 

key authentication is implemented in the protocol. The member Mn shares a distinct 

secret Kin, where Kin =  F(𝛼𝛼a
xi⋅  xn mod p)1T with i ∈ [1, n – 1]. xi is long term secret key 

that selected by every members. The summary protocol is discussed as follows. 

Round i   

  Mi  Mi+1 :  

{ g
S1S2∙∙∙Si

Sk
 
 | k ∈ [1, i] }, gS1S2∙∙∙Si 

Round n  

Mn  Mi  :  

{ g
S1S2∙∙∙Sn

Si
 Kin  | i ∈ [1, n - 1] }, 

for i ∈ [1, n - 1]. 

 Every member computes shared key from g�
S1S2∙∙∙Sn

Si
 Kin�Kin

-1.Si
1T = gS1S2∙∙∙Sn 

1T. 
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2.5  Key agreement based on Braid Group 
 

The computational security of braid groups is based on the difficulty of 

solving conjugacy and commutator equations in suitably chosen groups. They observe 

that braid groups are a particularly promising class of groups for the construction of 

such protocols due to results from Birman, Ko and Lee (1998). This observation was 

taken up by Ko et al. (2000) who specifies a Diffie-Hellman type key agreement 

protocol employing commuting one-way functions on braid groups. Some braid group 

based key agreement protocols were designed in last five years. They gave a 

specialized version of key agreement protocol based on conjugacy problem. Anshel et 

al. (2001) put up with their commutator key agreement protocol in the following year. 

Lee et al. (2006) extend two-party key agreement from Ko et al. (2000) to be the group 

key agreement on braid group based on the hardness Ko-Lee problem and Cliques. They 

extended protocol to authenticated group key agreement. Kui et al. (2004) designed the 

group key agreement based on braid group and Diffie-Hellman key exchanges protocol 

with dynamic operation protocol including join, leave, merge, partition and refresh 

protocols. 

 

2.5.1  Preliminaries of Braid Group 

The braid groups were first systematically proposed by Emil Artin. He introduced 

the Artin generators σ1, σ2, …, σn-1 for the n strand braid groups what is denoted as Bn. 

The integer n is called the braid index and each element of Bn is called an n-braid. The Bn 

is a collection of disjoint n strings. A general n-braid is constructed by iteratively applying 

the σi (i = 1,.., n-1) operator, which switches the lower endpoints of the ith and (i+1)th 

strings keeping the upper endpoints fixed with the (i+1)th string brought above the ith 

string. If the (i+1)th string passes below the ith string, it is denoted as σi
-1. Any n-braid can 

be expressed as a braid word, e.g., σ3σ2σ1
-1σ2

-1 is a braid word, a in Figure 2.15, in 

the braid group B4. The inverse of braid word is constructed by reversing each crossing 

sequentially. For example is shown in Figure 2.15, b = σ1
-1σ3

-1σ2
-1 and  b-1 = 

σ2σ3σ2
 and  The multiplication of two braids word, ab, is the braid achieved by 

positioning b on the bottom of a. The identity is braid is not intertwining strings. 
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i j j i i 

σi σi+1 σi = σi+1 σi σi+1 

… … 

i 

σi σj =σj σi  

 

 
Figure 2.15  Definition of braid groups 

  

The relation of n-braid groups Bn

1) σ

 are as follows and shown in Figure 2.16: 

i σj  = σj σi 

2) σ

 where | i - j | ≥ 2 

i σi+1 σi  = σi+1 σi σ

 

i+1 

 

 

 

 

Figure 2.16  The relation of braid groups 

 

Product operation and inverse operation can be done in O(|w|n) (Cha, Ko, Lee, 

Han and Cheon, 2001) where w is the maximum of canonical lengths and n is the 

braid index. The implementation speed of public-key cryptosystem based on braid 

groups is much faster than that of ECC and RSA.  

 

2.5.2  Hard Problem in the Braid Groups  

The following section explains braid groups in generalized conjugacy search 

problem (Kim et al., 2004) that is applied to this protocols in order to increasing strength 
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of key. The problem say that x and y are conjugate if there is element a such that y = a x a-

1 for m < n, Bm can be considered as a subgroup of Bn generated by σ1, σ2, …, σn-1. 

Instance: ( x, y) ∈ Bn × Bn such that y = a x a-1 for some a ∈ Bn. 

Objective: Find b ∈ Bm such that y = b x b-1 for m ≤ n.   

Therefore it can conclude that x and y are conjugate. It is easy to compute y 

when known a and x but the attacks need exponential time to compute b from b x b-

1 when known x and y. 

They consider two subgroups Bl and Br of Bl+r. The Bl and Br are made by 

braiding left l strand and right r strand among l+r strand respectively. The cumulative 

property for any a ∈ Bl  and b ∈ Br is ab = ba. The adequately complicated (l+r)-braid is 

selected as x ∈ Bl+r. Thus the one-way function is shown as follows:  

f : Bl × Bl+r  Bl+ r × Bl+r ,   f(a,x) = (a x a-1, x)            

(2.2) 

The function is simply to calculate a x a-1 for given a and x but need exponential 

time to compute a from the information. This one-way function is based on the 

generalized conjugacy search problem. 

 

2.5.3  Two-party Key Agreement on Braid Groups 

There are two types of Two-party key agreement on braid groups. One of them 

is called Commutator Key Agreement Protocol, presented by Anshel et al (2001), 

based on combinatorial groups and conjugacy problems. This protocol is not Diffie-

Hellman type key agreement protocol.  

Ko et al. (2000) proposed a new Diffie-Hellman type key agreement protocol 

on braid groups based on the hardness of so called Ko-Lee problem. The foundation 

of this protocol is quite different from widely used protocols on number theory, 

though there are some similarities in design. This key agreement protocol works as 

follows: 

  2.5.3.1  Preparation Step 

  Suppose A and B want to share a common secret key. An appropriate 

pair of integers (l, r) and a sufficiently complicated (l + r)-braid α ∈ Bl+r is selected 

and published. 
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 2.5.3.2  Key agreement Scheme 

1)  A chooses a random secret braid r1 ∈ LBl and sends y1= 

    r1α r1
-1 to B. 

2)  B chooses a random secret braid r2 ∈ RBr and sends y2= 

    r2α r2
-1 to A. 

3)  A receives y2 and computes the shared key k = r1y2 r1
-1. 

4)  B receives y1 and computes the shared key k = r2y1 r2
-1. 

Since r1 ∈ LBl and r2 ∈ RBr ; r1r2 = r2r1. This implies k = r1y2 r1
-1 = 

r2y1 r2
-1. Therefore A and B obtain the common secret k. 

 

2.5.4  Multiparty Key Agreement on Braid Groupss 

Lee et al. (2006) extended above two-party key agreement protocol to the 

group key agreement protocol by using IKA.1 (GDH.2) structure. 

Consider n subgroups Bl1, Bl2 , . . . , Bln of l-braid group Bl where                      

l = l1+l2+ . . . +ln for some appropriate integers l1, l2, . . . , ln. Each Bli is the subgroup 

of Bl consisting of braids made by braiding li groups from the left among l-strands 

with the order l1, l2, . . . , ln. For any rm ∈ Blm and rn ∈ Bln with m ≠ n, rmrn = rnrm. 

Let        α ∈ Bl be a sufficiently complicated l-braid. Supposing {Mi | i = 1, . . . , n } 

is the set of members wishing to share a key. The shared group key is constructed by 

performing the following steps. 

Round i, i ∈ [1, n - 1]: 

Mi selects a random ri ∈ Bli , Mi  Mi+1: 

   { ri…r^
j… r1α r1

-1…r^
j
-1…ri

-1 | j = 1,2, …, i } and 

   ri…rj… r1α r1
-1…rj

-1…ri
-1 

where r^
j means that rj does not exist. 

Round n: 

Mn selects a random rn ∈ Bln, Mn  Mi, i ∈ [1, n- 1]: 

{ rn…r^
i… r1α r1

-1…r^
i
-1…rn

-1 }. 

The group key is obtained as rn… r1α r1
-1… rn

-1. 
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2.6  Conceptual Model of Purposed Protocol 

 

2.6.1  Network Assumption 

The communication model, the protocol considers group-oriented 

communication so called many-to-many communication as shown in Figure 2.17; that 

is, messages are addressed to all the members. For the ease of presentation, in this 

section, the protocol assumes that all nodes in ad hoc networks are members of a 

group. In next section, the study discusses how this scheme can be extended for 

networks where not all nodes are members of a group. For that group-wide symmetric 

key is used to encrypt group broadcast message. Note that using pairwise shared keys 

for securing group communication does not improve security in comparison to a 

scheme based on group keys. This is because under both schemes an adversary only 

needs to compromise one node to obtain the group data; moreover, if pairwise keys 

are used for securing group data, a node will have to perform decrypting and re-

encrypting for the data packets it is forwarding.  

The protocol assume that the resources of a node, such as power, computation 

and communication capacity, and storage are relatively constrained; thus a node 

neither can afford public-key operation nor has space for storing pre-deployed 

pairwise shared keys for all the nodes in the network. However, the protocol assumes 

that every node has space for storing key tree and computation capacity for computing 

product and inverse operation. 

