
AN EFFICIENT AUTHENTICATED GROUP KEY AGREEMENT

ON TREE-BASED BRAID GROUPS IN MOBILE AD HOC

NETWORKS

Thanongsak Aneksrup

A Dissertation Submitted in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Computer Science)

School of Applied Statistics

National Institute of Development Administration

2010

ABSTRACT

Title of Dissertation An Efficient Authenticated Group Key Agreement on

Braid Groups in Ad Hoc Networks

Author Thanongsak Aneksrup

Degree Doctor of Philosophy (Computer Science)

Year 2010

As various applications of ad hoc networks have been proposed, security

issues have become a central concern and are increasingly important. This research

proposed a contributory group key management that approaches by using braid

groups, key tree and the identity authentication system. Without any assumption of

prefixed online trust relationship between nodes, the proposed method works in a self-

organizing way to provide the key generation and key management services using

Tree-based Braid Groups. The using of the proposed Tree-based Braid Groups has

following advantages: (1) the communication cost is minimized to constant time; (2)

the complexity of computation is decreased to linear since the braid groups using just

product and inverse operation by avoiding modular exponential operation. The using

of identity authentication has the following advantages: (1) the storage space and the

communication overheads can be reduced in that the certificate is unnecessary; (2) the

computational costs can be decreased since it requires no public key verification; (3)

there is no key escrow problem since the certificate authority (CA) does not know the

user's private keys. The proposed protocols are more simple, secure and efficiency for

group key management in mobile ad hoc networks.

ACKNOWLEDGEMENTS

I would like to express sincere thanks to my advisor, Associate Professor Dr.

Pipat Hiranvanichakorn, for his valuable advice, encouragement and guidance in

making this dissertation. I also wish to extend thanks and appreciation to all of the

committee members, Assistant Professor Dr. Pramote Kuacharoen, Assistant

Professor Dr. Ohm Sorni and Dr. Tossapon Boongoen for their comments and

suggestions. Thank is also dedicated Dr. Supachot Lerdwarathum as my close friend

and classmate. Family, special thanks are due to my wife for supporting me and

taking care of our children, extremely well throughout my study.

Thanongsak Aneksrup

April 2011

TABLE OF CONTENTS

Page

ABSTRACT iii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1 INTRODUCTION 1

1.1 Security on Mobile Ad-hoc Networks 1

1.2 Related Works 3

1.3 Concept of Purposed Protocol 7

CHAPTER 2 LITERATURE REVIEW 9

2.1 Network Security 10

2.2 Cryptographic 13

2.3 Group Key Agreement Protocol 19

2.4 Authenticated Group Key Agreement Protocol 36

2.5 Key agreement based on Braid Group 37

2.6 Conceptual Model of Purposed Protocol 41

CHAPTER 3 GROUP KEY AGREEMENT USING TREE-BASED BRAID

GROUPS 48

3.1 Key Tree Notation 49

3.2 Braid Groups Key Exchange 50

 3.3 Group Key Agreement on Tree-based

Braid Groups (TBG) 53

3.4 Security Analysis 69

3.5 Complexity Analysis 70

vi

CHAPTER 4 AUTHENTICATED GROUP KEY AGREEMENT USING

TREE-BASED BRAID GROUPS 74

4.1 Two-party Key Agreement Protocol 75

4.2 Authenticated Group Key Agreement Protocol on Tree-based

Braid Groups (ATBG) 77

4.3 Security Analysis 94

4.4 Complexity Analysis 96

CHAPTER 5 CONCLUSION 98

5.1 Conclusion 98

5.2 Future Works 99

BIBLIOGRAPHY 100

BIOGRAPHY 106

LIST OF TABLES

Tables Page

3.1 Communication Cost of TBG Protocol 72

3.2 Computation Cost of TBG Protocol 73

4.1 Communication Cost of ATBG Protocol 97

4.2 Computation Cost of ATBG Protocol 97

LIST OF FIGURES

Figures Page

2.1 Symmetric encryption schemes 14

2.2 Asymmetric key encryption schemes 15

2.3 Example of a digital signature 16

2.4 Hypercube protocol for n = 4 21

2.5 TGDH tree 24

2.6 An example of TGDH join 26

2.7 An example of TGDH leave 27

2.8 An example of 2-group TGDH merge 29

2.9 An example of TGDH partition 30

2.10 STR tree 31

2.11 An example of STR join 33

2.12 An example of STR leave 34

2.13 An example of STR merge 35

2.14 An example of STR partition 36

2.15 Definition of braid groups 38

2.16 The relation of braid groups 38

2.17 Many-to-many Communication 41

2.18 Multi-hop Communication with Non-member Nodes 43

2.19 Key Tree 45

3.1 Notation of key tree 50

3.2 The example group key generating 52

3.3 Braid Permutation Sequence of each Perspective 53

3.4 Before tree updated: M4 join, M2 as director 58

3.5 After tree updated: M4 join, M2 as director 59

3.6 Before tree updated: M2 leave, M3 as director 60

3.7 After tree updated: M2 leave, M3 as director 61

ix

3.8 Before tree updated: Merge Protocol 63

3.9 After tree updated: Merge Protocol 64

3.10 Before tree updated: Partition Protocol 66

3.11 After tree updated: Partition Protocol in first scheme 66

3.12 After tree updated: Partition Protocol in second scheme 67

3.12 After tree updated: Partition Protocol in third scheme 68

4.1 Join protocol : Updated tree that new member received from director 81

4.2 Join protocol : Authenticated key tree that M2 received from new member,

M4 82

4.3 Join protocol : After M1 computes keys and blinded keys 82

4.4 Leave protocol : Before tree updated that M1 leaves 84

4.5 Leave protocol : Authenticated key tree that M3 receives from director,

M2 85

4.6 Leave protocol : After M4 computes keys and blinded keys 85

4.7 Merge Protocol : Before merging process 88

4.8 Merge protocol : Authenticated key tree that merging director, M6,

received from current group director, M4 89

4.9 Merge protocol : Authenticated key tree that M3 received from merging

group director, M6 89

4.10 Merge Protocol : After M2 computes keys and blinded keys 90

4.11 Before tree updated: Partition Protocol 92

4.12 Partition protocol : Authenticated key tree that M4 received from

director, M3 in G1 92

4.13 Partition protocol : Authenticated key tree that M2 received from

director, M5 in G2 93

4.14 Partition Protocol : After M3, M2 computes keys and blinded keys in G1

and G2, respectively 93

CHAPTER 1

INTRODUCTION

1.1 Security on Mobile Ad-hoc Networks

Mobile ad-hoc networks (MANETs) are special type of wireless network in

which a collection of mobile devices with wireless network interfaces may form

temporary network, without the aid of any fixed infrastructure or centralized

administration. A whole new generation of portable devices is commercially

available, such as personal digital assistants (PDA), computer laptops, etc. In

MANETs, nodes within their wireless transmitter range can communicate with each

other directly, while nodes outside the range have to rely on some other nodes to relay

messages. Thus a multi-hop scenario occurs, where packets of the source node are

relayed by several intermediate nodes before reaching the destination node. Every

node what the packet passed functions to be as a router. The success of

communication highly depends on the other node’s cooperation. The MANETs are

also regarded as ideal technology for creating instant communication networks for

civilian and military applications. In recent years, MANETs have received a great

deal of attention in both academia and industry. This emerging technology aims to

provide “anytime-anywhere” networking services on a potentially large scale.

While MANETs can be quickly and inexpensive setup as needed, security is a

critical issue compared to wired or other wireless counterparts. Many passive and

actives security attacks could be launched from the outside by malicious nodes or

from the inside by compromised nodes. There are five fundamental security issues

which have to be addressed: confidentiality, integrity, non-repudiation, authentication

and availability. Because of the high level of self-organization, dynamic topology,

dynamic membership or vulnerable wireless link, MANETs are difficult to secure. In

addition, security solutions applied in most traditional network with a static

2

configuration may not directly implement for protecting them according to the

mobility of MANETs.

Many applications of MANETs involve collaborative computing among a

large number of nodes and are thus group-oriented in nature. Examples of such

applications include coordination of fire fighters in a rescue task and coordination of

soldier during battle. For deploying such applications in an adversarial environment

such as battlefield or even in many civilian commercial scenarios, it is necessary to

provide support for secure group communication.

Secure group communication requires scalable and efficient group

membership management with appropriate access control measures to protect data

and to cope with potential compromises. To this end, a secret key for data encryption

must be distributed securely and efficiently to current members. Each time a

membership change occurs, the secret key must be changed to ensure backward and

forward secrecy. Several proposals for group key management have been made

recently. They range from key distribution schemes for large-scale single-sender

multicast to contributory key agreement schemes for small any-to-any peer groups.

Although most of them focus on wired networks, extensions to wireless networks

(and MANETs) should be explored as such networks are becoming more common

place. Due to the lack of fixed infrastructure and limited resources, it will be much

more complex to adapt protocols and other technologies from the infrastructure based

networks.

The importance of secure group communication motivates the needs of

common shared group key. There are three group key management schemes including

centralized, distributed and contributory group key management. First scheme, the

group key establishment can be centralized, where an entity is responsible for

generating the group key and distributing to group members. This approach has

advantage of being simple but it is claimed that is not appropriate for dynamic group

communication since the central key server must be, at the same time, continuously

available and present in every possible subset of a group in order to support continued

operation in the event of arbitrary network partitions. Continuous availability can be

addressed with fault-tolerance and replication techniques. Unfortunately, the omni-

presence issue is impossible to solve in a scalable and efficient manner. Second

3

scheme, distributed group key management is more suitable to group communication,

especially over unreliable networks. It involves dynamically selecting a group

member that act as a key server. Although robust, this approach has a notable

drawback in that it requires the key server to maintain long-term pairwise secure

channels with all current group members in order to distribute group keys. Third

scheme, contributory group key agreement requires each group members to contribute

for the group key creation. This approach is fault tolerant and diminishes the risks of

potential vicious key generating by a single entity to avoid the problem with the single

point of trust and failure.

In MANETs, key establishment protocols should also provide forward and

backward secrecy, because the dynamic nature allows the joining and the leaving of

member nodes. Most key establishment protocols are based on Diffie-Hellman key

exchange protocol. Many group key agreement protocols were designed based on the

natural extension of Diffie-Hellman key exchange protocol to the multiparty case,

while inheriting all its security characteristics and providing a contributory group key

establishment.

The purpose of this research is to find an authenticated, secure and efficient

key agreement protocol for a group communication in MANETs. The protocol was

based on braid groups cryptographic and tree key techniques by using fully distributed

authenticated without trusted third party such as CA. The protocol requires an off-line

key server for approving public key as CA. The required computational processes in

braid groups techniques are much faster than Diffie-Hellman and elliptic curve

cryptographic techniques. The braid groups is applied in protocol just product and

inverse operation by avoiding modular exponential operation. Therefore, the protocol

reduces both communication and computation cost.

1.2 Related Works
Recently a number of protocols have been proposed to solve the problem of

key management over wireless ad hoc networks. Key pre-distribution has been

discussed in several approaches. Zhu, Xu, Setia, and Jajodia (2003) discuss a secure

communication between two nodes in an ad hoc networks using probabilistic key

sharing scheme in which enables two nodes to establish a pairwise shared key. The

4

protocol used the off-line key server in key pre-distribution phase what is used to

initialize all the nodes. Their protocol is based on two techniques including

probabilistic key sharing and threshold secret sharing. A password based multi-party

key agreement scheme was proposed Asokan and Ginzboorg (1999) where all the

nodes are assumed to share a password. Basagni, Herrin, Rosti, and Bruschi (2001)

described a secure ad hoc network in which all the nodes share a group identification

key stored in tamper-resistant devices. Though all the above schemes perform

efficiently, they require that all the nodes have some pre-determined knowledge. In ad

hoc networks where mobile nodes do not grant the privilege of knowing other group

members beforehand, assumption of such a pre-shared secret is invalid.

The concept of mobile certificate authorities has been discussed by Yi and

Kraverts (2002) and Kong, Zerfos, Luo, Lu, and Zhang (2001). In such schemes, the

responsibilities of a CA are distributed among a set of wireless nodes. A subset

(threshold) of such CAs must be contacted to obtain a valid certificate. Such schemes

have several advantages such as providing data integrity, authentication and non-

repudiation. The drawbacks of such schemes are: (a) identifying nodes that perform

the role of the CAs, consequently these nodes must spend more power; (b) constant

availability of a threshold of CAs in a mobile network; and (c) the use of the

computationally expensive public key encryption systems. Public key certificates are

also used by Hubaux, Buttyan, and Capkun (2001), where all the nodes are assumed

to maintain a local certificate repository and a probabilistic method is used to achieve

a certificate chain between two nodes. This scheme requires that all nodes are

preloaded with a set of certificates and it is possible that two nodes in the ad hoc

network do not achieve a certificate chain. Also, the authors in (Yi et al., 2002; Kong

et al., 2001; Habaux et al., 2001) did not address the distinct features of secure group

communication such as group key formation and member join or leave.

Key establishment using contributory key agreement protocols are discussed

following. Anton and Duarte (2002) discussed a number of such protocols previously

used on wired networks and concluded that the CLIQUES protocol suite (Steiner,

Tsudik, and Waidner, 1998) was best suited for ad hoc networks. Li, Wang, and

Frieder (2002) also used the GDH (Group Diffie-Hellman) protocol, part of the

CLIQUES protocol suite, for key agreement over ad hoc networks. GDH is an

5

efficient protocol with good support for member join and leave operations but it has

some unfavorable features with regard to ad hoc networks. Most importantly, the

GDH scheme requires that the members be serialized or structured in order to

compute the group. Also, the last member in the group acts as a Group Controller

(GC). Consequently the GC does more computation than the other members in the

group. Thus, in using GDH for ad hoc networks deciding which member is going to

perform the operation of a GC is an important problem. Kim, Perrig and Tsudik

(2000; 2004) adapted it to a contributory key agreement protocol TGDH. Every group

member creates a key tree separately. Each leaf node in key tree was associated with a

real group member, while each non-leaf node corresponds to a subgroup of group G,

considered a virtual member. The protocol constructed the keys in key tree, which

every node on the key tree has a Diffie-Hellman key pair. The number of exponential

in computation overhead is log2(N)The important problem of their approach is that

the number of message in partition event is in the order of log2

Steiner, Tsudik, and Waidner (2000) proposed a family of Group Diffie-

Hellman (GDH) protocols for dynamic peer groups. Based on them, Ateniese, Steiner

and Tsudik (2000) proposed a new multiparty authenticated key agreement protocol,

which offers key authentication or integrity, key confirmation, and non-repudiation of

group membership. However, some flaws in this protocol have been found by Pereira

(N). Another group

key agreement developed for teleconferencing was proposed by Steer, Strawczynski,

Diffie and Wiener (1988) in naming STR protocol. This protocol was of particular

interest since the structure of its group key form a special case of the TGDH. STR is

efficient for joining new group members as it takes only two rounds and two modular

exponentiations. Member leaving, however, is relatively difficult. Due to the small

number of rounds which results in a low communication overhead. Kim, Perrig, and

Tsudik (2001) extended the STR protocol. Their researches have constructed protocol

that supports dynamic group. However, its computation costs were quite expensive

because the exponential depended on amount of member, but communication costs

were constant round on all membership events and were not depending on the amount

of members. The main disadvantage of TGDH and STR protocol is single point of

failure at sponsor what had to existing in key tree. These protocols do not support this

situation.