 
Figure 2.17  Many-to-many Communication 
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Once a group is formed, it is ready to be used by other applications. However, 

in a dynamic group, the views of the underlying group communication system are 

dynamic. Hence initial group key agreement is only one part. A comprehensive group 

key agreement scheme must also be able to handle adjustments to group secrets 

subsequent to all membership change operations in the underlying group 

communication system. All member operations taking place in this phase can be 

further classified into two types, addition and exclusion of members. Additive events 

include addition of single and multiple members, while exclusion events include 

deletion of single and multiple members. 

 

2.6.2  Network with Non-member Nodes 

Multi-hop communications are another possibility in mobile ad hoc networks. 

Two devices that are mutually unreachable can communicate as long as there is at 

least one chain of devices that is reachable by both. Multi-hop ad hoc network can be 

useful consists of several devices, static or dynamic movement, where the devices 

communication range is extended by using other devices as simple repeaters. It means 

one or several non-member nodes may be involved in forwarding data packet for 

group members that are not directly neighboring as shown in Figure 2.18.  Although 

non-member nodes are involved in forwarding the messages for member nodes, they 

cannot decrypt the message. 

 

2.6.3  Security Assumptions and Attack Models 

The security assumptions and attack models is discussed as follows. 

2.6.3.1  There is no single member controlling the execution of the 

protocol but there is some “leader” it is short-lived and restricted to that particular 

execution of the protocol.  

2.6.3.2  The contributory group key management requires each group 

member to contribute an equal share to the common group key (which is then 

computed as a function of all members’ contributions). This avoids the problems with 

the centralized trust and the single point of failure. 
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Figure 2.18  Multi-hop Communication with Non-member Nodes 

 

2.6.3.3  If the group memberships are not changed, protocol have to 

refresh the key periodically, There are two main reasons, one is to limit exposure due 

to loss of group session keys, the other is to limit the amount of ciphertext available to 

cryptanalysis for a given group session key. This makes it important for the key 

refresh protocol not to violate key independence. Additionally, note that the loss of a 

member’s key share can result in the disclosure of all the session keys to which the 

member has contributed with this share.  

2.6.3.4  The solution did not distinguish between an attacker and a 

compromised node, because the protocol assume that an attacker can obtain all the 

information stored in a compromised node. Since wireless communication is 

broadcast-base, assumed that an adversary can eavesdrop on all traffic, inject packets, 

and replay older packets. Since it is assumed that an adversary can take full control of 

compromised nodes, an adversary may command compromised nodes to drop off alter 

messages they are forwarding. 
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2.6.4  Security Properties  

The key derived from the group key agreement protocol needs to meet the 

following security features: 

2.6.4.1  Group key secrecy: It simply means that the derived secret 

should not be derivable by a non-participant. 

2.6.4.2  Forward key secrecy: Merely knowing one of the current 

group keys, one should not be able to compute previous group keys. 

2.6.4.3.  Backward key secrecy: Merely knowing one of the current 

group keys, one should not be able to compute future group keys. 

2.6.4.4  Key independence: Knowledge of a subset of group keys in the 

life-cycle of a group (by a participant or outsider) should not enable knowledge of any 

key outside this subset. 

2.6.4.5  Perfect forward secrecy: Knowledge of a long-term secret key 

should not enable one to compute past group keys. 

 

2.6.5  Contributory Group Key Agreement 

The protocol designed as contributory group key management that requires 

each group member to contribute an equal share to the common group key (which is 

then computed as a function of all members’ contributions). This avoids the problems 

with the centralized trust and the single point of failure since mobile ad hoc networks 

are dynamic topology lead to centralized trust cannot away available.  

 

2.6.6  Tree-based Protocol 

To use tree-based contributory group key agreement schemes in this research 

because is better than other techniques in literature such as CLIQUE. The secret keys 

are organized in logical tree structure, referred to as the key tree show in Figure 2.19. 

In the key tree, the root node represents the group key, leaf node represent members’ 

private keys, and each intermediate node corresponds to a subgroup key shared by all 

the members (leaf node) under this node, The key of each non-leaf node is generated 

by performing two-party braid group key exchange between the two subgroup 

represented by its two children. 
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As a part of protocol, a group member can take on a special sponsor role 

which involves computing intermediate keys and broadcasting to the group. Each 

broadcasted message contains the key tree known to source. Any member in the group 

can unilaterally take on this responsibility, depending on the type of event. 

In case of an additive change (join or merge), all group members identify a 

unique director. This director is responsible for updating its secret key share, 

computing affected key and blinded key pairs and broadcasting all blinded keys of the 

new tree to the rest of the group. In response to a subtractive membership change 

(leave or partition), all members update the tree in the same manner. Group partition 

results in a smaller tree since some leaf nodes disappear. As a result, some subtrees 

acquire new siblings; therefore, new intermediate keys and blinded keys must be 

computed between the new siblings subtrees.   
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Figure 2.19  Key Tree 

 

2.6.7  Membership Event 

A group key agreement will be designed for providing key adjustment 

protocols stemming from membership changes. The protocol includes in support of 

the following functions: 

 Join:  a new member is added to the group 

 Leave: a member is removed from the group 

 Merge: a group is merged with the current group 

 Partition: a subset of members is split from the group 

 Key refresh: the group key is updated 
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2.6.8  Authentication 

In the Diffie-Hellman (DH) scheme, the communication parties at both sides 

exchange some public information and generate a common session key. Several 

enhanced DH schemes have been proposed to counter the man-in-the-middle attack. 

Then authentication is technique to allow the communicating parties to be assured of 

the others identity for solve man-in-the-middle attack problem. Then, the protocol 

have long term secret key for authentication purpose and random secret key for 

generating shared key in group communication. 

 

2.5.9  Braid Group Cryptographic 

Many group key agreement protocols have been designed for ad hoc networks. 

They are all constructed based on generalized Diffie-Hellman key exchange protocol. 

All these protocols are using modular exponential operation, which itself is 

inefficiency. Therefore my protocol designed to avoid modular exponential operations 

since limited computing capability in mobile devices. The braid group based key 

agreement protocols into ad hoc networks are introduced to mobile ad hoc networks. 

Moreover, the required computational processes in braid groups techniques are much 

faster than elliptic curve cryptographic technique because of using just product and 

inverse operation by avoiding modular exponential operation. 

 

2.6.10  Complexity Analysis 

Above the study has discussed the security properties of group key agreement 

schemes. Important is also their complexity, namely performance costs. Sometimes 

trade-off between complexity and security is required, so that the schemes are suitable 

to particular environments. Two of the most important criteria are computation costs 

and communication costs. 

2.6.10.1  Computation Costs  

To achieve exact computational costs is impossible and also 

impracticable. Different implementations of an identical group key agreement scheme 

bring different results. Even the same implementation cannot guarantee same result in 

different environments. 
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However, the protocol can estimate the computation costs by 

identifying the expensive and time-critical operations. The protocol can ignore the 

concrete operation time, and only compare the number of such operations. Some 

computations can be pre-performed before protocol run or computed when the system 

is idle. Hence only the operations which have to be performed iteratively should be 

considered.  

2.6.10.2  Communication Costs 

The communication costs of a group key agreement depend clearly on 

the topology and properties of the network and the group communication system 

used. The critical aspects are primarily latency and bandwidth. Additionally the 

communication costs are implementation-dependent. Hence to achieve fixed 

communication costs is impracticable. However, the protocol can estimate them by 

considering the following costs. 

1)  Number of rounds: this affects serial communication delay. 

As the number of rounds grows, the communication delay and the probability of 

message loss or corruption are increased. 

2)  Total number of messages: as the number of messages 

grows, the probability of message loss or corruption, and the delay are increased. 

3)  Number of broadcasts and unicasts: a broadcast operation is 

much more expensive than a unicast one, since it requires much more 

acknowledgments with the group communication system. The number of broadcasts 

should be minimized. 



 

 

CHAPTER 3 

 

GROUP KEY AGREEMENT USING 

TREE-BASED BRAID GROUPS 

 

The most of existing group key agreement protocols are based on Diffie-Hellman 

protocol. The researchers attempted to decrease the number of communication rounds for 

group members. My protocol is designed based on braid groups cryptographic, Ko-Lee 

Problem (Ko et al., 2000) in order to reduce computation to linear algebra and based on 

tree-based group key agreement (Steer, 1988) in order to decrease the number of 

communication rounds to constant. The protocol is also based on generalized conjugacy 

search problem that is mentioned in section 2.4.2.  Moreover, the protocol is designed 

with considering the security requirement including group key secrecy, forward secrecy, 

backward secrecy, and key independent. The protocol is proposed as contributory group 

key agreement that requires each group member to contribute an equal share to the 

common group key, i.e. the group key computed as a function of all members’ 

contributions. This avoids the problems with the centralized trust and the single point 

of failure. The protocol is considered to limit computing, storage and power capacities in 

ad hoc network. We describe these techniques in following sections. The notations in 

protocol are denoted as follows: 

n 

m 

i , p, r, d 

M

s
i 

h 

i 

T  

T

K

* 

BK
[h, v] 

[h, v]

number of protocol participants (group members) 

   

number of merging members 

indices of group members 

ith

session random key of M

 group member; i ∈ {1, 2, · · · , n} 

i from subgroups (Bgi
) of Bg

height of tree 

  

key tree 

tree after membership operation 

secret key at [h, v] node 

blinded key at [h, v] node 
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 [h, v]   vth node at level h in a tree 

 
3.1  Key Tree Notation 

 

Key tree is earliest proposed by Wallner, Harder and Agee (1999) and emerged 

in group key agreement by Kim et al. (2000;2004) in TGDH protocols and Steer et al. 