6

and Quisquater (2001). Lee, Lui and Yau (2006) extended tree-based group Diffie-

Hellman on distributed key agreement protocol, reducing the rekeying complexity by

performing interval based rekeying including rebuild algorithm, batch algorithm and

queue-batch algorithm. They also presented an authenticated key agreement protocol.

As the success of their scheme was partially based on a certificate authority, their

protocol encountered the same problems as centralized trust mechanisms. Yasinsac,

Thakur, Carter, and Cubukcu (2002) proposed a key agreement protocol using the

Diffie-Hellman key exchange concept. The main advantage of this protocol was that it

did not involve member serialization. On the downside, the protocol did not

efficiently support member join/leave operations and the protocol also involved the

services of a group controller.

In Wang and Wu (2006) and Abdel-Hafex, Miri, and Orozco-Barbosa (2004)

the protocols were based on elliptic curve cryptographic (ECC). Wang et al. (2006)

used identity-based with bilinear map over the elliptic curves. They used an identity

tree instead of key tree and divided the large group to several subgroups that each

subgroup nodes were independently maintained by the Subgroup Controller (SGC).

Every node could act the subgroup controller. The task of SGC was just to update the

identity tree when there was a membership change. The function of session key

generation and distribution was task of Key Generation Centers (KGCs). The

drawback as centralized trust mechanism of this protocol presented at KGCs, if every

node in subgroup was outside range of KGCs. Abdel-Hafex et al. (2004) extended

authenticated two-party key agreement protocol from LQMSV protocol what was

proposed by Law, Menezes, Qu, Solinas, and Vanstone (2003) to Group LMQSV

(GLMQSV). This protocol also involved authentication process that was build-in key

agreement process without extra communication among member nodes. They used

logical ring in protocol that lead to problem because, in mobility network, the

geometric of node do not correspond with logical ring.

Braid groups what was introduced by Anshel, I.; Anshel M. and Fisher (2001)

has changed the concept on number theory that widely implemented in cryptographic.

Several researches proposed public key cryptosystem using braid groups based on the

hardness of conjugacy problem. The computation cost of braid group can decrease to

number of permutation on linear algebra rather than number of exponential in

7

traditional protocols. Ko, Lee, Cheon, Han, Kang and Park (2000) has proposed the

key exchange protocol on braid groups that based on conjugacy problem in Diffie-

Hellman scheme (GDH) used multiply and inverse operations within braid groups, so

called Ko-Lee problem. The proposed research was different from widely used

cryptosystems on number of theory, even if there are some similarities in design. Kui

and Gang (2004) designed protocol on ad hoc networks based on CLIQUES protocol

with dynamic operation protocol composed of join, leave, merge, partition and refresh

protocol. They applied braid group cryptographic in their protocol. Most importantly,

the protocol required that the members be serialized to construct the group key similar

as GDH protocol.

Man-in-the-middle attack works on above protocols. The authenticated

process can resistant to them. Sibert, Dehornoy and Girault (2006) introduced three

authentication schemes on braid groups. The first of them was a two-pass protocol

relying on a specific version of the conjugacy search problem, while the two other

schemes were iterated three-pass protocols based on the conjugacy search problem

and/or root problem. Shpilrain and Ushakov (2008) offered an authentication scheme

whose security was based on the apparent hardness of the twisted conjugacy search

problem. The suggested parameters were quite large, so that a brute force attack by

exhausting the key space is not feasible. In current, there is only authentication in

two-party key agreement using braid groups. Chaturvedi and Lal (2008) proposed

two-pass authenticated key agreement protocol (AKAP) based on braid groups. They

used long term private and public key of entities for authentication.

1.3 Concept of Purposed Protocol
The purposed protocol is developed to prevent single point of failure, to

reduce computation and communication cost, to satisfy the security requirement and

to prevent security attack. There are two important techniques in protocol including

key tree and braid groups. The protocol is designed based on STR protocol for

reducing the communication cost to constant round. The braid groups is implemented

for reducing the computation cost to avoid modular exponential operation. Moreover,

the purposed protocol is researched as contributory key agreement protocol in key

establishment, the group members compute the group key by themselves. The security

8

requirement is considered in all membership events including join, leave, merge,

partition, and refreshing. There are two protocols in this research including the group

key agreement protocol using tree-based braid groups and the extended protocol with

authentication.

CHAPTER 2

LITERATURE REVIEW

There are some definitions and terminology regarding authenticated key

agreement protocol. A key agreement protocol is a key establishment technique

whereby a shared secret key is derived by two(or more) parties as a function of

information contributed, or associated with, each of these, such that no party can

predetermine the resulting value. A key agreement protocol is contributory if each

party equally contributes to the key and guarantees its freshness. Let A and B be two

honest parties i.e. legitimate who execute the steps of a protocol correctly. A key

agreement protocol is said to provide implicit key authentication (of B to A) if the

party A is assured that no other party aside from a specially identified second party B

can possibly learn the value of a particular secret key. A key agreement protocol

which provides implicit key authentication to both participating parties is called an

authenticated key agreement protocol (A-KA). A protocol provides key confirmation

if a party is assured that its peer (or a group thereof) actually has possession or a

particular secret key. A contributory key agreement protocol provides key integrity if

a party is assured that its particular secret key is a function of only the individual

contributions of all protocol parties. In particular, extraneous contribution(s) to the

group key cannot be tolerated even if it does not afford the attacker(s) with any

additional knowledge. A protocol is said to have perfect forward secrecy if

compromise of long-term keys does not compromise past session keys. A protocol is

said to be vulnerable to known-key attack if compromise of past session keys allows

either a passive adversary to compromise future session keys, or an active adversary

to impersonate one of the protocol parties.

10

2.1 Network Security

When discussing network security, three aspects is covered; the services

required, the potential attacks and the security mechanisms.

The security services aspect includes the functionality that is required to

provide a secure networking environment, while the security attacks cover the

methods that could be employed to break these security services. Finally the security

mechanisms are the basic building blocks used to provide the security services.

2.1.1 Security Services

In providing a secure networking environment some or all of the following

services may be required:

2.1.1.1 Confidentiality

To ensure that transmitted information can only be accessed by the

intended receivers.

2.1.1.2 Authentication

To allow the communicating parties to be assured of the others identity.

2.1.1.3 Integrity

To ensure that the data has not been altered during transmission.

2.1.1.4 Non-repudiation

To ensure that parties can prove the transmission or reception of

information by another party, i.e. a party cannot falsely deny having received or sent

certain data.

2.1.1.5 Availability

To ensure that the intended network services are available to the

intended parties when required. Depending on the capabilities of any potential

attacker different mechanisms may be used to provide the services above.

2.1.2 Security Attacks

Security attacks can be classified in the following two categories depending on

the nature of the attacker.

11

2.1.2.1 Passive attacks

The attacker can only eavesdrop or monitor the network traffic.

Typically this is the easiest form of attack and can be performed without difficulty in

many networking environments, e.g. broadcast type networks such as Ethernet and

wireless networks.

2.1.2.1 Active attacks

The attacker is not only able to listen to the transmission but is also able

to actively alter or obstruct it.

2.1.3 Majority of attacks

Furthermore depending on the attacker actions, the following subcategories

can be used to cover the majority of attacks.

2.1.3.1 Eavesdropping

This attack is used to gain knowledge of the transmitted data. This is a

passive attack which is easily performed in many networking environments as

mentioned above. This attack can easily be prevented by using an encryption scheme

to protect the transmitted data.

2.1.3.2 Traffic analysis

The main goal of this attack is not to gain direct knowledge about the

transmitted data, but to extract information from the characteristics of the

transmission, e.g. amount of data transmitted, identity of the communicating nodes

etc. This information may allow the attacker to deduce sensitive information, e.g. the

roles of the communicating nodes, their position etc. Unlike the previously described

attacks this one is more difficult to prevent.

2.1.3.3 Impersonation

Here the attacker uses the identity of another node to gain unauthorized

access to a resource or data. This attack is often used as a prerequisite to

eavesdropping. By impersonating a legitimate node, the attacker can try to gain access

to the encryption key used to protect the transmitted data. Once this key is known by

the attacker, he can successfully perform the eavesdropping attack.

12

2.1.3.4 Modification

This attack modifies data during the transmission between the

communicating nodes, implying that the communicating nodes do not share the same

view of the transmitted data. An example could be when the transmitted data

represents a financial transaction where the attacker has modified the transactions

value.

2.1.3.5 Insertion

This attack involves an unauthorized party, who inserts new data

claiming that it originates from a legitimate party. This attack is related to that of

impersonation.

2.1.3.6 Replay

The attacker retransmits data previously transmitted by a legitimate

node.

2.1.3.7 Denial of service

This active attack aims at obstructing or limiting access to a certain

resource. This resource could be a specific node or services or the whole network.

2.1.4 Security Mechanisms

Most of the security services previously mentioned can be provided using

different cryptographic techniques. The following subsections give an overview of

which techniques are used to provide each of the services.

2.1.4.1 Confidentiality

It prevents all but those authorized from having the content of the

message. There are multiple possibilities to provide confidentiality. They vary from

physical to mathematical methods. For example the information to be protected, such

as the key, is stored in a room that can only be accessed by the authorized users.

Using some encryption algorithms the information can be encrypted so that only the

user who has the proper keys and knows the algorithms is able to decrypt it.

Encryption can further be roughly classified into two categories: symmetric key

encryption and asymmetric key encryption.

13

2.1.4.2 Integrity

It prevents unauthorized users from altering data. To assure data

integrity, one must be able to detect any unauthorized manipulation of data, such as

deletion and insertion. One of the cryptographic approaches to achieve integrity is

digital signatures. Another possibility is given by hash functions.

2.1.4.3 Non-repudiation

It prevents an entity from denying previous actions. In other words, it is

a method by which the sender of data is provided with proof of delivery and the

recipient is assured of the sender’s identity, so that neither can later deny having

processed the data. For example, someone who submits electronic order should not be

able to deny it later. One of the cryptographic approaches to achieve non-repudiation

is digital signatures.

2.1.4.4 Availability

The service should be available all the time. It must be robust enough to

tolerate network failures and must be resistant against Denial-of-Service (DoS)

attacks.

2.1.4.5 Authentication

Authentication is classified into two categories: entity authentication

and data origin authentication. In the first case any party entering into a

communication session must identify themselves to other participants. In the second

case, sent data should be authenticated with respect to its content, time of sending, etc.

2.2 Cryptographic

A cryptographic solution to achieve confidentiality is using encryption. An

encryption function maps a plain text into a chipper text (meaningless data) for given

key. An encryption scheme is said to be symmetric-key if encrypting key is equal to

decrypting key, it is computationally easy. Thus two parties wishing to communicate

securely need to share the key over some secure channel before they can use the

encryption scheme to communicate over an insecure channel. In contrast, in

asymmetric-key systems it is infeasible to determine decrypting key from given

encrypting key. Thus every user in such a system has a key pair both encrypting and

14

decrypting key which is unique to them. This scheme does away with the need for a

secure channel at any time. While symmetric-key techniques are much faster than

asymmetric ones, they require the parties to have a pre-shared secret. Thus a common

solution is to exchange a symmetric key using asymmetric technique. This holds

particularly true for mobile ad hoc networks as the use of asymmetric-key

cryptography for securing all communication is practically impossible.

2.2.1 Symmetric Key Encryption

Symmetric encryption is illustrated in Figure 2.1. The plain text message m is

encrypted using the shared key k, resulting in the cipher text c. To recover the plain

text message the cipher text is decrypted using the same key used to for the

encryption. Symmetric encryption schemes can be used to provide confidentiality,

integrity and authentication. The non-repudiation can provide, if it uses digital

signature with Big Brother. The shared key must be distributed over a secure

communication channel.

Figure 2.1 Symmetric encryption schemes

2.2.2 Asymmetric Key Encryption

Unlike conventional encryption schemes where the involved parties share a

common encryption/decryption key, asymmetric key encryption schemes depend on

the use of two different but mathematically related keys. One of the keys is used for

encryption and the other for decryption. The asymmetric key encryption scheme is

illustrated in Figure 2.2. Bob generates a pair of keys, his public/private key pair

PkBob/SkBob. The public key is related to the private key, but in such a way that the

private key cannot be derived from it without additional information.

15

If Alice wants to send an encrypted message to Bob, she first needs to obtain

his public key. As the name implies Bob’s public key does not need to be kept secret,

however it must be authenticated, i.e. Alice must be assured that the public key she

believes belongs to Bob is really his.

Once Alice has Bob’s authentic public key PkBob, she encrypts the plain text

message m using it. The resulting cipher text c can then only be decrypted using

Bob’s private key SkBob which only Bob knows.

 Figure 2.2 Asymmetric key encryption schemes

Compared with symmetric key encryption, asymmetric key encryption has a

weaker requirement for the communication channel over which the key distribution is

performed. Asymmetric key encryption only requires an authenticated channel as

opposed to a secure channel that is required for the distribution of symmetric

encryption keys. Asymmetric key encryption can also provide non-repudiation along

with confidentiality, integrity and authentication. However, asymmetric key

encryption requires much more computational resources than symmetric encryption

and therefore has much lower performance. Therefore public key encryption is

typically only used to encrypt small amounts of data, e.g. symmetric encryption keys

and digital signatures.

2.2.3 Digital Signature

A digital signature is a data structure that provides proof of origin, i.e.

authentication and integrity, and depending on how it is used, it can also provide non-

repudiation. Figure 2.3 illustrates how a digital signature is used. Alice wants to send

a message to Bob, however she doesn’t want it to be modified during transmission

16

and Bob wants to be sure that the message really came from Alice. What Alice does is

that she computes a hash digest of the message which she encrypts with her private

key SkAlice. She then sends both the message and the encrypted digest which is here

signature. Bob can then verify the signature by computing the hash digest of the

message he received and comparing it with the digest he gets when decrypting the

signature using Alice’s public key PkAlice. If the digests are equal Bob knows that

Alice sent the message and that it has not been modified since she signed it.

Figure 2.3 Example of a digital signature

2.2.4 Key Establishment

Key establishment may be broadly divided into key transport and key

agreement. A key transport protocol or mechanism is a key establishment technique

where one party creates or otherwise obtains a secret value, and securely transfers it to

the other(s). A key agreement protocol or mechanism is a key establishment technique

in which a shared secret is derived by two (or more) parties as a function of

information contributed by, or associated with, each of these, (ideally) such that no

party can predetermine the resulting value. Thus in scenarios, where there is no

central authority and the task of key generation cannot be assigned to a single (or few)

participant(s)(as is most often the case in ad hoc networks), key agreement is a good

alternative to key transport. But more often in a key agreement protocol, it is required

that a participating member be assured that no other party aside from a specially

identified party (or parties) may gain access to a particular secret key. Such a protocol

17

is known as an authenticated key agreement protocol. It is worth noting here that the

term authentication, in this context, means to have the knowledge of the identity of

parties who may gain access to the key. To corroborate the fact that the same

identities actually participated in the protocol, one has to rely on other mechanisms

like entity authentication. Key agreement protocols can be designed using symmetric

or asymmetric techniques. To further illustrate the above concepts present the two-

party Diffie-Hellman key agreement protocol.

2.2.4.1 The Diffie-Hellman Key Agreement

Developed by Diffie and Hellman, this algorithm allows the

establishment of a cryptographic secret key between two entities by means of data

exchange through an insecure communication channel. The algorithm executed

between two entities A and B is defined as follows:

1) A and B agree on two randomly chosen numbers p and g, so

that p is a large prime number and g < p;

2) A chooses a secret random number SA and B chooses a

secret random number SB;

3) A computes a public value TA = gSA mod p and B computes

a public value TB = gSB mod p;

4) A sends TA to B and B sends TB to A;

5) A computes TB
SA mod p = (gSB)SA mod p and B computes

TA
SB mod p = (gSA)SB mod p.

Since (gSA)SB mod p = (gSB)SA mod p = K, these two entities share a

secret cryptographic key K.

In other works, two entities are able to exchange information through a

channel that anyone can listen to and at the end of the process the two entities, and

only the two entities, share the same secret key.

The security of this algorithm is based on the difficulty to calculate the

secret key K = gSASB mod p, despite of knowing the public values gSA mod p and gSB

This algorithm has a weakness that consists on the lack of

authentication between the two entities. Even though they are able to establish a secret

mod p, when the prime number p is sufficiently large.

18

key, there is no guarantee that these entities are who they claim to be. This weakness

is man-in-the-middle attack problem.

2.2.4.2 Group Key Agreement

Key agreement protocols for more than two parties are known as Group

Key Agreement (GKA) protocols. These get a bit involved as the two-party Diffie-

Hellman key agreement does not extend trivially to more than two parties. They are

well suited to the security needs of small, dynamic, collaborative groups as they offer

the possibility of creating session keys for each group session, thus adjusting well to

group membership changes. Key features of a GKA (Group Key Agreement) protocol

are:

1) Contributory

GKA protocols are contributory in nature which means that all

members participating in the protocol contribute towards the secret and even in the

absence of one contribution it is infeasible to derive the secret.

2) Lack of a central authority

There is no single member controlling the execution of the

protocol. Even if there is some “leader” it is short-lived and restricted to that

particular execution of the protocol.

3) Key Freshness

The secret key derived cannot be predicted in advance (even by

one of the protocol participants).

The key derived from the GKA protocol needs to meet the following

security features:

1) Group key secrecy

It simply means that the derived secret should not be derivable

by a non-participant.

2) Forward key secrecy

 Merely knowing one of the current group keys, one should not

be able to compute previous group keys.

3) Backward key secrecy

Merely knowing one of the current group keys, one should not

be able to compute future group keys.

19

4) Key independence

Knowledge of a subset of group keys in the life-cycle of a

group (by a participant or outsider) should not enable knowledge of any key outside

this subset.

5) Perfect forward secrecy

Knowledge of a long-term secret should not enable one to

compute past group keys.

Thus in the context of ad hoc networks, GKA protocols provide a

mechanism to derive a (symmetric) group key in the absence of a third party.

2.3 Group Key Agreement Protocol

Group Key Agreement protocols find applications in many group applications

including telephone and video conferences, remote consultation and diagnosis

systems for medical applications, contract negotiation, multi-party games,

collaborative work places, electronic commerce environments such as on-line real-

time auctions, and information dissemination of stock quotes. Many GKA protocols

have been proposed in the literature. While some are only suitable for static groups

others work in case of certain kinds of groups only (for instance groups with certain

number of members or groups with the ability to listen to multiple broadcasts in a

single round). While security flaws have been found in some others. This study

presents here protocols which work in case of dynamic groups and are very generic in

their assumptions about the group sizes and dynamics and with no known security

flaws in them. Each protocol is defined in terms of the following operations:

• Initial Key Agreement (IKA): This refers to the setup stage when a number

of new users decide to derive a new group key.

• Auxiliary Key Agreement (AKA): This refers to the group modification

procedures (after a group is formed). It is essential that each of these operations lead

to a change in the group key (to maintain key independence). These operations are:

Join: One new member wishes to join an already established group.

Delete: A member leaves (voluntarily or otherwise) a group.

20

Partition: A group is divided into two (or more) smaller groups. It can also be

viewed as a “Delete” of more than one member.

Merge: Two (or more) groups get together to form a single group. It can also

be viewed as a “Join” by more than one member.

2.3.1 The Burmester and Desmedt Protocol

This protocol was presented by Burmester and Desmedt (1994) and was

executed in three rounds. Each participant Mi, i ∈ [1, n] executes the following

operations:

1) To generate a secret random value ri

The Hypercube protocol was presented by Becker and Willie (1998) and intent

to overcome the high number of messages needed by logically arranging the nodes in

a hypercube. For a network consisting of four nodes positioned as a square, a key is

established between A and B (i.e. gSaSb), and another key between C and D (i.e. gScSd).

These keys are used to establish a single key, ggSaSb·gScSd, among the four entities, as

presented in Figure 2.4. This behavior can be generalized for higher numbers of

 and broadcasts Zi = gri mod p to the

other participants;

2) To compute and broadcasts Xi=(Zi+1/Zi-1)ri to the other participants;

3) To compute the group key Kn=Zi-1
nri·Xi

n-1·Xi+1
n-2·…·Xi+(n-2)

This group key has the form Kn= gr1r2+r2r3+…+rn-1rn mod p and shares the

security characteristics presented by the Diffie-Hellman algorithm. This protocol is

efficient with respect to the total number of rounds. This characteristic could allow

faster execution, but each round requires n simultaneous broadcasts. Simultaneous

broadcasts are usually not possible, even in wireless networks, because there can be

only one broadcast message at a given moment. Due to this characteristic, the

deployment of this protocol must use sequential broadcast messages. Since each

broadcast message acts like a round, there is no longer a low number of rounds

advantage. Another disadvantage is that this protocol makes use of a high number of

exponential operations.

2.3.2 The Hypercube and Octopus Protocols

21

nodes, as long as the number of participants equals 2d

A

B

C

D

gSaSb gScSd

A

B

C

D

(gSaSb)(gScSd)g

, for d ∈ I. This protocol

executes in d rounds.

The Octopus protocol is an extension of the Hypercube protocol for networks

with an arbitrary number of nodes. A subgroup of nodes is arranged in a hypercube,

composing a core. Each core node establishes a key with each nearby non-core node

using the Diffie-Hellman protocol. The product of these keys is used to establish a

key among the core nodes as specified by the Hypercube protocol. This key is then

distributed to the other nodes.

Figure 2.4 Hypercube protocol for n = 4

2.3.3 The CLIQUES Protocol Suite

Developed by Steiner et al. (1998), the CLIQUES protocol suite consists of

key management protocols for dynamic groups. Two of these protocols, IKA.1 and

IKA.2 (Initial Key Agreement 1 and 2), are defined for group key establishment.

Other protocols are specified for member and subgroup addition and exclusion and

key refresh. The protocols from this suite can provide member authentication, which

solves the Diffie-Hellman authentication vulnerability.

2.3.3.1 IKA.1 Protocol

The IKA.1 protocol executes in two stages:

1) Mi  Mi+1 :

{g
S1S2∙∙∙Si

Sk

 | k ∈ [1, i] }, gS1S2∙∙∙Si

2) Mn  Mi :

{ g
S1S2∙∙∙Sn

Si
 | i ∈ [1, n - 1] },

for i ∈ [1, n - 1].

22

At the first stage contributions are collected from all group members

throughout n - 1 rounds. Each group member (except the first) receives a data set that

represents the partial contributions from all the group members that have already

executed this first stage. The member adds its contribution and sends a new data set to

the next group member.

The last group member, Mn, is called the group controller. At the end

of the first stage it receives a data set whose cardinal value is gS1S2∙∙∙Sn-1 and computes

the group key Kn= gS1S2∙∙∙Sn.

At the second stage, the group controller adds its contribution to each

intermediate value and broadcasts this new data set to every other node in the

network. Each intermediate value now consists of the contribution of all group

members except one. In order to compute the group key, each group member Mi

identifies the appropriate intermediate value (the one that does not contain its

contribution) and raises it to its contribution Si, obtaining Kn.

2.3.3.2 IKA.2 Protocol

The IKA.1 protocol requires i + 1 exponential operations when

executed by the ith node. In some environments it is desirable to minimize the

computational effort demanded from each group member. Some examples of these

environments are groups with a high number of members and groups whose members

have limited computational capacity. The IKA.2 protocol was proposed in order to

minimize the demanded computational cost. It is similar to the IKA.1 protocol but is

executed in four stages:

1) Mi  Mi+1 ; i ∈ [1, n - 2] :

gS1S2∙∙∙Si

2) Mn-1  Mi ; i ∈ [1, n - 2] :

gS1S2∙∙∙Sn-1

3) Mi  Mn ; i ∈ [1, n - 1] :

 g
S1S2∙∙∙Sn-1

Si

4) Mn  Mi; i ∈ [1, n - 1] :

{ g
S1S2∙∙∙Sn

Si
 | i ∈ [1, n - 1] }.

23

At the first stage contributions are collected from the n-2 first group

members by means of a single message sent from one member to the next that gathers

all the previous contributions. At the second stage, Mn-1 adds its contribution to the

received message and broadcasts this new message to the n - 2 first members. At the

third stage each member factors out its own contribution and sends this result to the

last group member. At the last stage, Mn collects all the sets from the previous stage,

raises each one of them to its contribution Sn and broadcasts these results to the other

group members, allowing them to compute the group key.

These two protocols have the advantage of requiring a low number of

messages. The IKA.2 protocol has reduced the number of exponential operations

required for group key establishment. Unlike the other presented protocols, this

protocol suite provides mechanisms for group addition and exclusion, making it

unnecessary to execute the entire key establishment protocol. This characteristic

reduces the involved costs and provides backward and forward secrecy.

2.3.3.3 Join Protocol

To handle a join event, a group controller is needed. It can be any

member in the group. The group controller has usually higher performance capability

than other members. Let Mc be the group controller, and let Mi+1 be the potential

member. In first step, Mc chooses a new random secret exponent Sc. The message

will be sent by Mc to the new member Mi+1. Mi+1 generates randomly its secret Si+1

and embeds Si+1 in the message which it then broadcasts to all members in group.

After running join protocol, all members compute the new group key.

2.3.3.4 Leave Protocol

The leave protocol in CLIQUES is relatively simple. It needs only one

round. Let Mc be group controller, and Ml be the member which leaves the group.

First, Mc updates its secret Sc. Mc constructs then a broadcast message by embedding

its new secret. Finally Mc broadcasts the message to the group. After running leave

protocol, all remaining members compute the new group key. Although the

contribution Sl is still factored into the new group key, the left member Ml is unable

to compute the new group key, due to the absence of the subkey g
ScS1S2∙∙∙Sn

Sl

.

24

2.3.4 Tree-based Group Key Agreement (TGDH) Protocol

TGDH is an adaptation of key trees (Kim et al. 2000;2004) in the context of

fully distributed, contributory group key agreement. TGDH computes a group key

derived from the contributions of all group members using binary tree.

In a TGDH key tree, the node located at level 0, node (0, 0), is the root. The

height h of a tree equals the shallowest level. A member is associated with a leaf

node. A non-leaf node is called an internal node with two children. The left child of

node (l, v) is node (l + 1, 2v), and the right one is node (l + 1, 2v + 1). A node (l, v) is

associated with a key K(l,v) and the corresponding blinded key BK(l,v)= gK(l,v) mod p.

The key K(l,v) can be recursively computed as follows:

K(l,v) = BK(l+1,2v)
K(l+1,2v+1) mod p

= BK(l+1,2v+1)
K(l+1,2v) mod p

= gK(l+1,2v)K(l+1,2v+1) mod p

Figure 2.5 gives an example of a key tree of a group with six members. The

group key for this group is

K(0,0)= ggS3∙gS1∙S2 ∙gS6∙g
S4∙S5

 mod p, where S1, · · · , S6 are the keys of members

M1, · · · , M6

[0,0]

[1,0] [1,1]

[2,1][2,0]

M3

M4M1

[3,1][3,0]

[2,3][2,2]

[3,5][3,4]

M5M2

M6

l = 0

l = 1

l = 2

l = 3

h = 3

respectively.

Figure 2.5 TGDH tree

The overhead of the TGDH protocol depends on many factors, e.g. tree height,

balance of the key tree, location of insertion points and leaving members. Hence some

25

characteristics can only be estimated for the worst case, and some issues can even not

be estimated.

Assume that it has a TGDH tree with n members, there are n − 1 internal

nodes. Each member must know all blinded keys of all nodes except for the root, and

all keys along the path from that member node to the root node.

The rest of this section gives an overview of the protocols setup, join, leave,

merge and partition, and refresh in TGDH.

2.3.4.1 Join protocol

Assume that a new member Mn+1 joins to a group of n members

{ M1, · · · , Mn }. The new member broadcasts its join-request with its own BKn+1.