(1998) in STR protocol. The tree structure is widely implemented to decrease the 

communication, computation and storage overhead. The number of communication 

rounds to form the group key can be reduced to the logarithm of the group size. The braid 

groups cannot implement with balanced key tree as TGDH protocol, because limitation of 

braid groups operations and properties. Therefore key tree in this research is based on 

unbalanced key tree similar to STR protocol. Key tree is implemented in protocol 

according to be suitable solution for contributory group key agreement in MANET 

because it does not require that the members are be serialized or structured in order to 

compute the group. The following section describes the notation and definition of key 

tree. A sample of key tree based on STR is shown in Figure 3.1. The binary tree, every 

node is either a leaf or a parent of two nodes, is used in key tree. Each node is represented 

as [h,v] what is associated with a secret key K[h, v] and a blinded key BK[h, v]. The blinded 

key is calculated as f(K[h, v]) where function f ( ) is braid groups key exchange what 

describe in next section. The members are located at the leaf node. The information of 

each intermediate node, key and blinded key, is computed from the information of two 

children nodes to achieve the subgroup key. The leaf node Mi, where 1 ≤ i ≤ n, knows 

every key along the path from node Mi to root node, this path is called the key-path. In 

Figure 3.1, M1  knows every key  { K[3,0] , K[2, 0] ] , K[1, 0] ] , K[0, 0] } in key-path { [3,0], 

[2,0], [1,0], [0,0] }. The co-path is the set of sibling nodes of each node in the key-path of 

a member Mi. The sample in Figure 3.1, the co-path of M1 is set of node { [3,1], [2,1], 

[1,1] }. The group secret key is key at the root node, K[0, 0], what can be computed from 

all blind keys on the co-path and session random K[h, v] of  

 

a computing node (member). 
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Figure 3.1  Notation of key tree 

 

3.2  Braid Groups Key Exchange  

  

The protocol supposes n subgroups (members)  Bg1
, Bg2

, …  , Bgn
 of g-braid 

groups Bg where g = g1 + g2+ . . . + gn . Bg consists of braids made by braiding g i 

groups from the left with the order g1, g2, . . . , gn. The braid index of each subgroup, 

gi, R is not necessarily the same. For any braids sl ∈ Bgl and sm ∈ Bgm with l ≠ m, slsm  

= smsl

The β

. The properties of braid groups are applied in this key exchange protocol as 

follows. 

[h,v] ∈ Bq, where Bq ⊆ Bg, be a sufficiently complicated braid are 

selected and published. Each member selects β[h,v] and publishes as public braid word 

at the leaf node. The β[h,v]  at intermediate nodes (parent node) including root node is 

equal to β[h+1,2v]β[h+1,2v+1]. Supposing n members need to share a key. Each member 

selects the secret key from own braid groups. The blinded key BK[h,v] is generated by 

f(K[h,v]) which is equal K[h,v]β[h-1,v]K[h,v]
-1 . Therefore key at intermediate nodes K[h, v] 

    K

are 

computed as follows:  

[h, v]

= K[h+1,2v]K[h+1,2v+1]β[h,v]
K[h+1,2v+1]

-1 K[h+1,2v]
-1  or  

 = K[h+1,2v]BK[h+1,2v+1]K[h+1,2v]
-1   

   K[h, v] = K[h+1,2v+1]BK[h+1,2v]K[h+1,2v+1]
-1  

[0,0] 

[1,0] [1,1] 

[2,0] [2,1] 

[3,0] [3,1] 

M1 M2 

M3 

M4 
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=  K[h+1,2v+1]K[h+1,2v]β[h,v]
K[h+1,2v]

-1 K[h+1,2v+1]
-1  

 where, for the leaf nodes (members), 

K[h+1, 2v] ∈ Bgl and K[h+1, 2v+1] ∈ Bgm

which have the property 

 with l ≠ m,  

K[h+1, 2v] K[h+1, 2v+1] = K[h+1, 2v+1] K[h+1, 2v]

The conclusion of recursive equation is shown as follows: 

.  

Base step : for [h,v] which is leaf node, 

K[h, v]  =  s

where

[h, v]   

  s[h, v] 

BK

is session random key of member at leaf node [h,v] 

[h, v]   

where  β

=  s[h,v]β[h-1,0]s[h,v]
-1  

[h-1, 0]  = β[h,0]β

Recursive step : for [h,v] which is an intermediate node 

[h, 1] 

K[h, v]

K

   =  K[h+1,2v]BK[h+1,2v+1]K[h+1,2v]
-1   or 

[h, v]

BK

   =  K[h+1,2v+1]BK[h+1,2v]K[h+1,2v+1]
-1  and 

[h, v]

The key generating at [h, v] requires the information composed of key of one 

child and blinded key of another child. The root key is group secret key that is shared by 

all current members. A group key can be computed from each member’s secret key and 

all blind keys on the co-path to the root.   

 =  K[h,v]β[h-1,v]K[h,v]
-1  

An example is shown that all member nodes achieve the same group key in 

contributory manner. The leaf nodes as A, B and C are labeled for ease to understand as 

shown in Figure 3.2. Assume each leaf node (member node) select own random secret 

braid, A select a ∈ Ba , B select b∈ Bb and C select c ∈ Bc. The Ba, Bb and Bc 

ab = ba  and   

are 

different braid groups, then yield  

a-1b-1 = b-1a-1.  
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Furthermore,   

abc = cba   and  

a-1b-1 c-1 = c-1b-1a
 

-1 

 

Figure 3.2  The example group key generating 

 

Each member can generate the group key KABC 

 A’s view : K

in contributory manner by 

recursive equation to achieve as follows:  

ABC  =  a b βAB b-1 a-1 c βABC c-1 a b βAB
-1  b-1 a-1

 B’s view : K

  

ABC  =  b a β  AB a-1 b-1 c β  ABC c-1 b a βAB
-1  a-1 b

 C’s view : K

-1 

ABC  =  c a b β  AB b-1 a-1 β  ABC a b βAB
-1  b-1 a-1 c-1

The braid sequences of root key at each node view, that shown as Figure 3.3 are 

equal in each subgroup to imply as same braid. The solution that explained above can 

conclude that braid group can be applied in key tree. Therefore root key that is generated 

by each member node can be session group key.  

      

 

ABC 

AB C 

A B 

BKA = a βAB a-1
 

 KA   = a 
 

BKB = b βAB b-1
 

KB    = b 
 

BKC = c βABC c-1
 

KC    = c 
 
 

    KABC   =  KAB c βABC c-1
 KAB

-1
 
      * , ** 

              =  c KAB βABC KAB
-1

 c-1      *** 
   βABC    = βAβBβC 
 
 
 

   KAB     =  a BKB a-1        * 
             =  a b βAB  b-1a-1   * 

             =  b BKA  b-1          
 
**

 

             =  b a βAB  a-1b-1  **  
   BKAB = KAB βABC KAB

-1   
   βAB     = βAβB 
 
 *      =  A’s perspective 

**    =  B’s perspective 
***  =  C’s perspective 
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Figure 3.3  Braid Permutation Sequence of each Perspective 

 

3.3  Group Key Agreement on Tree-based Braid Groups (TBG) 

  

The key tree scheme in this research based on STR protocol (Steer et al.,1998) 

that each node can compute each intermediate key from own secret key and blinded keys 

of the co-path nodes, therefore the member at leaf node can compute all keys on the key-

path. This instance shows that the member needs not to know all blinded keys for 

generating the group key but knowing the all blinded keys of each member is provided 

for membership change to be more efficient and robust.  

The most of past researches were designed based on position of member in key 

tree. The scheme may be multi-hop communication between new member and the leader 

of current group. In other words, some instance new member may contact with the leader 

that is longest distance comparing with other current members. The communication time 

between new member and leader is longest. Therefore, in proposed protocols, join and 

merge event use maximum signal strength for communication in shortest range between 

new member and leader. The leader in this research is called as “director”, therefore the 

director is assigned momentary dynamic event in order to avoid the single point of failure 

on existing director. The signal strength achieves from embedded hardware in mobile 
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device such as 802.11b/g. This technique can reduce communication time and transfer 

information from new member to director as fast as possible. 

The following section describes the protocol that constructs the group key 

management.  The protocol includes the following operations: 

 (1)  Join 

Join occurs when a potential member wishes to join in an existing group for 

some reason, such as to share document, to join a conference. The member addition is 

always performed multi-laterally or, at least, mutually.  

(2)  Leave 

Leave occurs when a member wishes to leave the group, or is forced to leave 

the group. In the former case, member deletion is mutual, while in the later case 

unilateral. There may be various reasons for a member to be forced to leave a group, 

such as involuntary disconnect or forced exclusion. A group key agreement scheme 

does not need to bother about reasons. It leaves the underlying group communication 

system to handle it. However, it must adjust the group key on this change. 

(3)  Merge 

 Another existing group wishes to merge into the current group to form a 

super-group. The merge of more than two groups can be considered to be subsequent 

merging of two groups. All members have the same view after group merge is 

handled. Correspondingly, a group merge can be either voluntary or involuntary with 

reasons including the network fault heal and explicit merge.  The network fault heal 

occurs when a network event causes previously disconnected network partitions 

reconnect. Consequently, all groups formed after partition are merged into a single 

group. Otherwise, the explicit (application-driven) merge occurs when the application 

decides to merge multiple pre-existing groups into a single group. 

 Due to the properties of ad hoc networks, network failures and network fault 

heals are both common and expected. Hence dealing with group partitions and merges 

is a crucial component of group key agreement for ad hoc networks. 

(4)  Partition 

Partition occurs when a subset of members request to split from the current group. 

Group partition can be considered of having multiple leaves, subgroup leave and 
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combination between multiple (or single) leaves and to form sub-groups of remaining 

members. First, the multiple leaves occurs when multiple members leave the group 

without forming own subgroup. Second, the subgroup leave occurs when all members 

leave the group and form own subgroup. After group partition, member’s group view 

is relative to the subgroup it belongs to. For example, there is a group G consisting of 

six members M1, M2, M3, M4, M5, and M6. Now the group G is split into two smaller 

groups: group G1 with members M1, M3, M5, and group G2 with members M2, M4, 

and M6. All members in G1 see M2, M4, and M6 as leaving members, while all 

members in G2 see M1, M3, and M5 as leaving members. Third, the partition occurs 

when some member leaves the group causes split the remaining members into form sub-

groups. For example similar to second scheme, M3 and M4 leave from the group, and 

then the remaining members are M1, M2, M5, and M6. The M3 and M4 leaving from 

the group cause the remaining members split into two groups: group G1 with members 

M1 and M5, and group G2 with members M2, and M6

 (5)  Key Refresh 

. A group partition can take 

place for several reasons such as network failure and explicit partition. The network 

failure occurs when a network event causes dis-connectivity within the group. 

Consequently, a group is split into fragments some of which are singletons while 

others (those that maintain mutual connectivity) are sub-groups. Otherwise, the 

explicit (application-driven) partition occurs when the application decides to split the 

group into multiple components or simply exclude multiple members at once.  

It is desirable to refresh the key periodically, even if the group memberships 

are not changed. There are two main reasons, one is to limit exposure due to loss of 

group session keys, the other is to limit the amount of ciphertext available to 

cryptanalysis for a given group session key. This makes it important for the key 

refresh protocol not to violate key independence. Additionally, note that the loss of a 

member’s key share can result in the disclosure of all the session keys to which the 

member has contributed with this share. Therefore, not only session keys, but also the 

individual key shares must be refreshed periodically. 

The following section describes the protocol that constructs the group key 

agreement. 
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3.3.1  Setup Protocol 

The members who want to form a group can be ordered according to some 

criteria such as MAC address of device. The structure of the key tree can be then 

derived from this order. The first member in the order is selected as director. The 

blinded key of member Mi is BKi = si βr βi si
-1 where βr is existing publish braid word 

at root node before the director will update next member to key tree by order. Each 

member knows the own βr

 

 because it have some criteria such as MAC address of all 

members. It can order the MAC address by itself, and then it knows sequence of 

members. After the director received blinded key from each member sends, it create 

key tree and computes keys and blinded keys of intermediate node in key tree. Later 

the director broadcasts the key tree to all members in the group. The process is 

illustrated as follows: 

Step 1: Each Mi, i ∈ {1, · · · , n} sends its blinded session random key to 

director Md

 

. 

 

 Step 2:  The director computes recursively keys and blinded keys to the root 

and broadcasts the key tree containing the all blinded key. 

  
 

Step 3: Each member computes the secret group key. 

 

Then total communication message in setup protocol is n rounds including 

the setup message from each member to director and key tree information from 

director to all members. 

 

 

Md 
 

T[BK]   
 

{ Mi , i ∈ [1, n] } - Md 
 

{ Mi , i ∈ [1, n] } - Md 
 

BKi 
 

Md 
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  3.3.2  Join Protocol  

The group has n members, {M1,..,Mn}. Every member in current group 

knows the existing key tree. The new member Mn+1 wishes to join the group by 

detecting the maximum signal strength of current group member to be as director 

in order to communicate in one hop and shortest distance. Later the new member 

sends, JOIN_MESSAGE, request message to director. The director refreshes the 

own session random key, computes keys and blinded keys of intermediate nodes up to 

the root node, and sends the existing key tree with its new session random key to new 

member. The insertion point of new member on key tree will be new root node of 

key tree because the new member can computed the information of new key tree 

with the lowest computation cost. The new member needs to compute only the 

blinded key at the new root node. Later, the new member updates existing key tree 

in accordance with creates a new root node and a new member node. Next, the 

new member selects session random key (i.e., secret key) and computes keys and 

blinded keys going up to the root. The blinded key of new member Mn+1 is BKn+1 = 

sn+1 βr βn+1 sn+1
-1  where βr is existing publish braid word at root node that the new 

member can find in existing key tree information. The new member broadcasts the 

new key tree containing only blinded keys to all other members. Finally all other 

members compute the new group key. This join protocol provides backward secrecy 

since director updated session random key that knowledge of a new member is unable 

to compute old group keys. Figure 3.4 shows situation before new member joins. 

After that, the Figure 3.5 shows an example of M4 joining a group where director 

as M2. This instance, it means that the M2 is nearest with M4

 

. The conclusion of 

join protocol is illustrated as follows:   

Step 1: The new member detects the maximum signal strength of current 

group members as director and sends JOIN_MESSAGE request message to join 

the group. After the director received the request message, it selected its new 

session random key, computes keys and blinded keys, and sends the existing key 

tree to new member. 
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Step 2: The new member selected its session random key, updates key tree, 

computes keys and blinded keys, and broadcasts the new key tree containing the 

only all blinded key.   

 

 

Step 3: Each member computes the secret group key. 

 

Then total communication message in join protocol is two rounds including 

existing key tree information from director to new member and new key tree 

information from new member to all members. There are n serial numbers of braid 

permutation in the worst case if director is deepest node. 

 

 

Figure 3.4  Before tree updated: M4 join, M2
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Figure 3.5  After tree updated: M4 join, M2

 

 as director 

  3.3.3  Leave Protocol  

The protocol begins with n current members and the member Mr  wants to 

leave the group. In this event the director is the leaf node above the removing node 

in existing key tree before leave event. In special case, if the leaving node is child 

of the root, the director is leaf node below the removing node. Because director 

only calculates the new blinded key of intermediated nodes above director up to 

the root node, other intermediated nodes is not necessary to update blinded keys. 

Upon hearing the leave event from the group, the director updates key tree by 

deleting the leaf node of Mr, selects a new secret session random key and 

computes keys and blinded keys going up to the root. The director computes the 

new blinded key of leaf nodes below removing node to achieve as 

BKpre =   BKold  βl
-1βd . Also the director computes the new blinded key of leaf nodes 

above director to yield as BKpre =   BKold  βl
-1. In the formula, βl is public braid of 

removing node and βd is public braid of director. Next, the director broadcasts the 
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new key tree containing only blinded keys to all other members. Then the 

remainder members compute the new group key. Figure 3.6 shows situation before 

a member leaves. After that Figure 3.7 shows the example of M2 leaving a group 

where director as M3

 

. The conclusion of leave protocol is illustrated as follows: 

Step 1: The director selects the new session random key, updates the key 

tree, computes keys and blinded keys and broadcasts the new key tree. 

 

 

Step 2: Each member computes the secret group key. 

 

Then total communication message in leave protocol is one round. In the 

worst case, the serial number of braid permutation in this protocol is equal to n -1 

when the leaving node is deepest leaf. 

 

Figure 3.6  Before tree updated: M2 leave, M3 as director  
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Figure 3.7  After tree updated: M2 leave, M3

 

 as director  

  3.3.4  Merge Protocol  

In this instant assume that m merging group needs to merge with c current 

group. The existing merging group director detects to achieve maximum signal 

strength what is measured as the closest member between itself and current group 

members. The current group director is the member what has maximum signal 

strength with merging group director. After the merging process, the leftest leaf of 

shorter tree becomes the right child of a new intermediate node. The root of the 

longer tree is left child of the new intermediate node.  