After receiving the join-request, each member in current group determines the

insertion point. If the tree is fully balanced, the new member joins to the root node.

Otherwise, the shallowest rightmost leaf node is the insertion point. The reason of

such selection is to keep the key tree as balanced as possible.

The tree must be first updated. The sponsor is the shallowest rightmost

leaf in the subtree rooted at the insertion node. A new intermediate node is created.

Node at the insertion point becomes the left child of the new intermediate node, and

the new member becomes the right child. The process of join protocol in TGDH is

illustrated as follows:

1) The new member broadcasts its join-request with its blinded

key.

2) Every member updates key tree, removes all keys and

blinded keys from sponsor to the root node. The sponsor Ms

Figure 2.6 gives an example of a group with three members when a new

member M

 additionally, updates its

share, computes then all keys and blinded keys in its key-path, and broadcasts the

updated tree with all blinded keys.

3) Every member computes the group key using new key tree.

4 joins into this group. Member M3 is selected as the sponsor. Each

member in the old tree updates the tree by inserting M4 and removes the keys and

blinded keys in M3’s key-path. The sponsor M3 additionally updates its share and

computes K(1,1), BK(1,1), and K(0,0), and then broadcasts the updated tree with all

blinded keys (i.e. BK(2,0), BK(2,1), BK(2,2), BK(2,3), BK(1,0) and BK(1,1)). Equipped with

26

the broadcast message, M1 and M2 computes the new K(0,0), and M4 computes K(1,1)

and K(0,0)

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[0,0]+ [0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2

M3

M4

Sponser

M1 M2 M3 M4

Sponser

New intermediate node

.

Figure 2.6 An example of TGDH join

2.3.4.2 Leave Protocol

The leave protocol is relatively simple. Assume that it has a group of n

members and member Ml leaves the group. The rightmost leaf node of Ml’s sibling

subtree is selected as the sponsor. After notification from system about the leave

event, each remaining member updates its key tree by deleting Ml. The former sibling

of Md is promoted to replace Md’s parent node. The sponsor must additionally refresh

keys in its key-path. The process of leave protocol is illustrated as follows:

1) Each member removes the leaving member and relevant

parent node, removes all keys and blinded keys pairs from sponsor to root node. The

Sponsor Ms additionally, updates its share, computes then all keys and blinded keys in

its key-path, and broadcasts updated key tree including all blinded keys.

2) Every member computes the group key using new key tree.

Figure 2.7 gives an example of a group of five members when M3

leaves this group. M5 is selected as the sponsor. The remaining members M1, M2,

M4, and M5 remove the nodes (2,2) and (1,1). M5 additionally updates its share and

computes K(1,1), BK(1,1), K(0,0), and then broadcasts the updated tree with all blinded

keys. Equipped with this broadcast message, M1 and M2 compute new K(0,0), and M4

computes K(1,1), and K(0,0).

27

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2 M3

M4

Sponser

[3,7][3,6]

M5

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2 M4

Sponser

M5

Figure 2.7 An example of TGDH leave

2.3.4.3 Merge Protocol

Compared to CLIQUES, the main virtue of TGDH is that it is much

simpler to merge two or more groups. Multiple join can be processed as follows. The

protocol assumes that m members want to join group G1. The m individual members

form a TGDH group G2. Then G2 merges with G1. The protocol considers first the

merge of two groups. It can be simply extended to the merge of more than two

groups, say k > 2, groups by executing the two-group merge k − 1 times.

First the two trees are ordered from the highest to lowest, denoted T1

and T2. If they are of the same height, they are ordered according to some other

criteria. T2 joins to T1, and the insertion point is determined. If the two trees are of the

same height, it joins simply T2 to the root node of T1. Otherwise it first tries to find

the rightmost shallowest node where the join would not increase the overall tree

height. If no such node exists, the insertion point is the root node.

Assume that we have m trees to be merged. They can be ordered from

the highest to the lowest: T1, · · · , Tm. To perform merge, each tree Ti has its

rightmost shallowest leaf node as sponsor Msi . The process is illustrated as follows:

1) Each sponsor Msi in tree Ti updates its share, computes all

keys and blinded keys in the key-path of Ti (including BK(0,0)), broadcasts updated

tree Ti including only all blinded keys. For i = 1, 2, · · · , m. Each member

additionally, updates the key tree and determinates the new sponsors Ms1 , · · · , Msm

, removes all keys and blinded keys in sponsors’ key-paths.

28

2) To repeat this step until any sponsor computes group key.

Each sponsor Msi with 1 ≤ i ≤ m, computes all keys and blinded keys pairs in the key-

path as far as possible, and broadcasts updated tree with all blinded keys.

3) Every member computes the group key new key tree.

An example of the merge of two groups is given in Figure 2.8. Both

sponsors M5 and M7 first update their shares respectively. Then M5 computes new

K(1,1), BK(1,1), K(0,0), and BK(0,0) in tree T5, and M7 computes K(0,0), and BK(0,0) in

tree T7. Both sponsors M5 and M7 broadcast their updated trees with all blinded keys.

Each member merges both trees independently, and chooses M2 as the new sponsor.

All members then remove all keys and blinded keys in M2’s key-path. M2

additionally updates its share and computes new K(2,1), BK(2,1), K(1,0), BK(1,0), and

K(0,0). M2 then broadcasts the updated tree with all blinded keys. Equipped with the

broadcast message, M1 computes K(2,0), K(1,0), and K(0,0). M6 and M7 compute K(1,0),

and K(0,0). All other members M3, M4, and M5 compute only the new group key

K(0,0). Since there is only one sponsor for the merge of two groups, M2

2) To repeat this step until any sponsor computes the group

key. Each sponsor Ms

 knows all

blinded keys in its co-path so that it is able to compute all keys and blinded keys in its

key-path.

2.3.4.4 Partition Protocol

Assume that it has a group of n members and k of them leave the group.

In the first round, every remaining member updates its tree by deleting all partitioned

members as well as their respective parent nodes. In other words, if all leaf nodes of a

subtree leave the group, the root node of this subtree is marked as leaving (namely the

whole subtree is marked as leaving) and its leaf nodes are removed from the leaving

nodes list. For each leaving node it identifies a sponsor using the same criteria as

described in Section 2.3.4.2. The process of partition protocol is illustrated as follows:

 1) Every member updates key tree by deleting all leaving

member nodes and their parent nodes, removes all keys and blinded keys from

sponsors to the root node. The shallowest rightmost sponsor additionally updates its

share.

i computes all keys and blinded keys in the key-path as far as

possible, broadcasts updated tree including all blinded keys.

29

3) Every member computes the group key using new key tree

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2

M3 M4

Sponser

[3,5][3,4]

M5

[0,0]

[1,0] [1,1]+ Sponser

M6 M7

Tree T5 Tree T7

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2 M3 M4

[3,5][3,4]

M5

M6 M7

[3,3][3,2][3,1][3,0]

New intermediate node

New
sponser

Merged Tree

Figure 2.8 An example of 2-group TGDH merge

An example of TGDH partition is given in Figure 2.9. A group of seven

members M1, · , M7 is partitioned. From the perspective of M5, members M2, M4, M6

and M7 leave the group, so M5 is in tree T5 after the partition, the same for M1 and

M3. However from the perspective of M4, the leaving members are M1, M3, and M5.

So M4 is in tree T4 after the partition, the same manner is for M2, M6, and M7.

30

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M1 M2 M3 M4

[3,7][3,6]
M5

M6 M7

[3,3][3,2][3,1][3,0]

[0,0]

[1,0]

[2,1][2,0]

[1,1]

M1

M5

M3

[0,0]

[1,0]

[2,1][2,0]

[1,1]

[2,3][2,2]

M2 M4 M6 M7

Tree T5

Tree T4

Sponser Sponser

Sponser

Sponser Sponser Sponser Sponser

Figure 2.9 An example of TGDH partition

2.3.5 STR Protocol

STR is basically an “extreme” version of TGDH, where the key tree structure

is completely imbalanced or stretched out. This protocol and its features are described

in details (Steer et al.,1998; Kim et al, 2001). Like TGDH, the STR protocol uses a

tree structure that associates the leaves with individual random session contributions

of the group members. Every internal (non-leaf) node has an associated secret key and

a public blinded key. The secret key is the result of a Diffie-Hellman key agreement

between the node’s two children. The group key is the key associated with the root

node.

STR uses a key tree to manage the key group. The tree has two types of nodes,

namely leaf and internal nodes. Each specific group member Mi is associated with a

leaf node LN i, while an internal node INi has two children: the left child INi−1, and

the right child LN i. Each leaf node LNi generates randomly a session random si

br

which should be kept secretly, and computes the corresponding blinded session

random

i = gsi. An internal node INi has a secret key k i and the corresponding public

blinded key bki = gki. The difference is that ki is not randomly chosen, but the result

of a two-party DH key exchange between its two children:

31

ki= bki-1
si = bri

ki-1 ≡ gki-1si mod p, i > 1. (2.1)

The internal node with the greatest index is considered to be the root. The

secret key of the root is the shared group key. For a group of n members, the root is

INn, and the group key kn can be recursively computed using Equation 2.1. If n = 4,

its group key is

 KG= gs4∙gs3∙gs2s1
 mod p.

Looking at the STR key tree with n members in Figure 2.10, the member Mc,

1 ≤ i ≤ n, must know its own session random, all blinded keys and blinded session

random, and keys of the path from its parent node to root node. More formally, it

must store sc, bri, bk i for i = 1, · · · , n (br1 = bk1), and ki

kn

LN1/M1

kn-1, bkn-1 sn, brn

sn-1, brn-1

s1/k1, br1/bk1

k2, bk2

s2, br2

LN2/M2

IN1

IN2

INn-1

INn

LNn-1/Mn-1

LNn/Mn

 for i = c, · · · , n. The rest of

this section describes how STR deals with the group operations

Figure 2.10 STR tree

2.3.5.1 Join Protocol

The current group has n members, the new member is identified with

Mn+1. The tree will be updated by incrementing n = n + 1 and adding a new internal

node INn with two children: the root node INn−1 of the prior tree Ti on the left and the

new leaf node LNn on the right. This node becomes the new root node. Figure 2.11

gives an example of addition of a new member to a group with four members.

32

For simplicity, it uses n in the following to denote the number of group

members before operation join. To deal with the join operation, the member Mn is

chosen as the sponsor. The new member Mn+1 broadcasts a join request containing its

own blinded key bkn+1. All members Mi with 1 ≤ i ≤ n can compute the new group

key. The sponsor unicasts all blinded keys to Mn+1. Equipped with this message the

new member can also compute the new group key.

However this join protocol does not provide key independence since

knowledge of a previous group key can be used to compute the new group key. To

remedy the situation, they suggest that the sponsor updates its session random. The

changed information will then be broadcasted to all members. The process is

illustrated as follows:

 1) The new member broadcasts its own blinded session

random brn+1.

 2) The sponsor Ms(s = n) updates its session random ss and

brs, computes new kn, bkn, and broadcasts the updated tree with all blinded keys and

blinded session random.

3) Every member Mi updates the tree by inserting Mn+1

• if i = 1, · · · , n − 2, computes kj= brj
kj-1 for j = n − 1,

, sets

n = n + 1, and computes the keys:

• if i = n (new member), computes kn= bkn-1
sn ,

• if i = s (sponsor), computes kn= brn
kn-1 .

Figure 2.11 shows the example of M5 join the existing group.

2.3.5.2 Leave Protocol

Like in CLIQUES, the leave protocol in STR is relatively simple, only

one round is needed. Suppose it has a group of n members and the member Ml with

1 ≤ l ≤ n leaves the group. Again it needs a sponsor Ms to update its session random.

If l > 1, the sponsor is the leaf node directly below the leaving member, i.e. Ml−1,

otherwise the sponsor is M2. Since the tree will be updated and renumbered (see

below), if M1 leaves the group, the sponsor is also M1 after renumbering.

33

k4

LN1/M1

k3, bk3 s4, br4

s3, br3

s1/k1, br1/bk1

k2, bk2

s2, br2

LN2/M2

IN1

IN2

IN3

IN4

LN3/M3

LN4/M4

s5, br5+
M5

k5

LN1/M1

k3, bk3 s4, br4

s3, br3

s1/k1, br1/bk1

k2, bk2

s2, br2

LN2/M2

IN1

IN2

IN3

IN4

LN3/M3

LN4/M4

k4, bk4 s5, br5

LN5/M5

IN4

IN5

Sponser

Sponser

Figure 2.11 An example of STR join

After notification of the leave event from the group communication

system, each remaining member updates the key tree by deleting the nodes LN l and

INl, and then renumbers the nodes above Ml. The process is illustrated as follows:

 1) Every member updates the tree by removing the leaving

member Ml, sets n = n − 1.

2) The sponsor Ms additionally updates its session random ss

and brs, computes kn and k i and bki, ∀i ∈ [max(2, s), n − 1], and broadcasts the

updated tree with all blinded keys and brs.

3) Every member Mi, computes the group key.

Figure 2.12 gives an example of the exclusion of a member from a

group of four members.

2.3.5.3 Merge Protocol

The key tree allows relatively simple merge of two groups. The merge

protocol covers also the multiple join.

The smaller group is merged onto the larger one, i.e. to place a smaller

key tree directly on top of the larger one. If group sizes are equal, it can order them

according to some other criteria. A new intermediate node N with two children is

created. The root of the larger tree becomes the left child of N, while the lowest-

numbered leaf of the smaller trees becomes the right child of N. The root of smaller

tree becomes the root of the new tree.

34

k4

LN1/M1

k3, bk3 s4, br4

s3, br3

s1/k1, br1/bk1

k2, bk2

s2, br2

LN2/M2

IN1

IN2

IN3

IN4

LN3/M3

LN4/M4

Sponser

k3

LN1/M1(M2)

s3, br3

s1/k1, br1/bk1

k2, bk2

s2, br2

LN2/M2(M3)
IN1

IN2

IN3

LN3/M3(M4)

Figure 2.12 An example of STR leave

It needs a sponsor for each group, the same as in join protocol, the

topmost leaf node is selected as sponsor. Both sponsors exchange key their respective

key trees containing all blinded keys in the first round, the sponsor of the larger key

tree becomes then the new sponsor in round 2. The new sponsor updates first its

session random, and then computes all key and blinded key pair up to the new root

node. It then broadcasts the new tree with all blinded keys and blinded session

random.

Figure 2.13 gives an example of the merge of two groups, with three

and two members respectively.