After the current group director received the MERGE_MESSAGE 

message, it refreshes session random key, computes keys and blinded keys, and 

sends the current group’s key tree containing the all blinded keys to merging 

group director. Later, the merging group director updates key tree by combining 

the merging group’s key tree and current group’s key tree at the new root node, the 

director chooses session random key, computes keys and blinded keys up to the 

root node, and broadcasts new key tree containing the all blinded keys to all 

members in new group. Finally, the group key is calculated independently by each 
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member. Figure 3.8 shows the initial situation before current group merges with 

other group. After that Figure 3.9 shows the example of merge operation. The 

member that has maximum signal strength of merging group director, M5, is M1, 

and then M1 

 

is current group director. The conclusion of merge protocol is shown 

as follows: 

Step 1: The director of current group what selects new session random key, 

computes blinded keys and sends updated key tree to the merging group director.  

 

 

Step 2: The merging group director selects its new session random key, 

combines key tree, computes the all blinded keys, and broadcasts the new key tree 

containing the only all blinded keys.   

 

 

Step 3: Each member computes the secret group key. 

 

Then total communication message in merge protocol is two rounds. The 

serial number of braid permutation in merge protocol is equal to n+m where m is 

amount of merging group member.  
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Figure 3.8  Before tree updated: Merge Protocol 
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leaving node is child of root and the undermost removing nodes does not exist, the 
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computes the new blinded keys of leaf nodes below and above the director in the 

same manner as leave protocol. There are three examples in partition protocol. 

First, the partition protocol actually presents a concurrent multiple members, p, 

leaving from group. As for the leave protocol, after the director deletes all leaving 

members from key tree, it selects new session random key, computes keys and 

blinded keys going up to the root, and broadcasts the key tree with blinded keys to 

reminder members. Finally, each member computes the new group key. Second, 

the group needs to split into sub-group. 

 

 
 

Figure 3.9  After tree updated: Merge Protocol 
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As first scheme, after director of subgroups deletes leaving members of 

other groups, each director selects new own session random key, computes keys 

and blinded keys going up to the root, and broadcasts the key tree with blinded 

keys to sub-group members. Finally, each member computes the new group key. 

Third, leaving member(s) causes to spilt remaining members to subgroup. After 

leaving member(s) leave, remaining members form the subgroup what both sub-

group members see other sub-group members and leaving member(s) as all leaving 

members. Figure 3.10 shows the initial situation before members leave the group. 

First scheme, multiple members leave from the group. Figure 3.11 show the 

example when M4 and M5 as leaving members and the director as M6. Second 

scheme the members are divided into two smaller groups. Figure 3.12 shows an 

example of partition operation of second scheme when all members in G2 see M1, 

M3, and M6 as leaving members, while all members in G1 see M4 and M5 as leaving 

members. The director of G1 is M6 and of G2 is M4. Third scheme, leaving 

member causes the group partition to two sub-groups. Figure 3.13 shows third 

scheme when all members in G1 see M4, M5, and M6 as leaving members, while all 

members in G2 see M1, M3 and M4 as leaving members. The director of G1 is M3  

and of G2 is M5

 

.  The conclusion of partition protocol is shown as follows: 

Step 1: The director updates the key tree, selected the new session random 

key, computes keys and blinded keys and broadcasts the new key tree to remaining 

members. 

 

 

Step 2: Each member computes the secret group key. 

 

Then total communication message in partition protocol is one round. The 

serial number of braid permutation in partition protocol is equal to n - p where p is 

amount of partition member.  
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Figure 3.10  Before tree updated: Partition Protocol 
 

 
Figure 3.11  After tree updated: Partition Protocol in first scheme 
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Figure 3.12  After tree updated: Partition Protocol in second scheme 
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Figure 3.13  After tree updated: Partition Protocol in third scheme 
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Step 1: The director (refreshing node) selects new session random key, 

computes keys and blinded keys and broadcasts new key tree containing blinded 

keys. 

 

 

Step 2: Each member computes the group key. 

 
3.4  Security Analysis 
 

As described above, it can see that group key agreement on tree-based 

braid groups satisfies forward and backward secrecy. It also satisfies key 

independence. The passive adversaries are unable to compute future and previous 

group key although they know all previous key trees and new key tree 

respectively, since the director refreshes the session random key every event. 

First, the protocol is considered the forward secrecy, note that members 

that leave the group or passive adversaries who know a contiguous subset of old 

group keys are unable to compute future group key. The forward secrecy is 

determined in leave and partition event. Assume A as leaving member at position a 

in key tree T. A knows all secret keys on key-path that are valid during its group 

membership. However the director of the leave and partition event updates own 

session random key and causes the change of keys and blinded keys. Therefore A 

is unable to compute the subsequent group key, because the key tree information is 

changed. Thus the protocol provides the forward secrecy. 

Later, the protocol is considered the backward secrecy to show that new 

group members are unable to compute old group keys. Assume A becomes a new 

member at position a in key tree T. As a new member A is able to compute all keys 

on key-path. The director of the join and merge event updates own session random 

key and causes the change of keys and blinded keys in key-path. Therefore A is 

unable to compute previously used group key, since A can only compute new 

group keys due to changed key tree information. Therefore our protocol satisfies 
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the backward secrecy. 

The combination of forward and backward secrecy we follow that TBG 

protocol satisfies key independence.      

 

3.5  Complexity Analysis 

Above section has discussed the security properties of group key agreement 

schemes. Important is also their complexity, namely performance costs. Sometimes 

trade-off between complexity and security is required, so that the schemes are suitable 

to particular environments. Two of the most important criteria are computation costs 

and communication costs. 

(1)  Computation Costs  

To achieve exact computational costs is impossible and also impracticable. 

Different implementations of an identical group key agreement scheme bring different 

results. Even the same implementation cannot guarantee same result in different 

environments. However, it can estimate the computation costs by identifying the 

expensive and time-critical operations. The protocol can be ignored the concrete 

operation time, and only compare the number of such operations. Some computations 

can be pre-performed before protocol run or computed when the system is idle. Hence 

only the operations which have to be performed sequentially should be considered. 

Those operations are denoted by serial operations. 

(2)  Communication Costs  

The communication costs of a group key agreement depend clearly on the 

topology and properties of the network and the group communication system used. 

The critical aspects are primarily latency and bandwidth. Additionally the 

communication costs are implementation-dependent. Hence to achieve fixed 

communication costs is impracticable. However, the protocol can be estimated them 

by considering costs including number of rounds, total number of message and 

number of broadcast and unicast. 

Number of rounds: this affects serial communication delay. As the number of 

rounds grows, the communication delay and the probability of message loss or 

corruption are increased. 
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Total number of messages: as the number of messages grows, the probability 

of message loss or corruption, and the delay are increased. 

Number of broadcasts and unicasts: a broadcast operation is much more 

expensive than a unicast one, since it requires much more acknowledgments with the 

group communication system. The number of broadcasts should be minimized. 

 

  3.5.1  Communication Cost 

The communication cost is shown in Table 3.1 that compared among STR, 

braid groups on GDH and this protocol TBG. The number of rounds on TBG is 

constant in all events same as STR what better than braid groups on GDH 

protocols on merge event. The number of rounds on merge operation in Braid 

groups on GDH depends on number of merging members, but all operations in 

TBG and STR do not depend on number of members that dynamic movement. The 

number of rounds in TBG is equals to STR and Braid groups on GDH in join, 

leave and partition protocol. In merge protocol, the number of rounds in TBG is 

less than Braid groups on GDH which depending on number of merging member.  

   

  3.5.2  Computation Cost 

The computation cost in Table 3.2, the serial number of modular 

exponentiations for STR is O(n). Otherwise the serial number of braid 

permutations for braid groups on GDH protocol is O(n). For TBG,  the serial 

number of braid permutations is O(n) in leave, merge and partition protocol, 

except join protocol is constant permutations of braid groups. TBG and Braid 

groups on GDH reduce the exponential computation in Diffie-Hellman to linear 

computation by using braid groups. 
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Table 3.1  Communication Cost of TBG Protocol 

 

 

 

 

 

 

 

 

 

 

 

Protocol Operation Rounds Message 
Unicast 

Message 

Broadcast 

Message 

STR 

Join 2 2 1 1 

Leave 1 1 0 1 

Merge 2 3 2 1 

Partition 1 1 0 1 

Braid groups 

on GDH 

Join 2 2 1 1 

Leave 1 1 0 1 

Merge m+3 n+2m+1 n+2m-1 2 

Partition 1 1 0 1 

TBG 

Join 2 2 1 1 

Leave 1 1 0 1 

Merge 2 2 1 1 

Partition 1 1 0 1 
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Table 3.2  Computation Cost of TBG Protocol 

 

Protocol Operation Exponentiations Permutation 

STR  

Join 2 0 

Leave 3n/2 + 2 0 

Merge 2m 0 

Partition 3n/2 + 2 0 

Braid groups  

on GDH 

Join 0 n+3 

Leave 0 n-1 

Merge 0 n+2m+1 

Partition 0 n-p 

TBG 

Join 0 n 

Leave 0 n-1 

Merge 0 n+m 

Partition 0 n-p 



 

 

CHAPTER 4 

 

AUTHENTICATED GROUP KEY AGREEMENT USING 

TREE-BASED BRAID GROUPS 

 

This protocol uses public and authentic channel, it means that everyone, both 

the member and the adversary, can read the messages. Man-in-the-middle attack 

works on TBG protocol in chapter 3. The authenticated process can resistant to them. 

Public key infrastructure (PKI) will be used if it exists. However, unlike in traditional 

networks, no present PKI can be assumed in ad hoc networks. Therefore the 

authenticated group key agreement on MANET using tree-based braid groups is 

introduced in this chapter for solving the man-in-the-middle attack. The notations in this 

protocol are denoted as follows: 
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The initial assumption of authentication scheme is explained as follows. 

Mi

x

’s long-term private key 

i

M

 ∈ Bg𝑖𝑖
 

i

P

’s long-term public key  

i

where α ∈

 = xi
 𝛼𝛼 xi

-1 

 Bg 

Therefore, the long-term public value of the group are {(B

is a published braid what be a sufficiently complicated braid. 

gi

 

, α, xi
 𝛼𝛼 xi

-1) | i = 

1,..., n}.The long-term public key of each member in the protocol is guaranteed by 

some trust party such as off-line CA before group operation. 

4.1  Two-party Key Agreement Protocol 

 

Following the above mentioned notations, the authenticated two party key 

agreement protocol based on Chaturvedi et al (2008) is described below. The protocol 

works in the following steps. 

 

Message 1 :  

 
 

Message 2 :  

 
  

 Figure 4.1  Two-party key agreement protocol 
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Alice’s long term private key and Pb 

 ka
 BKa

  ka
-1 =  xa

 Pb
  xa

-1sa
 β sa

-1[xa
 Pb

  xa
-1 ] 

-1
 , 

 is Bob’s long-term public key. Then Alice sends 

the message, authenticated blinded key, through Bob with    

where β ∈ Bg 

 

is a published braid what be a sufficiently complicated braid. 

Step 2: Bob computes Alice’s blinded key BKa

BK

 as follows: 
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-1]

 

-1
[xa Pb xa

-1] sa β sa
-1[xa Pb xa

-1] 

-1
[xb Pa xb

-1]
 

 
 

 = kb
-1ka

  BKa
  ka

-1kb
  

        = [xb xa 𝛼𝛼 xa
-1xb

-1  ]
 

-1
[xa xb 𝛼𝛼 xb

-1 xa
-1] saβ sa

-1[xa xb 𝛼𝛼 xb
-1 xa

-1]
 

-1
[xb xa 𝛼𝛼 xa

-1xb
-1]

 

 
 

        =

where Bob computes k

 sa β sa
-1 

b =  xb Pa

 

 xb
-1. Then the Alice’s blinded key what be 

computed by Bob is saβ sa
-1.   

Step 3: The Bob compute shared key as sb sa β sa
-1sb

-1where Bob’s session 

random key sb

 

 ∈ Bgb
.  

Moreover Alice 

 

can compute shared key in the similar step as follows: 

For message 2 : Bob challenges Alice  

 Step 1 When Bob wants to share the key to Alice, Bob selects a session 

random key sb ∈ Bgb
to achieve BKb = sbβ sb

-1and computes kb =  xb Pa xb
-1, where 

where xb is Bob’s long term private key and Pa 

 kb
 BKb

  kb
-1 =  xb

 Pa
  xb

-1sb
 β sb

-1[xb
 Pa

  xb
-1 ]

 

-1
 , 

 is Alice’s long-term public key. Then 

Bob sends the message, authenticated blinded key, through Alice with    

where β ∈ Bg 

 

is a published braid what be a sufficiently complicated braid. 

 Step 2: Alice computes Bob’s blinded key BKb as follows: 
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BKb

        = [xa Pb xa
-1] 

-1
[xb Pa xb

-1] sbβ sb
-1[xb Pa xb

-1]
 

-1
[xa Pb xa

-1] 

 
 

 = ka
-1kb

  BKb
  kb

-1ka
  

        = [xa xb 𝛼𝛼 xb
-1xa

-1  ]
 

-1
[xb xa 𝛼𝛼 xa

-1 xb
-1] sbβ sb

-1[xb xa 𝛼𝛼 xa
-1 xb

-1]
 

-1
[xa xb 𝛼𝛼 xb

-1xa
-1]

 

 
 

        =

where Alice computes k

  sbβ sb
-1 

a =  xa Pb

 

 xa
-1. Then the Bob’s blinded key what be 

computed by Alice is sb
 β sb

-1.   

Step 3: The Alice computes shared key as sasb β sb
-1sa

-1 where Alice’s session 

random key sa ∈ Bga
.  

 

Therefore, after the regular protocol running, the Alice and Bob achieve same 

shared key because of sa
 sb

 β sb
-1sa

-1  =  sb
 sa

 β sa
-1sb

-1. 

  

4.2  Authenticated Group Key Agreement Protocol on Tree-based Braid Groups 

(ATBG) 

  

 This section describes how ATBG deals with the group operations including 

setup, join, leave, merge, partition and refresh.  The protocol is based on the 

authentication phase according to section 4.1. 

 

4.2.1  Setup Protocol  

The members who want to form a group can be ordered according to some 

criteria such as MAC address of device same as the previous protocol. The structure 

of the key tree can be then derived from this order. The first member in the order is 

selected as director. The blinded key of member Mi is BKi = si βr βi si
-1  where βr is 

existing publish braid word at root node before the director will update next member 

to key tree by order. Each member knows the own βr because it has some criteria such 

as MAC address of all members. It can order the MAC address by itself, and then it 



78 
 

 

knows sequence of member. Each member sends its authenticated blinded key 

according to director. For example, M5 sends authenticated blinded key as  k5
 BK5

 k5
-1 

where k5 is x5Pd x5
-1, x5 is M5’s long term private key and Pd  is director’s long term 

public key. The process is illustrated as follows: 

 

 Step 1: Each Mi, i ∈ {1, · · · , n} sends its authenticated blinded session 

random key to director Md. 

 

 where ki_d
 =  xi Pd xi

-1, xi is Mi’s long term private key and Pd  is Md’s long term 

public key. 

 

Step 2: The director computes the member blinded keys from 

kd_i
-1  ki_d

  BKi
 ki_d 

-1 kd_i
   to achieve BKi

 , where kd_i
  =  xd Pi xd

-1. 

 

Step 3: The director creates key tree and computes keys and blinded keys to 

the root. 

 

Step 4: The director unicasts key tree with authenticated blinded keys to 

each member. 

  
 

Step 5: Each member computes authenticated blinded keys as 

ki_d 
-1 kd_i

  T[BK]  kd_i
-1  ki_d

   to achieve the blinded keys in key tree, T[BK], where           

ki_d =  xi Pd xi
-1. 

 

Step 6: Each member computes the secret group key. 

 

Md 
 

kd_i
 T[BK] kd_i

-1
  

 
{ Mi , i ∈ [1, n] } - Md 
 

{ Mi , i ∈ [1, n] } - Md 
 

ki_d
  BKi

 ki_d
-1  

 Md 
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Then total communication message in setup protocol is n rounds including 

the authenticated blinded key from each member to director in n – 1 rounds and 

authenticated key tree information from director to all members in one round. The 

number of unicast message is 2(n – 1) including the authenticated blinded key 

from each member to director in n – 1 messages and authenticated key tree 

information from director to all members in n – 1 messages. 

 

4.2.2  Join Protocol 

The current group has n members, the new member is identified with Mn+1. 

The tree will be added a new intermediate node with two children: the root node of 

the prior tree on the left and the new leaf node on the right for new member. This 

node becomes the new root node. As mention in section 3.3.2, the director who is the 

maximum signal strength with joining member is selected from current group 

members. For simplicity, the protocol use n in the following to denote the number of 

group members before operation join. To deal with the join operation, a member is 

chosen as the director, because the new member detects the maximum signal strength. 

The new member Mn+1 sends a join request, JOIN_MESSAGE, to the director. Later 

the director refreshes the session random key, computes keys and blinded keys of 

intermediate nodes up to the root node and sends authenticated blinded keys in key 

tree to Mn+1. Next, the member Mn+1 computes the blinded keys in key tree and 

updates existing key tree in accordance with creates a new root node and a new 

member node. Next, the new member selects session random key and computes 

keys and blinded keys going up to the root. The blinded key of new member Mn+1 is 

BKn+1 = sn+1 βr βn+1 sn+1
-1  where βr is existing publish braid word at root node that the 

new member can find in existing key tree information.  The new member unicasts 

the new key tree containing only authenticated blinded keys to all other members. 

Finally, each member computes blinded keys and group key. This join protocol 

provides key independence since director updates session random key that knowledge 

of a previous group key cannot be used to compute the new group key. Figure 4.1 

shows the authenticated key tree what director, M1, sends to new member, M4. 