Assume It has two trees, the larger one T1 with n1 members, and the

less one T2 with n2 members. The sponsors of both trees are denoted by Ms1 and Ms2

respectively. The process to merge two groups is illustrated as follows:

 1) Both sponsors Ms1 and Ms2 exchange T1 and T2 with all

blinded keys and blinded session random respectively

2) The sponsor Ms (formerly Ms1) updates its session random,

computes (ki, bk i), i = n1 − 1, · · · , n1 + n2 − 1 , and kn1+n2 , and broadcasts the

updated tree with all blinded keys.

3) Every member Mi computes the group key.

35

Sponser

k4

LN1/M1

s3, br3

s1/k1, br1/bk1

k2, bk2

s2, br2

LN2/M2

IN1

IN2

IN3

LN3/M3

Sponser

k2

LN1/M1
2

s1/k1, br1/bk1 s2, br2

LN2/M2
2

IN1

IN2

+

k5

LN1/M1

k3, bk3 s4, br4

s3, br3k2, bk2

s2, br2

LN2/M2

IN2

IN3

LN3/M3

LN4/M4(M1
2)

k4, bk4 s5, br5

LN5/M5(M2
2)

IN4

IN5

Sponser

s1/k1, br1/bk1IN1

New intermediate node

Figure 2.13 An example of STR merge

The merge protocol provides backward secrecy since all members are

only given blinded keys of the other groups. However, the merge protocol does not

provide key independence, since knowledge of a group key of tree T1 used before

merge can be used to compute the group key used after the merge. This problem will

be remedied, if the sponsor in the second round updates its session random.

2.3.5.4 Partition Protocol

The partition protocol is similar to the leave protocol. The only

difference is the choice of the sponsor. They usually choose the surviving leaf node

directly below the lowest-numbered leaving member. If no such leaf node exists, in

other words, if M1 leaves the group, they choose the lowest-numbered surviving leaf

node as sponsor. An example is given in Figure 2.14.

Suppose there are a group of n members when p of them leave the

group. The process is illustrated as follows:

 1) Every member updates the tree by removing the leaving

members, sets n = n − p.

2) The sponsor Ms additionally updates its session random ss

and the blinded one brs, computes new kn, and (ki, bki), ∀i ∈ [max(2, s), n − 1], and

broadcasts the updated tree with all blinded keys and its new blinded session random.

3) Every member Mi computes the group key.

36

k5

LN1/M1

k3, bk3 s4, br4

s3, br3k2, bk2

s2, br2

LN2/M2

IN2

IN3

IN4

LN3/M3

LN4/M4

k4, bk4 s5, br5

LN5/M5

IN4

IN5

Sponser

s1/k1, br1/bk1IN1

k5, bk5 s6, br6

IN6

LN6/M6

Sponser

k2

LN1/M1(M4)

s1/k1, br1/bk1 s2, br2

LN2/M2(M6)

IN1

IN2

k4

LN1/M1

k3, bk3 s4, br4

s3, br3

s1/k1, br1/bk1

k2, bk2

s2, br2

LN2/M2

IN1

IN2

IN3

IN4

LN3/M3

LN4/M4(M5)
Sponser

Figure 2.14 An example of STR partition

2.4 Authenticated Group Key Agreement Protocol

2.4.1 Authenticated Group Deffie-Hellman Protocol (A-GDH)

 The Authenticated group Deffie-Hellman protocol is proposed by Ateniese et

al. (2000). The extended the solution from GDH (Steiner et al., 1998). The implicit

key authentication is implemented in the protocol. The member Mn shares a distinct

secret Kin, where Kin = F(𝛼𝛼a
xi⋅ xn mod p)1T with i ∈ [1, n – 1]. xi is long term secret key

that selected by every members. The summary protocol is discussed as follows.

Round i

 Mi  Mi+1 :

{ g
S1S2∙∙∙Si

Sk

 | k ∈ [1, i] }, gS1S2∙∙∙Si

Round n

Mn  Mi :

{ g
S1S2∙∙∙Sn

Si
 Kin | i ∈ [1, n - 1] },

for i ∈ [1, n - 1].

 Every member computes shared key from g�
S1S2∙∙∙Sn

Si
 Kin�Kin

-1.Si
1T = gS1S2∙∙∙Sn

1T.

37

2.5 Key agreement based on Braid Group

The computational security of braid groups is based on the difficulty of

solving conjugacy and commutator equations in suitably chosen groups. They observe

that braid groups are a particularly promising class of groups for the construction of

such protocols due to results from Birman, Ko and Lee (1998). This observation was

taken up by Ko et al. (2000) who specifies a Diffie-Hellman type key agreement

protocol employing commuting one-way functions on braid groups. Some braid group

based key agreement protocols were designed in last five years. They gave a

specialized version of key agreement protocol based on conjugacy problem. Anshel et

al. (2001) put up with their commutator key agreement protocol in the following year.

Lee et al. (2006) extend two-party key agreement from Ko et al. (2000) to be the group

key agreement on braid group based on the hardness Ko-Lee problem and Cliques. They

extended protocol to authenticated group key agreement. Kui et al. (2004) designed the

group key agreement based on braid group and Diffie-Hellman key exchanges protocol

with dynamic operation protocol including join, leave, merge, partition and refresh

protocols.

2.5.1 Preliminaries of Braid Group

The braid groups were first systematically proposed by Emil Artin. He introduced

the Artin generators σ1, σ2, …, σn-1 for the n strand braid groups what is denoted as Bn.

The integer n is called the braid index and each element of Bn is called an n-braid. The Bn

is a collection of disjoint n strings. A general n-braid is constructed by iteratively applying

the σi (i = 1,.., n-1) operator, which switches the lower endpoints of the ith and (i+1)th

strings keeping the upper endpoints fixed with the (i+1)th string brought above the ith

string. If the (i+1)th string passes below the ith string, it is denoted as σi
-1. Any n-braid can

be expressed as a braid word, e.g., σ3σ2σ1
-1σ2

-1 is a braid word, a in Figure 2.15, in

the braid group B4. The inverse of braid word is constructed by reversing each crossing

sequentially. For example is shown in Figure 2.15, b = σ1
-1σ3

-1σ2
-1 and b-1 =

σ2σ3σ2
 and The multiplication of two braids word, ab, is the braid achieved by

positioning b on the bottom of a. The identity is braid is not intertwining strings.

38

i j j i i

σi σi+1 σi = σi+1 σi σi+1

… …

i

σi σj =σj σi

Figure 2.15 Definition of braid groups

The relation of n-braid groups Bn

1) σ

 are as follows and shown in Figure 2.16:

i σj = σj σi

2) σ

 where | i - j | ≥ 2

i σi+1 σi = σi+1 σi σ

i+1

Figure 2.16 The relation of braid groups

Product operation and inverse operation can be done in O(|w|n) (Cha, Ko, Lee,

Han and Cheon, 2001) where w is the maximum of canonical lengths and n is the

braid index. The implementation speed of public-key cryptosystem based on braid

groups is much faster than that of ECC and RSA.

2.5.2 Hard Problem in the Braid Groups

The following section explains braid groups in generalized conjugacy search

problem (Kim et al., 2004) that is applied to this protocols in order to increasing strength

39

of key. The problem say that x and y are conjugate if there is element a such that y = a x a-

1 for m < n, Bm can be considered as a subgroup of Bn generated by σ1, σ2, …, σn-1.

Instance: (x, y) ∈ Bn × Bn such that y = a x a-1 for some a ∈ Bn.

Objective: Find b ∈ Bm such that y = b x b-1 for m ≤ n.

Therefore it can conclude that x and y are conjugate. It is easy to compute y

when known a and x but the attacks need exponential time to compute b from b x b-

1 when known x and y.

They consider two subgroups Bl and Br of Bl+r. The Bl and Br are made by

braiding left l strand and right r strand among l+r strand respectively. The cumulative

property for any a ∈ Bl and b ∈ Br is ab = ba. The adequately complicated (l+r)-braid is

selected as x ∈ Bl+r. Thus the one-way function is shown as follows:

f : Bl × Bl+r  Bl+ r × Bl+r , f(a,x) = (a x a-1, x)

(2.2)

The function is simply to calculate a x a-1 for given a and x but need exponential

time to compute a from the information. This one-way function is based on the

generalized conjugacy search problem.

2.5.3 Two-party Key Agreement on Braid Groups

There are two types of Two-party key agreement on braid groups. One of them

is called Commutator Key Agreement Protocol, presented by Anshel et al (2001),

based on combinatorial groups and conjugacy problems. This protocol is not Diffie-

Hellman type key agreement protocol.

Ko et al. (2000) proposed a new Diffie-Hellman type key agreement protocol

on braid groups based on the hardness of so called Ko-Lee problem. The foundation

of this protocol is quite different from widely used protocols on number theory,

though there are some similarities in design. This key agreement protocol works as

follows:

 2.5.3.1 Preparation Step

 Suppose A and B want to share a common secret key. An appropriate

pair of integers (l, r) and a sufficiently complicated (l + r)-braid α ∈ Bl+r is selected

and published.

40

 2.5.3.2 Key agreement Scheme

1) A chooses a random secret braid r1 ∈ LBl and sends y1=

 r1α r1
-1 to B.

2) B chooses a random secret braid r2 ∈ RBr and sends y2=

 r2α r2
-1 to A.

3) A receives y2 and computes the shared key k = r1y2 r1
-1.

4) B receives y1 and computes the shared key k = r2y1 r2
-1.

Since r1 ∈ LBl and r2 ∈ RBr ; r1r2 = r2r1. This implies k = r1y2 r1
-1 =

r2y1 r2
-1. Therefore A and B obtain the common secret k.

2.5.4 Multiparty Key Agreement on Braid Groupss

Lee et al. (2006) extended above two-party key agreement protocol to the

group key agreement protocol by using IKA.1 (GDH.2) structure.

Consider n subgroups Bl1, Bl2 , . . . , Bln of l-braid group Bl where

l = l1+l2+ . . . +ln for some appropriate integers l1, l2, . . . , ln. Each Bli is the subgroup

of Bl consisting of braids made by braiding li groups from the left among l-strands

with the order l1, l2, . . . , ln. For any rm ∈ Blm and rn ∈ Bln with m ≠ n, rmrn = rnrm.

Let α ∈ Bl be a sufficiently complicated l-braid. Supposing {Mi | i = 1, . . . , n }

is the set of members wishing to share a key. The shared group key is constructed by

performing the following steps.

Round i, i ∈ [1, n - 1]:

Mi selects a random ri ∈ Bli , Mi  Mi+1:

 { ri…r^
j… r1α r1

-1…r^
j
-1…ri

-1 | j = 1,2, …, i } and

 ri…rj… r1α r1
-1…rj

-1…ri
-1

where r^
j means that rj does not exist.

Round n:

Mn selects a random rn ∈ Bln, Mn  Mi, i ∈ [1, n- 1]:

{ rn…r^
i… r1α r1

-1…r^
i
-1…rn

-1 }.

The group key is obtained as rn… r1α r1
-1… rn

-1.

41

2.6 Conceptual Model of Purposed Protocol

2.6.1 Network Assumption

The communication model, the protocol considers group-oriented

communication so called many-to-many communication as shown in Figure 2.17; that

is, messages are addressed to all the members. For the ease of presentation, in this

section, the protocol assumes that all nodes in ad hoc networks are members of a

group. In next section, the study discusses how this scheme can be extended for

networks where not all nodes are members of a group. For that group-wide symmetric

key is used to encrypt group broadcast message. Note that using pairwise shared keys

for securing group communication does not improve security in comparison to a

scheme based on group keys. This is because under both schemes an adversary only

needs to compromise one node to obtain the group data; moreover, if pairwise keys

are used for securing group data, a node will have to perform decrypting and re-

encrypting for the data packets it is forwarding.

The protocol assume that the resources of a node, such as power, computation

and communication capacity, and storage are relatively constrained; thus a node

neither can afford public-key operation nor has space for storing pre-deployed

pairwise shared keys for all the nodes in the network. However, the protocol assumes

that every node has space for storing key tree and computation capacity for computing

product and inverse operation.

Figure 2.17 Many-to-many Communication

42

Once a group is formed, it is ready to be used by other applications. However,

in a dynamic group, the views of the underlying group communication system are

dynamic. Hence initial group key agreement is only one part. A comprehensive group

key agreement scheme must also be able to handle adjustments to group secrets

subsequent to all membership change operations in the underlying group

communication system. All member operations taking place in this phase can be

further classified into two types, addition and exclusion of members. Additive events

include addition of single and multiple members, while exclusion events include

deletion of single and multiple members.

2.6.2 Network with Non-member Nodes

Multi-hop communications are another possibility in mobile ad hoc networks.

Two devices that are mutually unreachable can communicate as long as there is at

least one chain of devices that is reachable by both. Multi-hop ad hoc network can be

useful consists of several devices, static or dynamic movement, where the devices

communication range is extended by using other devices as simple repeaters. It means

one or several non-member nodes may be involved in forwarding data packet for

group members that are not directly neighboring as shown in Figure 2.18. Although

non-member nodes are involved in forwarding the messages for member nodes, they

cannot decrypt the message.

2.6.3 Security Assumptions and Attack Models

The security assumptions and attack models is discussed as follows.

2.6.3.1 There is no single member controlling the execution of the

protocol but there is some “leader” it is short-lived and restricted to that particular

execution of the protocol.

2.6.3.2 The contributory group key management requires each group

member to contribute an equal share to the common group key (which is then

computed as a function of all members’ contributions). This avoids the problems with

the centralized trust and the single point of failure.

43

Figure 2.18 Multi-hop Communication with Non-member Nodes

2.6.3.3 If the group memberships are not changed, protocol have to

refresh the key periodically, There are two main reasons, one is to limit exposure due

to loss of group session keys, the other is to limit the amount of ciphertext available to

cryptanalysis for a given group session key. This makes it important for the key

refresh protocol not to violate key independence. Additionally, note that the loss of a

member’s key share can result in the disclosure of all the session keys to which the

member has contributed with this share.

2.6.3.4 The solution did not distinguish between an attacker and a

compromised node, because the protocol assume that an attacker can obtain all the

information stored in a compromised node. Since wireless communication is

broadcast-base, assumed that an adversary can eavesdrop on all traffic, inject packets,

and replay older packets. Since it is assumed that an adversary can take full control of

compromised nodes, an adversary may command compromised nodes to drop off alter

messages they are forwarding.

Member node Non-member node

Source

Destination

44

2.6.4 Security Properties

The key derived from the group key agreement protocol needs to meet the

following security features:

2.6.4.1 Group key secrecy: It simply means that the derived secret

should not be derivable by a non-participant.

2.6.4.2 Forward key secrecy: Merely knowing one of the current

group keys, one should not be able to compute previous group keys.

2.6.4.3. Backward key secrecy: Merely knowing one of the current

group keys, one should not be able to compute future group keys.

2.6.4.4 Key independence: Knowledge of a subset of group keys in the

life-cycle of a group (by a participant or outsider) should not enable knowledge of any

key outside this subset.

2.6.4.5 Perfect forward secrecy: Knowledge of a long-term secret key

should not enable one to compute past group keys.

2.6.5 Contributory Group Key Agreement

The protocol designed as contributory group key management that requires

each group member to contribute an equal share to the common group key (which is

then computed as a function of all members’ contributions). This avoids the problems

with the centralized trust and the single point of failure since mobile ad hoc networks

are dynamic topology lead to centralized trust cannot away available.

2.6.6 Tree-based Protocol

To use tree-based contributory group key agreement schemes in this research

because is better than other techniques in literature such as CLIQUE. The secret keys

are organized in logical tree structure, referred to as the key tree show in Figure 2.19.

In the key tree, the root node represents the group key, leaf node represent members’

private keys, and each intermediate node corresponds to a subgroup key shared by all

the members (leaf node) under this node, The key of each non-leaf node is generated

by performing two-party braid group key exchange between the two subgroup

represented by its two children.

45

As a part of protocol, a group member can take on a special sponsor role

which involves computing intermediate keys and broadcasting to the group. Each

broadcasted message contains the key tree known to source. Any member in the group

can unilaterally take on this responsibility, depending on the type of event.

In case of an additive change (join or merge), all group members identify a

unique director. This director is responsible for updating its secret key share,

computing affected key and blinded key pairs and broadcasting all blinded keys of the

new tree to the rest of the group. In response to a subtractive membership change

(leave or partition), all members update the tree in the same manner. Group partition

results in a smaller tree since some leaf nodes disappear. As a result, some subtrees

acquire new siblings; therefore, new intermediate keys and blinded keys must be

computed between the new siblings subtrees.

[0,0]

[1,0] [1,1]

[2,1][2,0]

[3,1][3,0]

M1 M2

M3

M4

Figure 2.19 Key Tree

2.6.7 Membership Event

A group key agreement will be designed for providing key adjustment

protocols stemming from membership changes. The protocol includes in support of

the following functions:

 Join: a new member is added to the group

 Leave: a member is removed from the group

 Merge: a group is merged with the current group

 Partition: a subset of members is split from the group

 Key refresh: the group key is updated

46

2.6.8 Authentication

In the Diffie-Hellman (DH) scheme, the communication parties at both sides

exchange some public information and generate a common session key. Several

enhanced DH schemes have been proposed to counter the man-in-the-middle attack.

Then authentication is technique to allow the communicating parties to be assured of

the others identity for solve man-in-the-middle attack problem. Then, the protocol

have long term secret key for authentication purpose and random secret key for

generating shared key in group communication.

2.5.9 Braid Group Cryptographic

Many group key agreement protocols have been designed for ad hoc networks.

They are all constructed based on generalized Diffie-Hellman key exchange protocol.

All these protocols are using modular exponential operation, which itself is

inefficiency. Therefore my protocol designed to avoid modular exponential operations

since limited computing capability in mobile devices. The braid group based key

agreement protocols into ad hoc networks are introduced to mobile ad hoc networks.

Moreover, the required computational processes in braid groups techniques are much

faster than elliptic curve cryptographic technique because of using just product and

inverse operation by avoiding modular exponential operation.

2.6.10 Complexity Analysis

Above the study has discussed the security properties of group key agreement

schemes. Important is also their complexity, namely performance costs. Sometimes

trade-off between complexity and security is required, so that the schemes are suitable

to particular environments. Two of the most important criteria are computation costs

and communication costs.

2.6.10.1 Computation Costs

To achieve exact computational costs is impossible and also

impracticable. Different implementations of an identical group key agreement scheme

bring different results. Even the same implementation cannot guarantee same result in

different environments.

47

However, the protocol can estimate the computation costs by

identifying the expensive and time-critical operations. The protocol can ignore the

concrete operation time, and only compare the number of such operations. Some

computations can be pre-performed before protocol run or computed when the system

is idle. Hence only the operations which have to be performed iteratively should be

considered.

2.6.10.2 Communication Costs

The communication costs of a group key agreement depend clearly on

the topology and properties of the network and the group communication system

used. The critical aspects are primarily latency and bandwidth. Additionally the

communication costs are implementation-dependent. Hence to achieve fixed

communication costs is impracticable. However, the protocol can estimate them by

considering the following costs.

1) Number of rounds: this affects serial communication delay.

As the number of rounds grows, the communication delay and the probability of

message loss or corruption are increased.

2) Total number of messages: as the number of messages

grows, the probability of message loss or corruption, and the delay are increased.

3) Number of broadcasts and unicasts: a broadcast operation is

much more expensive than a unicast one, since it requires much more

acknowledgments with the group communication system. The number of broadcasts

should be minimized.

CHAPTER 3

GROUP KEY AGREEMENT USING

TREE-BASED BRAID GROUPS

The most of existing group key agreement protocols are based on Diffie-Hellman

protocol. The researchers attempted to decrease the number of communication rounds for

group members. My protocol is designed based on braid groups cryptographic, Ko-Lee

Problem (Ko et al., 2000) in order to reduce computation to linear algebra and based on

tree-based group key agreement (Steer, 1988) in order to decrease the number of

communication rounds to constant. The protocol is also based on generalized conjugacy

search problem that is mentioned in section 2.4.2. Moreover, the protocol is designed

with considering the security requirement including group key secrecy, forward secrecy,

backward secrecy, and key independent. The protocol is proposed as contributory group

key agreement that requires each group member to contribute an equal share to the

common group key, i.e. the group key computed as a function of all members’

contributions. This avoids the problems with the centralized trust and the single point

of failure. The protocol is considered to limit computing, storage and power capacities in

ad hoc network. We describe these techniques in following sections. The notations in

protocol are denoted as follows:

n

m

i , p, r, d

M

s
i

h

i

T

T

K

*

BK
[h, v]

[h, v]

number of protocol participants (group members)

number of merging members

indices of group members

ith

session random key of M

 group member; i ∈ {1, 2, · · · , n}

i from subgroups (Bgi
) of Bg

height of tree

key tree

tree after membership operation

secret key at [h, v] node

blinded key at [h, v] node

49

 [h, v] vth node at level h in a tree

3.1 Key Tree Notation

Key tree is earliest proposed by Wallner, Harder and Agee (1999) and emerged

in group key agreement by Kim et al. (2000;2004) in TGDH protocols and Steer et al.

(1998) in STR protocol. The tree structure is widely implemented to decrease the

communication, computation and storage overhead. The number of communication

rounds to form the group key can be reduced to the logarithm of the group size. The braid

groups cannot implement with balanced key tree as TGDH protocol, because limitation of

braid groups operations and properties. Therefore key tree in this research is based on

unbalanced key tree similar to STR protocol. Key tree is implemented in protocol

according to be suitable solution for contributory group key agreement in MANET

because it does not require that the members are be serialized or structured in order to

compute the group. The following section describes the notation and definition of key

tree. A sample of key tree based on STR is shown in Figure 3.1. The binary tree, every

node is either a leaf or a parent of two nodes, is used in key tree. Each node is represented

as [h,v] what is associated with a secret key K[h, v] and a blinded key BK[h, v]. The blinded

key is calculated as f(K[h, v]) where function f () is braid groups key exchange what

describe in next section. The members are located at the leaf node. The information of

each intermediate node, key and blinded key, is computed from the information of two

children nodes to achieve the subgroup key. The leaf node Mi, where 1 ≤ i ≤ n, knows

every key along the path from node Mi to root node, this path is called the key-path. In

Figure 3.1, M1 knows every key { K[3,0] , K[2, 0]] , K[1, 0]] , K[0, 0] } in key-path { [3,0],

[2,0], [1,0], [0,0] }. The co-path is the set of sibling nodes of each node in the key-path of

a member Mi. The sample in Figure 3.1, the co-path of M1 is set of node { [3,1], [2,1],

[1,1] }. The group secret key is key at the root node, K[0, 0], what can be computed from

all blind keys on the co-path and session random K[h, v] of

a computing node (member).

50

Figure 3.1 Notation of key tree

3.2 Braid Groups Key Exchange

The protocol supposes n subgroups (members) Bg1
, Bg2

, … , Bgn
 of g-braid

groups Bg where g = g1 + g2+ . . . + gn . Bg consists of braids made by braiding g i

groups from the left with the order g1, g2, . . . , gn. The braid index of each subgroup,

gi, R is not necessarily the same. For any braids sl ∈ Bgl and sm ∈ Bgm with l ≠ m, slsm

= smsl

The β

. The properties of braid groups are applied in this key exchange protocol as

follows.

[h,v] ∈ Bq, where Bq ⊆ Bg, be a sufficiently complicated braid are

selected and published. Each member selects β[h,v] and publishes as public braid word

at the leaf node. The β[h,v] at intermediate nodes (parent node) including root node is

equal to β[h+1,2v]β[h+1,2v+1]. Supposing n members need to share a key. Each member

selects the secret key from own braid groups. The blinded key BK[h,v] is generated by

f(K[h,v]) which is equal K[h,v]β[h-1,v]K[h,v]
-1 . Therefore key at intermediate nodes K[h, v]

 K

are

computed as follows:

[h, v]

= K[h+1,2v]K[h+1,2v+1]β[h,v]
K[h+1,2v+1]

-1 K[h+1,2v]
-1 or

 = K[h+1,2v]BK[h+1,2v+1]K[h+1,2v]
-1

 K[h, v] = K[h+1,2v+1]BK[h+1,2v]K[h+1,2v+1]
-1

[0,0]

[1,0] [1,1]

[2,0] [2,1]

[3,0] [3,1]

M1 M2

M3

M4

51

= K[h+1,2v+1]K[h+1,2v]β[h,v]
K[h+1,2v]

-1 K[h+1,2v+1]
-1

 where, for the leaf nodes (members),

K[h+1, 2v] ∈ Bgl and K[h+1, 2v+1] ∈ Bgm

which have the property

 with l ≠ m,

K[h+1, 2v] K[h+1, 2v+1] = K[h+1, 2v+1] K[h+1, 2v]

The conclusion of recursive equation is shown as follows:

.

Base step : for [h,v] which is leaf node,

K[h, v] = s

where

[h, v]

 s[h, v]

BK

is session random key of member at leaf node [h,v]

[h, v]

where β

= s[h,v]β[h-1,0]s[h,v]
-1

[h-1, 0] = β[h,0]β

Recursive step : for [h,v] which is an intermediate node

[h, 1]

K[h, v]

K

 = K[h+1,2v]BK[h+1,2v+1]K[h+1,2v]
-1 or

[h, v]

BK

 = K[h+1,2v+1]BK[h+1,2v]K[h+1,2v+1]
-1 and

[h, v]

The key generating at [h, v] requires the information composed of key of one

child and blinded key of another child. The root key is group secret key that is shared by

all current members. A group key can be computed from each member’s secret key and

all blind keys on the co-path to the root.

 = K[h,v]β[h-1,v]K[h,v]
-1

An example is shown that all member nodes achieve the same group key in

contributory manner. The leaf nodes as A, B and C are labeled for ease to understand as

shown in Figure 3.2. Assume each leaf node (member node) select own random secret

braid, A select a ∈ Ba , B select b∈ Bb and C select c ∈ Bc. The Ba, Bb and Bc

ab = ba and

are

different braid groups, then yield

a-1b-1 = b-1a-1.

52

Furthermore,

abc = cba and

a-1b-1 c-1 = c-1b-1a

-1

Figure 3.2 The example group key generating

Each member can generate the group key KABC

 A’s view : K

in contributory manner by

recursive equation to achieve as follows:

ABC = a b βAB b-1 a-1 c βABC c-1 a b βAB
-1 b-1 a-1

 B’s view : K

ABC = b a β AB a-1 b-1 c β ABC c-1 b a βAB
-1 a-1 b

 C’s view : K

-1

ABC = c a b β AB b-1 a-1 β ABC a b βAB
-1 b-1 a-1 c-1

The braid sequences of root key at each node view, that shown as Figure 3.3 are

equal in each subgroup to imply as same braid. The solution that explained above can

conclude that braid group can be applied in key tree. Therefore root key that is generated

by each member node can be session group key.

ABC

AB C

A B

BKA = a βAB a-1

 KA = a

BKB = b βAB b-1

KB = b

BKC = c βABC c-1

KC = c

 KABC = KAB c βABC c-1
 KAB

-1

 * , **

 = c KAB βABC KAB
-1

 c-1 ***
 βABC = βAβBβC

 KAB = a BKB a-1 *
 = a b βAB b-1a-1 *

 = b BKA b-1

**

 = b a βAB a-1b-1 **
 BKAB = KAB βABC KAB

-1
 βAB = βAβB

 * = A’s perspective

** = B’s perspective
*** = C’s perspective

53

Figure 3.3 Braid Permutation Sequence of each Perspective

3.3 Group Key Agreement on Tree-based Braid Groups (TBG)

The key tree scheme in this research based on STR protocol (Steer et al.,1998)

that each node can compute each intermediate key from own secret key and blinded keys

of the co-path nodes, therefore the member at leaf node can compute all keys on the key-

path. This instance shows that the member needs not to know all blinded keys for

generating the group key but knowing the all blinded keys of each member is provided

for membership change to be more efficient and robust.

The most of past researches were designed based on position of member in key

tree. The scheme may be multi-hop communication between new member and the leader

of current group. In other words, some instance new member may contact with the leader

that is longest distance comparing with other current members. The communication time

between new member and leader is longest. Therefore, in proposed protocols, join and

merge event use maximum signal strength for communication in shortest range between

new member and leader. The leader in this research is called as “director”, therefore the

director is assigned momentary dynamic event in order to avoid the single point of failure

on existing director. The signal strength achieves from embedded hardware in mobile

a

b
βAB b-1

a-1

c

βABC
c-1

a-1

b-1
βAB

-1

b

a

a

b
βAB b-1

a-1

c

βABC
c-1

a-1

b-1
βAB

-1

a

a

b
βAB b-1

a-1

c

βABC
c-1

a-1

b-1
βAB

-1

b

a

b

A’s view

B’s view

C’s view

54

device such as 802.11b/g. This technique can reduce communication time and transfer

information from new member to director as fast as possible.