This instance, it means that the M1 is nearest with M4. Figure 4.2 shows the 



80 
 

 

authenticated key tree that M2 received from new member, M4. Figure 4.3 shows key 

tree information after M1 computes keys and blinded keys. The summary process of 

protocol is illustrated as follows: 

 

Step 1: The new member detects the maximum signal strength of current 

group members as director and sends JOIN_MESSAGE request message to join 

the group. After the director receives the request message, it selects its new 

session random key, computes keys and blinded keys, and sends the existing 

authenticated key tree to new member. 

 

 where kd_n+1
  =  xd Pn+1 xd

-1, xd is director’s long term private key and Pn+1 is new 

member’s long term public key. 

 

Step 2: The new member computes the existing blinded keys from 

kn+1_d 
-1 kd_n+1

  T*[BK] kd_n+1
-1  kn+1_d

   to achieve blinded keys in key tree, where         

 kn+1_d
  =  xn+1 Pd xn+1

-1 .   

  

Step 3: The new member selects its session random key, updates key tree 

and computes keys and blinded keys. 

 

Step 4: The new member unicasts the new key tree with authenticated 

blinded keys to all member.     

 

where  kn+1_i
  =  xn+1 Pi xn+1

-1 , xn+1 is new member’s long term private key and Pi 

is Mi’s long term public key. 

 

Mn+1 
 

kn+1_i
 T*[BK] kn+1_i

-1
  

 
{ Mi , i ∈ [1, n] }  
 

Md 
 

kd_n+1
 T[BK] kd_n+1

-1
  

 
 Mn+1 
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Step 5: Each member computes authenticated blinded keys as 

ki_n+1 
-1 kn+1_i

  T*[BK] kn+1_i
-1  ki_n+1

  to achieve the blinded keys in new key tree, T*

 

[BK], 

where  ki_n+1
  =  xi Pn+1 xi

-1. 

Step 6: Each member computes the secret group key. 

 

Then total communication message in setup protocol is two rounds 

including existing authenticated key tree information from director to new member 

in one round and new key tree information from new member to each member in 

one round. The total amount of message is n + 1 including information from 

director to new member in one message and information that is unicasted by new 

member to current group members before change operation in n messages. 

 

 
Figure 4.1  Join protocol : Updated tree that new member received from 

director 
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Figure 4.2  Join protocol : Authenticated key tree that M2 received from new 

member, M4 

 
Figure 4.3  Join protocol : After M1 computes keys and blinded keys  
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4.2.3  Leave Protocol 

Like in TBG, the leave protocol is relatively simple, only one round is needed. 

Suppose a group has n members and the member Mr with 1 ≤ r ≤ n leaves the group. 

Again the protocol needs the director Md to updates its session random key. If the 

leaving node is child of root, the director is leaf node directly below the removing 

member, otherwise the director is the leaf node directly above the removing 

member in existing key tree before leave event. After notification of the leave event 

from the group communication system, the director refreshes a secret session 

random key, updates the key tree by deleting the nodes of leaving member and 

computes keys and blinded keys going up to the root. The director computes the 

new blinded key of leaf nodes below and above removing node same as leave 

protocol in section 3.3.3. Next, the director unicasts the new key tree containing 

only authenticated blinded keys to remaining member. Figure 4.4 shows situation 

before a member, M1, leaves. After that Figure 4.5 shows the authenticated key tree 

that M3 received from director, M2, after the example of M1 leaving a group. Figure 

4.6 shows key tree information after M4 computes keys and blinded keys.  The 

conclusion of leave protocol is illustrated as follows: 

 

Step 1: The director selects the new session random key, updates the key 

tree and computes keys and blinded keys. 

 

Step 2: The director unicasts the new authenticated key tree to each 

member except leaving member. 

 

where kd_i
  =  xd Pi xd

-1, xd is director’s long term private key and Pi is Mi’s long 

term public key. 

 

Md 
 

kd_i
 T*[BK] kd_i

-1
  

 
{ Mi , i ∈ [1, n] } – Mr 
 



84 
 

 

Step 3: Each member computes authenticated blinded keys as 

ki_d 
-1 kd_i

  T*[BK] kd_i
-1  ki_d

  to achieve the blinded keys in new key tree, T*

 

[BK], where   

ki_d
  = xi Pd xi

-1. 

Step 4: Each member computes the secret group key. 

 

Then total communication message in leave protocol is one round that 

director unicasts message to each member. Then the total amount of unicast 

message is n-1 including the messages that director unicasts information to 

remaining group members except leaving member. 

 

Figure 4.4  Leave protocol : Before tree updated that M1 leaves  
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Figure 4.5  Leave protocol : Authenticated key tree that M3 receives from 

director, M2 

 

 

Figure 4.6  Leave protocol : After M4 computes keys and blinded keys 
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smaller key tree directly on top of the larger one. If group sizes are equal, it can order 

them according to some other criteria. A new intermediate node with two children is 

created. The root of the larger tree becomes the left child of new intermediate node, 

while the deepest leaf of the smaller tree the right child of new intermediate node. The 

root of smaller tree becomes the root of the new tree. 

After the current group director receives the MERGE_MESSAGE message, 

it refreshes session random key, computes keys and blinded keys, and sends the 

current group’s key tree containing the all authenticated blinded keys to merging 

group director. Later, the merging group director computes blinded key of current 

group’s key tree, updates key tree by combining the merging group’s key tree and 

current group’s key tree at the new root node, the director chooses session random 

key, computes keys and blinded keys up to the root node, and unicasts new key 

tree containing the all authenticated blinded keys to all members in new group. 

Finally, the group key is calculated independently by each member after computed 

blinded key. Figure 4.7 shows the initial situation before current group merges 

with other group. The member that has maximum signal strength of merging group 

director, M6, is M4, and then M4 is current group director. After that Figure 4.8 

shows the authenticated key tree that merging director, M6, received from current 

group director, M4. Figure 4.9 shows the authenticated key tree that M3 received 

from merging group director, M6, after merging group director merges the key tree. 

Figure 4.10 shows the key tree after M2 computes keys and blinded keys. The 

conclusion of merge protocol is shown as follows: 

 

Step 1: The current group director that selects new session random key, 

compute blinded keys and sends update key tree with authenticated blinded key to 

the merging group director. 

 
Mdc

  
  

kdc_dm
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 where kdc_dm

 = xdc
 Pdm

  xdc

-1,  xdc
  is current group director’s long term private key, 

Pdm
  is merging group director’s long term public key and Tdc

* [BK] is key tree of 

current group with new session random key of current group director. 

 

Step 2: The merging group director computes the current group blinded 

key fromkdm_dc

-1 kdc_dm

 Tdc
* [BK] kdc_dm

-1 kdm_dc

  to achieve blinded keys in key tree, 

where kdm_dc

 = xdm
 Pdc

  xdm

-1  . 

 

Step 3: The merging group director selects its new session random key, 

combines key tree, computes keys and blinded keys. 

 

Step 4: The merging group director unicasts new key tree with 

authenticated blinded keys to all members. 

 

 where kdm_i
 = xdm

 Pi
  xdm

-1 ,  xdm
  is merging group director’s long term private key 

and Pi is Mi’s long term public key. 

 

Step 5: Each member computes authenticated blinded key as 

ki_dm

-1 kdm_i
 T 

*[BK] kdm_i
-1  ki_dm

  to achieve the blinded keys in new key tree, T*

 

[BK], where 

ki_dm

 = xi
 Pdm

  xi
-1. 

Step 6: Each member computes the secret group key. 

 

Therefore the total communication message in leave protocol is two rounds 

including current group director sends authenticated key tree to merging group 

director in one round and merging group director unicasts authenticated new key 

tree to each member in one round. The total amount of message is n + m including 

Mdm
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the messages that current group director sends information to merging group 

director in one message and merging group director sends authenticated key tree to 

each group member in n + m – 1 messages. 

 

 

Figure 4.7  Merge Protocol : Before merging process 
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Figure 4.8  Merge protocol : Authenticated key tree that merging director, 

M6, received from current group director, M4 

 

Figure 4.9  Merge protocol : Authenticated key tree that M3 received from 

merging group director, M6 
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Figure 4.10  Merge Protocol : After M2 computes keys and blinded keys 
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blinded keys to reminder members. Finally, each member computes blinded keys 

and new group key. Figure 4.11 shows the initial situation before members leave 

from the group. Later, the example shows partition operation when all members in 

G1 see M2 and M5 as leaving nodes and M3 is director of G1 because it is above the 

undermost removing node, M2, before partition. While all members in G2 see M3, 

M4, and M6 as leaving members and M5 is director of G2 because it is above the 

undermost removing node, M3, before partition. After partition process to two 

groups, Figure 4.12 shows authenticated key tree that M4 received from director, M3 

in G1 and Figure 4.13 shows authenticated key tree that M2 received from director, 

M5 in G2. Figure 4.14 shows after M3, M2 computes keys and blinded keys in G1 and 

G2, respectively. 

Then total communication message in partition protocol is one round that 

director unicasts message to reminding group members. Then the total amount of 

unicast message is n-p including the messages that director unicasts information to 

remaining group members except leaving members. 