The following section describes the protocol that constructs the group key

management. The protocol includes the following operations:

 (1) Join

Join occurs when a potential member wishes to join in an existing group for

some reason, such as to share document, to join a conference. The member addition is

always performed multi-laterally or, at least, mutually.

(2) Leave

Leave occurs when a member wishes to leave the group, or is forced to leave

the group. In the former case, member deletion is mutual, while in the later case

unilateral. There may be various reasons for a member to be forced to leave a group,

such as involuntary disconnect or forced exclusion. A group key agreement scheme

does not need to bother about reasons. It leaves the underlying group communication

system to handle it. However, it must adjust the group key on this change.

(3) Merge

 Another existing group wishes to merge into the current group to form a

super-group. The merge of more than two groups can be considered to be subsequent

merging of two groups. All members have the same view after group merge is

handled. Correspondingly, a group merge can be either voluntary or involuntary with

reasons including the network fault heal and explicit merge. The network fault heal

occurs when a network event causes previously disconnected network partitions

reconnect. Consequently, all groups formed after partition are merged into a single

group. Otherwise, the explicit (application-driven) merge occurs when the application

decides to merge multiple pre-existing groups into a single group.

 Due to the properties of ad hoc networks, network failures and network fault

heals are both common and expected. Hence dealing with group partitions and merges

is a crucial component of group key agreement for ad hoc networks.

(4) Partition

Partition occurs when a subset of members request to split from the current group.

Group partition can be considered of having multiple leaves, subgroup leave and

55

combination between multiple (or single) leaves and to form sub-groups of remaining

members. First, the multiple leaves occurs when multiple members leave the group

without forming own subgroup. Second, the subgroup leave occurs when all members

leave the group and form own subgroup. After group partition, member’s group view

is relative to the subgroup it belongs to. For example, there is a group G consisting of

six members M1, M2, M3, M4, M5, and M6. Now the group G is split into two smaller

groups: group G1 with members M1, M3, M5, and group G2 with members M2, M4,

and M6. All members in G1 see M2, M4, and M6 as leaving members, while all

members in G2 see M1, M3, and M5 as leaving members. Third, the partition occurs

when some member leaves the group causes split the remaining members into form sub-

groups. For example similar to second scheme, M3 and M4 leave from the group, and

then the remaining members are M1, M2, M5, and M6. The M3 and M4 leaving from

the group cause the remaining members split into two groups: group G1 with members

M1 and M5, and group G2 with members M2, and M6

 (5) Key Refresh

. A group partition can take

place for several reasons such as network failure and explicit partition. The network

failure occurs when a network event causes dis-connectivity within the group.

Consequently, a group is split into fragments some of which are singletons while

others (those that maintain mutual connectivity) are sub-groups. Otherwise, the

explicit (application-driven) partition occurs when the application decides to split the

group into multiple components or simply exclude multiple members at once.

It is desirable to refresh the key periodically, even if the group memberships

are not changed. There are two main reasons, one is to limit exposure due to loss of

group session keys, the other is to limit the amount of ciphertext available to

cryptanalysis for a given group session key. This makes it important for the key

refresh protocol not to violate key independence. Additionally, note that the loss of a

member’s key share can result in the disclosure of all the session keys to which the

member has contributed with this share. Therefore, not only session keys, but also the

individual key shares must be refreshed periodically.

The following section describes the protocol that constructs the group key

agreement.

56

3.3.1 Setup Protocol

The members who want to form a group can be ordered according to some

criteria such as MAC address of device. The structure of the key tree can be then

derived from this order. The first member in the order is selected as director. The

blinded key of member Mi is BKi = si βr βi si
-1 where βr is existing publish braid word

at root node before the director will update next member to key tree by order. Each

member knows the own βr

 because it have some criteria such as MAC address of all

members. It can order the MAC address by itself, and then it knows sequence of

members. After the director received blinded key from each member sends, it create

key tree and computes keys and blinded keys of intermediate node in key tree. Later

the director broadcasts the key tree to all members in the group. The process is

illustrated as follows:

Step 1: Each Mi, i ∈ {1, · · · , n} sends its blinded session random key to

director Md

.

 Step 2: The director computes recursively keys and blinded keys to the root

and broadcasts the key tree containing the all blinded key.

Step 3: Each member computes the secret group key.

Then total communication message in setup protocol is n rounds including

the setup message from each member to director and key tree information from

director to all members.

Md

T[BK]

{ Mi , i ∈ [1, n] } - Md

{ Mi , i ∈ [1, n] } - Md

BKi

Md

57

 3.3.2 Join Protocol

The group has n members, {M1,..,Mn}. Every member in current group

knows the existing key tree. The new member Mn+1 wishes to join the group by

detecting the maximum signal strength of current group member to be as director

in order to communicate in one hop and shortest distance. Later the new member

sends, JOIN_MESSAGE, request message to director. The director refreshes the

own session random key, computes keys and blinded keys of intermediate nodes up to

the root node, and sends the existing key tree with its new session random key to new

member. The insertion point of new member on key tree will be new root node of

key tree because the new member can computed the information of new key tree

with the lowest computation cost. The new member needs to compute only the

blinded key at the new root node. Later, the new member updates existing key tree

in accordance with creates a new root node and a new member node. Next, the

new member selects session random key (i.e., secret key) and computes keys and

blinded keys going up to the root. The blinded key of new member Mn+1 is BKn+1 =

sn+1 βr βn+1 sn+1
-1 where βr is existing publish braid word at root node that the new

member can find in existing key tree information. The new member broadcasts the

new key tree containing only blinded keys to all other members. Finally all other

members compute the new group key. This join protocol provides backward secrecy

since director updated session random key that knowledge of a new member is unable

to compute old group keys. Figure 3.4 shows situation before new member joins.

After that, the Figure 3.5 shows an example of M4 joining a group where director

as M2. This instance, it means that the M2 is nearest with M4

. The conclusion of

join protocol is illustrated as follows:

Step 1: The new member detects the maximum signal strength of current

group members as director and sends JOIN_MESSAGE request message to join

the group. After the director received the request message, it selected its new

session random key, computes keys and blinded keys, and sends the existing key

tree to new member.

58

Step 2: The new member selected its session random key, updates key tree,

computes keys and blinded keys, and broadcasts the new key tree containing the

only all blinded key.

Step 3: Each member computes the secret group key.

Then total communication message in join protocol is two rounds including

existing key tree information from director to new member and new key tree

information from new member to all members. There are n serial numbers of braid

permutation in the worst case if director is deepest node.

Figure 3.4 Before tree updated: M4 join, M2

 as director

BK[2,0] = s1
 β[1,0] s1

-1

 K[2,0] =s1

director

M1 M2

M3

 BK[2,1] = s2
 β[1,0] s2

-1

 K[2,1] = s2

 BK[1,1] = s3
 β[0,0] s3

-1

 K[1,1] = s3

BK[1,0] = K[1,0]β[0,0] K[1,0]
-1

K[1,0] = s1
 s2

 β[1,0] s2
-1s1

-1
β[1,0] = β1β2

 K[0,0] = K[1,0] s3
 β[0,0] s3

-1K[1,0]
-1

 β[0,0] = β1β2β3

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

Mn+1

{ Mi , i ∈ [1, n] }

T*[BK]

Md

T[BK]

Mn+1

59

Figure 3.5 After tree updated: M4 join, M2

 as director

 3.3.3 Leave Protocol

The protocol begins with n current members and the member Mr wants to

leave the group. In this event the director is the leaf node above the removing node

in existing key tree before leave event. In special case, if the leaving node is child

of the root, the director is leaf node below the removing node. Because director

only calculates the new blinded key of intermediated nodes above director up to

the root node, other intermediated nodes is not necessary to update blinded keys.

Upon hearing the leave event from the group, the director updates key tree by

deleting the leaf node of Mr, selects a new secret session random key and

computes keys and blinded keys going up to the root. The director computes the

new blinded key of leaf nodes below removing node to achieve as

BKpre = BKold βl
-1βd . Also the director computes the new blinded key of leaf nodes

above director to yield as BKpre = BKold βl
-1. In the formula, βl is public braid of

removing node and βd is public braid of director. Next, the director broadcasts the

[0,0]

[1,0] [1,1]

[2,0] [2,1]

[3,0] [3,1]

M1 M2

M3

M4

New member

BK[3,0] = s1
 β [2,0] s1

-1

K[3,0] = s1

BK[3,1] = s2
*β [2,0] s2

-1*

K[3,1] = s2
*

BK[2,1] = s3
 β [1,0] s3

-1

K[2,1] = s3

BK[1,1] = s4
 β [0,0] s4

-1

K[1,1] = s4

 BK[2,0] = K[2,0] β [1,0] K[2,0]
-1

K[2,0] = s2
*s1

 β [2,0] s1
-1s2

-1*
β[2,0] = β1β2

BK[1,0] = K[1,0]β [0,0] K[1,0]
-1

K[1,0] = K[2,0] s3
 β[1,0] s3

-1K[2,0]
-1

β[1,0] = β1β2β3

 K[0,0] = K[1,0] s4
 β [0,0] s4

-1K[1,0]
-1

 β[0,0] = β1β2β3β4

60

new key tree containing only blinded keys to all other members. Then the

remainder members compute the new group key. Figure 3.6 shows situation before

a member leaves. After that Figure 3.7 shows the example of M2 leaving a group

where director as M3

. The conclusion of leave protocol is illustrated as follows:

Step 1: The director selects the new session random key, updates the key

tree, computes keys and blinded keys and broadcasts the new key tree.

Step 2: Each member computes the secret group key.

Then total communication message in leave protocol is one round. In the

worst case, the serial number of braid permutation in this protocol is equal to n -1

when the leaving node is deepest leaf.

Figure 3.6 Before tree updated: M2 leave, M3 as director

[0,0]

[1,0] [1,1]

[2,0] [2,1]

[3,0] [3,1]

M1 M2

M3

M4

Leaving member

BK[3,0] = s1
 β [2,0] s1

-1

K[3,0] = s1

BK[3,1] = s2
 β [2,0] s2

-1

K[3,1] = s2

BK[2,1] = s3
 β [1,0] s3

-1

K[2,1] = s3

BK[1,1] = s4
 β [0,0] s4

-1

K[1,1] = s4

 BK[2,0] = K[2,0]β [1,0] K[2,0]
-1

K[2,0] = s1
 s2

 β [2,0] s2
-1s1

-1
β[2,0] = β1β2

BK[1,0] = K[1,0]β [0,0] K[1,0]
-1

K[1,0] = K[2,0] s3
 β[1,0] s3

-1K[2,0]
-1

β[1,0] = β1β2β3

 K[0,0] = K[1,0] s4
 β [0,0] s4

-1K[1,0]
-1

 β[0,0] = β1β2β3β4

Md

{ Mi , i ∈ [1, n] }- Mr

T*[BK]

61

Figure 3.7 After tree updated: M2 leave, M3

 as director

 3.3.4 Merge Protocol

In this instant assume that m merging group needs to merge with c current

group. The existing merging group director detects to achieve maximum signal

strength what is measured as the closest member between itself and current group

members. The current group director is the member what has maximum signal

strength with merging group director. After the merging process, the leftest leaf of

shorter tree becomes the right child of a new intermediate node. The root of the

longer tree is left child of the new intermediate node.

After the current group director received the MERGE_MESSAGE

message, it refreshes session random key, computes keys and blinded keys, and

sends the current group’s key tree containing the all blinded keys to merging

group director. Later, the merging group director updates key tree by combining

the merging group’s key tree and current group’s key tree at the new root node, the

director chooses session random key, computes keys and blinded keys up to the

root node, and broadcasts new key tree containing the all blinded keys to all

members in new group. Finally, the group key is calculated independently by each

BK[2,0] = s1
 β[1,0] s1

-1

 K[2,0] = s1

director

M1 M3

M4

 BK[2,1] = s3
∗β[1,0] s3

-1*

 K[2,1] = s3
∗

 BK[1,1] = s4
 β[0,0] s4

-1

 K[1,1] = s4

BK[1,0] = K[1,0]β[0,0] K[1,0]
-1

K[1,0] = s3
∗s1

 β[1,0] s1
-1s3

-1*
β[1,0] = β1β3

 K[0,0] = K[1,0] s4
 β[0,0] s4

-1K[1,0]
-1

 β[0,0] = β1β3β4

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

62

member. Figure 3.8 shows the initial situation before current group merges with

other group. After that Figure 3.9 shows the example of merge operation. The

member that has maximum signal strength of merging group director, M5, is M1,

and then M1

is current group director. The conclusion of merge protocol is shown

as follows:

Step 1: The director of current group what selects new session random key,

computes blinded keys and sends updated key tree to the merging group director.

Step 2: The merging group director selects its new session random key,

combines key tree, computes the all blinded keys, and broadcasts the new key tree

containing the only all blinded keys.

Step 3: Each member computes the secret group key.

Then total communication message in merge protocol is two rounds. The

serial number of braid permutation in merge protocol is equal to n+m where m is

amount of merging group member.

Md[m]

T*[BK]

{ Mi , i ∈ [1, n+m] }

Md[c]

Tc
*[BK]

Md[m]

63

Figure 3.8 Before tree updated: Merge Protocol

 3.3.5 Partition Protocol

The partition operation occur many reasons that explained in section 3.3

(1). When multiple members p need to leave the group, the director is the node

above the undermost removing nodes in existing key tree. Otherwise, if the

leaving node is child of root and the undermost removing nodes does not exist, the

director is leaf node below the undermost the removing nodes. Because director

only calculates the new blinded key of intermediate nodes above director up to the

root node, other intermediate nodes are not necessary to update blinded keys. It

means that amount of new blinded keys calculation is least. Moreover, the director

BK[2,0] = s1
∗β[1,0] s1

-1*

 K[2,0] = s1
∗

director

M1 M3

M4

 BK[2,1] = s3
 β[1,0] s3

-1

 K[2,1] = s3

 BK[1,1] = s4
 β[0,0] s4

-1

 K[1,1] = s4

BK[1,0] = K[1,0]β[0,0] K[1,0]
-1

K[1,0] = s1
∗s3

 β[1,0] s3
-1s1

-1*
β[1,0] = β1β3

 K[0,0] = K[1,0] s4
 β[0,0] s4

-1K[1,0]
-1

 β[0,0] = β1β3β4

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

Current group

[1,0] [1,1]

[0,0]

 K[0,0] = K[1,0] s6
 β[0,0] s6

-1K[1,0]
-1

 β[0,0] = β5β6

M5 M6

 BK[1,0] = s5
 β[0,0] s5

-1

 K[1,0] = s5

Merging group

 BK[1,1] = s6
 β[0,0] s6

-1

 K[1,1] = s6

64

computes the new blinded keys of leaf nodes below and above the director in the

same manner as leave protocol. There are three examples in partition protocol.