The conclusion of partition protocol is shown as follows: 

 

Step 1: The director selects the new session random key, updates the key 

tree, computes keys and blinded keys and unicasts the new authenticated key tree. 

  

where kd_i
  =  xd Pi xd

-1, xd is director’s long term private key and Pi is Mi’s long 

term public key. 

 

Step 2: The remaining members compute authenticated blinded key 

as ki_d 
-1 kd_i

  T*[BK] kd_i
-1  ki_d

  to achieve the blinded keys in new key tree, T*

 

[BK], where 

ki_d
  =  xi Pd xi

-1. 

Step 3: Each member computes the secret group key 

Md 
 

kd_i
 T*[BK] kd_i

-1
  

 
{ Mi , i ∈ [1, n-p] }  
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Figure 4.11  Before tree updated: Partition Protocol 

 

Figure 4.12  Partition protocol : Authenticated key tree that M4 received 

from director, M3 in G1 
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Figure 4.13  Partition protocol : Authenticated key tree that M2 received 

from director, M5 in G2 

 

 

Figure 4.14  Partition Protocol : After M3, M2 computes keys and blinded 

keys in G1 and  G2, respectively  
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  4.2.6  Key Refreshing 

Key refreshing in MANETs is necessary, since most nodes can be easily 

compromised due to their mobility and physical vulnerability. Then the key refreshing 

should be occurred periodically in order to limit exposure due the loss of keys and limit 

the amount of ciphertext available to cryptanalysis for given group key. In this protocol 

the node that needs to refresh the key acts as the director. In similar way of other 

protocols, the director chooses the new session random key, computes keys and blinded 

keys up to the root, and unicast updated key tree with authenticated blinded keys. All 

members compute blinded keys and new group key. The conclusion of key refreshing 

protocol is shown as follows: 

 

Step 1: The director (refreshing node) selects new session random key, 

computes keys and blinded keys and unicasts new key tree containing 

authenticated blinded key. 

 

where kd_i
  =  xd Pi xd

-1, xd is director’s long term private key and Pi is Mi’s long 

term public key. 

 

Step 2: Each member computes authenticated blinded key 

as ki_d 
-1 kd_i

  T*[BK] kd_i
-1  ki_d

  to achieve the blinded keys in new key tree, T*

 

[BK], where 

ki_d
  =  xi Pd xi

-1. 

Step 3: Each member computes the secret group key 

 

4.3  Security Analysis 

 

As described above, it can see that Group Key Agreement on Tree-based 

Braid Groups satisfies forward and backward secrecy. It also satisfies key 

Md 
 

kd_i
 T*[BK] kd_i

-1
  

 
{ Mi , i ∈ [1, n] }  
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independence. Moreover, it shares the group key without the man-in-the-middle 

attack by using authentication scheme. The passive adversaries are unable to compute 

future and previous group key although they know all previous key trees and new key 

tree respectively, since the director refreshes the session random key every event. 

First, the protocol is considered the forward secrecy, note that members that 

leave the group or passive adversaries who know a contiguous subset of old group key 

are unable to compute future group key. The forward secrecy is determined in leave 

and partition event. Assume A as leaving member at position a in key tree T. A knows 

all secret keys on key-path that are valid during its group membership. However the 

director of the leave and partition event updates own session random key and causes 

the change of keys and blinded keys. Therefore A is unable to compute the subsequent 

group key, because the key tree information is changed. Thus the protocol provides 

the forward secrecy. 

Later, the protocol is considered the backward secrecy to show that new group 

members are unable to compute old group keys. Assume A becomes a new member at 

position a in key tree T. As a new member A is able to compute all keys on key-path. 

The director of the join and merge event updates own session random key and causes 

the change of keys and blinded keys in key-path. Therefore A is unable to compute 

previously used group key, since A can only compute new group keys due to changed 

key tree information. Therefore the protocol satisfies the backward secrecy. 

The combination of forward and backward secrecy, can conclude that ATBG 

protocol satisfies key independence. 

Finally, the research is considered the man-in-the-middle attack to show that 

intruder cannot impersonate each member to the satisfaction of the other in any 

membership event. Let C who can modify, delay or inject messages, is an active 

opponent. The objective of opponent is sharing a key with either member by 

disguising as some member. The attack on some member discusses as follows: C 

intercepts the message to eavesdrop and possible deliver a false message to Alice and 

Bob. First, Alice asks Bob for his blinded key. If Bob send his blinded key to Alice, a 

man-in-the-middle-attack can begin if C is able to intercept it. C send message to 

Alice that claims to be from Bob, but instead includes C’s blinded key. Alice sends 
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blinded key that to Bob with authenticated version that is ka
 BKa

 ka
-1 where ka =  xaPb 

xa
-1, xa is Alice’s long term private key and Pb is Bob’s long term public key. The 

Alice’s message is intercepted by C and forged message. The forged message is sent 

to Bob. Meanwhile, Bob sends kb
 BKb

 kb
-1 to Alice, and is also intercepted by C. C 

forges message and sends it to Alice. The computing ka
-1kb

 BKb
 kb

-1ka
 

 and kb
-1ka

 BKa
 ka

-1kb
 

 

are difficult without the knowledge of ka and kb respectively. Therefore C difficult 

compute blinded key of Alice and Bob.  

 

 4.4  Complexity Analysis 

 

  4.4.1  Communication Cost 

The communication cost is shown in Table 4.1 that compared among TBG, 

and ATBG. The number of rounds on both protocols is constant and equal in all 

operations. Therefore this study can conclude that the amount of protocol rounds 

do not depend on the number of members. The amount of messages that is sent 

among group members, are constant except setup protocol. The amount of 

messages in setup protocol depends on the number of group members. The total 

number of message in setup, join and merge protocol of ATBG is more than the 

previous protocol TBG due to the authentication process, otherwise it is same. The 

number of unicast messages in merge protocol depends on the amount of merging 

group member. The ATBG is efficient lower than TBG but it stronger. 

   

  4.4.2  Computation Cost 

  The computation cost in Table 4.2, the computation cost of both protocols 

including TBG and ATBG are same, because the ATBG protocol is extended version 

with authentication of TBG. 
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Table 4.1  Communication Cost of ATBG Protocol 

 

Table 4.2  Computation Cost of ATBG Protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protocol Operation Rounds Message 
Unicast 

Message 

Multicast 

Message 

TBG 

Setup 2 n n-1 1 

Join 2 2 1 1 

Leave 1 1 0 1 

Merge 2 2 1 1 

Partition 1 1 0 1 

ATBG 

Setup N 2(n-1) 2(n-1) 0 

Join 2 n+1 n+1 0 

Leave 1 n-1 n-1 0 

Merge 2 n+m n+m 0 

Partition 1 n-p n-p 0 

Protocol Operation Permutation 

TBG 

Setup N 

Join 2 

Leave n-1 

Merge n+m 

Partition n-p 

 Setup N 

ATBG 

Join 2 

Leave n-1 

Merge n+m 

Partition n-p 



 

 

CHAPTER 5 

 

CONCLUSION 

 

5.1  CONCLUSION 

 

The research proposes tree-based group key agreement on braid groups and 

extends to authenticated version. The modified STR using braid groups instead of 

Diffie-Hellman supports dynamic membership group operation including join, 

leave, merge and partition with satisfied forward and backward secrecy. My both 

protocols involve braid groups operation including product and inverse with key 

tree whose computation cost is much lower than modular exponentiation in STR 

and braid groups on GDH. My protocols are fully contributory scenario for key 

agreement that not require the trust party or long-term controller in online 

operation to avoid the problems with the centralized trust and the single point of 

failure. My protocols avoid the member serialization by using key tree. A number 

of existing protocols require group member sequencing that in mobile ad hoc 

networks is not efficient since the sequence may not correspond to the best 

geographic node placement and may lead to increase communication cost. 

Therefore communication cost in my protocols is less than braid groups on GDH 

protocol. Moreover protocols reduce the computation cost in group event while 

preserving the constant round communication and the security property. Finally 

ATBG protects man-in-the-middle-attack by using identity authentication. 

Therefore TBG and ATBG are suitable for environment of mobile ad hoc 

networks. 

The limitation of my protocol is discussed as follows. My protocols do not 

consider the key length that using for each member. The key length effect the 

performance in computation cost and security strength. The shorter key length leads 
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to weaker security strength but faster computation. Otherwise the longer key length 

leads to stronger security strength but slower computation.    

Moreover, in merge protocol, the merging group director in previous operation 

before merging process is point of failure in the protocol. The merging group director 

has to exist before needing to merge group. The authenticated group key agreement 

protocol does not consider in authenticated phase. If the authentication of members 

fails because the member needing to join the group is not group member, how the 

protocol can handle in situation? 

 

5.2  FUTURE WORKS 
In the future works, the protocol should be adapted to completely solution. 

First In mobile ad-hoc networks possible occurs multi-hop communication lead to 

more overhead in communication between members. The protocol should be 

considered about communication cost of non-members in all operations.  Later the 

total simulation should be done in any variable such as key length, number of 

members, area etc. The result of simulation can be considered to adapt the protocol.   
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