First, the partition protocol actually presents a concurrent multiple members, p,

leaving from group. As for the leave protocol, after the director deletes all leaving

members from key tree, it selects new session random key, computes keys and

blinded keys going up to the root, and broadcasts the key tree with blinded keys to

reminder members. Finally, each member computes the new group key. Second,

the group needs to split into sub-group.

Figure 3.9 After tree updated: Merge Protocol

 BK[4,1] = s3
 β[3,0] s3

-1

 K[4,1] = s3

BK[4,0] = s1
∗β[3,0] s1

-1*

K[4,0] = s1
∗

M1

[1,0]

[2,1] [2,0]

[3,1] [3,0]

[4,1] [4,0] M3

M4

M5

M6 [1,1]

[0,0]

 BK[2,1] = s5
∗β[1,0] s5

-1∗

 K[2,1] = s5
∗

 BK[4,1] = s4
 β[2,0] s4

-1

 K[4,1] = s4

 K[0,0] = K[1,0] s6
 β[0,0] s6

-1 K[1,0]
-1

 β[0,0] = β1β3β4β5β6

BK[3,0] = K[3,0] β[2,0] K[3,0]
-1

K[3,0] = s1
∗s3

 β[3,0] s3
-1s1

-1*
β[3,0] = β1β3

BK[2,0] = K[2,0] β[1,0] K[2,0]
-1

K[2,0] = K[3,0] s4
 β[2,0] s4

-1 K[3,0]
-1

β[2,0] = β1β3β4

 BK[1,1] = s6
 β[0,0] s6

-1

 K[1,1] = s6

BK[1,0] = K[1,0] β[0,0] K[1,0]
-1

K[1,0] = s5
∗K[2,0] β[1,0] K[2,0]

-1 s5
-1*

β[1,0] = β1β3β4β5

director

65

As first scheme, after director of subgroups deletes leaving members of

other groups, each director selects new own session random key, computes keys

and blinded keys going up to the root, and broadcasts the key tree with blinded

keys to sub-group members. Finally, each member computes the new group key.

Third, leaving member(s) causes to spilt remaining members to subgroup. After

leaving member(s) leave, remaining members form the subgroup what both sub-

group members see other sub-group members and leaving member(s) as all leaving

members. Figure 3.10 shows the initial situation before members leave the group.

First scheme, multiple members leave from the group. Figure 3.11 show the

example when M4 and M5 as leaving members and the director as M6. Second

scheme the members are divided into two smaller groups. Figure 3.12 shows an

example of partition operation of second scheme when all members in G2 see M1,

M3, and M6 as leaving members, while all members in G1 see M4 and M5 as leaving

members. The director of G1 is M6 and of G2 is M4. Third scheme, leaving

member causes the group partition to two sub-groups. Figure 3.13 shows third

scheme when all members in G1 see M4, M5, and M6 as leaving members, while all

members in G2 see M1, M3 and M4 as leaving members. The director of G1 is M3

and of G2 is M5

. The conclusion of partition protocol is shown as follows:

Step 1: The director updates the key tree, selected the new session random

key, computes keys and blinded keys and broadcasts the new key tree to remaining

members.

Step 2: Each member computes the secret group key.

Then total communication message in partition protocol is one round. The

serial number of braid permutation in partition protocol is equal to n - p where p is

amount of partition member.

Md

T*[BK]

{ Mi , i ∈ [1, n-p] }

66

Figure 3.10 Before tree updated: Partition Protocol

Figure 3.11 After tree updated: Partition Protocol in first scheme

M1 M3

M6

 BK[2,1] = s3
 β[1,0] s3

-1

 K[2,1] = s3

 BK[1,1] = s6
∗β[0,0] s6

-1*

 K[1,1] = s6
∗

BK[1,0] = K[1,0] β[0,0] K[1,0]
-1

K[1,0] = s1
 s3

 β[1,0] s3
-1s1

-1
β[1,0] = β1β3

 K[0,0] = s6
∗K[1,0] β[0,0] K[1,0]

-1 s6
-1*

 β[0,0] = β1β3β6

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

G1

director

BK[2,0] = s1
 β[1,0] s1

-1

 K[2,0] = s1

 BK[4,1] = s3
 β[3,0] s3

-1

 K[4,1] = s3

BK[4,0] = s1
 β[3,0] s1

-1

K[4,0] = s1

M1

[1,0]

[2,1] [2,0]

[3,1] [3,0]

[4,1] [4,0] M3

M4

M5

M6 [1,1]

[0,0]

 BK[2,1] = s5
 β[1,0] s5

-1

 K[2,1] = s5

 BK[4,1] = s4
 β[2,0] s4

-1

 K[4,1] = s4

 K[0,0] = K[1,0] s6
 β[0,0] s6

-1K[1,0]
-1

 β[0,0] = β1β3β4β5β6

BK[3,0] = K[3,0]β[2,0] K[3,0]
-1

K[3,0] = s1
 s3

 β[3,0] s3
-1s1

-1
β[3,0] = β1β3

BK[2,0] = K[2,0] β[1,0] K[2,0]
-1

K[2,0] = K[3,0] s4
 β[2,0] s4

-1K[3,0]
-1

β[2,0] = β1β3β4

 BK[1,1] = s6
 β[0,0] s6

-1

 K[1,1] = s6

BK[1,0] = K[1,0]β[0,0] K[1,0]
-1

K[1,0] = s5
 K[2,0]β[1,0] K[2,0]

-1 s5
-1

β[1,0] = β1β3β4β5
G1

G1 G1

G2

G2

67

Figure 3.12 After tree updated: Partition Protocol in second scheme

BK[2,0] = s1
 β[1,0] s1

-1

 K[2,0] = s1

M1 M3

M6

 BK[2,1] = s3
 β[1,0] s3

-1

 K[2,1] = s3

 BK[1,1] = s6
∗β[0,0] s6

-1*

 K[1,1] = s6
∗

BK[1,0] = K[1,0] β[0,0] K[1,0]
-1

K[1,0] = s1
 s3

 β[1,0] s3
-1s1

-1
β[1,0] = β1β3

 K[0,0] = s6
∗K[1,0] β[0,0] K[1,0]

-1 s6
-1*

 β[0,0] = β1β3β6

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

G1

[1,0] [1,1]

[0,0]

 K[0,0] = s4
∗ s5

 β[0,0] s5
-1 s4

-1*
 β[0,0] = β4β5

M4 M5

 BK[1,1] = s5
 β[0,0] s5

-1

 K[1,1] = s5

G2

 BK[1,0] = s4
∗β[0,0] s4

-1*

 K[1,0] = s4
∗

director

director

68

Figure 3.13 After tree updated: Partition Protocol in third scheme

 3.3.6 Key Refreshing

Key refreshing in MANET is necessary, since most nodes can be easily

compromised due to their mobility and physical vulnerability. Then the key refreshing

should be occurred periodically in order to limit exposure due to the loss of keys.

Furthermore, the event number limits the amount of ciphertext available to cryptanalysis

for given group key. In our protocol the node that needs to refresh the key acts as the

director. In similar way of other protocols, the director chooses the new session random

key, computes keys and blinded keys up to the root, and broadcasts updated key tree. All

members compute the new group key. The conclusion of key refreshing protocol is

shown as follows:

 BK[2,1] = s3
∗β[0,0] s3

-1*

 K[2,1] = s3
∗

[1,0] [1,1]

[0,0]

 K[0,0] = s4
∗ s5

 β[0,0] s5
-1 s4

-1*
 β[0,0] = β4β5

M4 M5

 BK[1,1] = s5
 β[0,0] s5

-1

 K[1,1] = s5

G2

 BK[1,0] = s4
∗β[0,0] s4

-1*

 K[1,0] = s4
∗

director

BK[2,0] = s1
 β[0,0] s1

-1

 K[2,0] = s1

 M1 M3

 K[0,0] = = s3
∗ s1

 β[0,0] s1
-1 s3

-1*
 β[0,0] = β1β3 [0,0]

[1,1] [1,0]

G1

director

69

Step 1: The director (refreshing node) selects new session random key,

computes keys and blinded keys and broadcasts new key tree containing blinded

keys.

Step 2: Each member computes the group key.

3.4 Security Analysis

As described above, it can see that group key agreement on tree-based

braid groups satisfies forward and backward secrecy. It also satisfies key

independence. The passive adversaries are unable to compute future and previous

group key although they know all previous key trees and new key tree

respectively, since the director refreshes the session random key every event.

First, the protocol is considered the forward secrecy, note that members

that leave the group or passive adversaries who know a contiguous subset of old

group keys are unable to compute future group key. The forward secrecy is

determined in leave and partition event. Assume A as leaving member at position a

in key tree T. A knows all secret keys on key-path that are valid during its group

membership. However the director of the leave and partition event updates own

session random key and causes the change of keys and blinded keys. Therefore A

is unable to compute the subsequent group key, because the key tree information is

changed. Thus the protocol provides the forward secrecy.

Later, the protocol is considered the backward secrecy to show that new

group members are unable to compute old group keys. Assume A becomes a new

member at position a in key tree T. As a new member A is able to compute all keys

on key-path. The director of the join and merge event updates own session random

key and causes the change of keys and blinded keys in key-path. Therefore A is

unable to compute previously used group key, since A can only compute new

group keys due to changed key tree information. Therefore our protocol satisfies

Md

T*[BK]

{ Mi , i ∈ [1, n] }

70

the backward secrecy.

The combination of forward and backward secrecy we follow that TBG

protocol satisfies key independence.

3.5 Complexity Analysis

Above section has discussed the security properties of group key agreement

schemes. Important is also their complexity, namely performance costs. Sometimes

trade-off between complexity and security is required, so that the schemes are suitable

to particular environments. Two of the most important criteria are computation costs

and communication costs.

(1) Computation Costs

To achieve exact computational costs is impossible and also impracticable.

Different implementations of an identical group key agreement scheme bring different

results. Even the same implementation cannot guarantee same result in different

environments. However, it can estimate the computation costs by identifying the

expensive and time-critical operations. The protocol can be ignored the concrete

operation time, and only compare the number of such operations. Some computations

can be pre-performed before protocol run or computed when the system is idle. Hence

only the operations which have to be performed sequentially should be considered.

Those operations are denoted by serial operations.

(2) Communication Costs

The communication costs of a group key agreement depend clearly on the

topology and properties of the network and the group communication system used.

The critical aspects are primarily latency and bandwidth. Additionally the

communication costs are implementation-dependent. Hence to achieve fixed

communication costs is impracticable. However, the protocol can be estimated them

by considering costs including number of rounds, total number of message and

number of broadcast and unicast.

Number of rounds: this affects serial communication delay. As the number of

rounds grows, the communication delay and the probability of message loss or

corruption are increased.

71

Total number of messages: as the number of messages grows, the probability

of message loss or corruption, and the delay are increased.

Number of broadcasts and unicasts: a broadcast operation is much more

expensive than a unicast one, since it requires much more acknowledgments with the

group communication system. The number of broadcasts should be minimized.

 3.5.1 Communication Cost

The communication cost is shown in Table 3.1 that compared among STR,

braid groups on GDH and this protocol TBG. The number of rounds on TBG is

constant in all events same as STR what better than braid groups on GDH

protocols on merge event. The number of rounds on merge operation in Braid

groups on GDH depends on number of merging members, but all operations in

TBG and STR do not depend on number of members that dynamic movement. The

number of rounds in TBG is equals to STR and Braid groups on GDH in join,

leave and partition protocol. In merge protocol, the number of rounds in TBG is

less than Braid groups on GDH which depending on number of merging member.

 3.5.2 Computation Cost

The computation cost in Table 3.2, the serial number of modular

exponentiations for STR is O(n). Otherwise the serial number of braid

permutations for braid groups on GDH protocol is O(n). For TBG, the serial

number of braid permutations is O(n) in leave, merge and partition protocol,

except join protocol is constant permutations of braid groups. TBG and Braid

groups on GDH reduce the exponential computation in Diffie-Hellman to linear

computation by using braid groups.

72

Table 3.1 Communication Cost of TBG Protocol

Protocol Operation Rounds Message
Unicast

Message

Broadcast

Message

STR

Join 2 2 1 1

Leave 1 1 0 1

Merge 2 3 2 1

Partition 1 1 0 1

Braid groups

on GDH

Join 2 2 1 1

Leave 1 1 0 1

Merge m+3 n+2m+1 n+2m-1 2

Partition 1 1 0 1

TBG

Join 2 2 1 1

Leave 1 1 0 1

Merge 2 2 1 1

Partition 1 1 0 1

73

Table 3.2 Computation Cost of TBG Protocol

Protocol Operation Exponentiations Permutation

STR

Join 2 0

Leave 3n/2 + 2 0

Merge 2m 0

Partition 3n/2 + 2 0

Braid groups

on GDH

Join 0 n+3

Leave 0 n-1

Merge 0 n+2m+1

Partition 0 n-p

TBG

Join 0 n

Leave 0 n-1

Merge 0 n+m

Partition 0 n-p

CHAPTER 4

AUTHENTICATED GROUP KEY AGREEMENT USING

TREE-BASED BRAID GROUPS

This protocol uses public and authentic channel, it means that everyone, both

the member and the adversary, can read the messages. Man-in-the-middle attack

works on TBG protocol in chapter 3. The authenticated process can resistant to them.

Public key infrastructure (PKI) will be used if it exists. However, unlike in traditional

networks, no present PKI can be assumed in ad hoc networks. Therefore the

authenticated group key agreement on MANET using tree-based braid groups is

introduced in this chapter for solving the man-in-the-middle attack. The notations in this

protocol are denoted as follows:

n

m

i ,r, d

M

M
i

s
*

x

i

P
i

h
i

T

T

K

*

BK
[h, v]

[h, v]
[h, v]

number of protocol participants (group members)

number of merging members

indices of group members

ith

all group members

 group member; i ∈ {1, 2, · · · , n}

session random key of Mi from subgroups (Bgi
) of Bg

long term private key of M

long term public key of M
i

height of tree
i

key tree

tree after membership operation

secret key at [h, v] node

blinded key at [h, v] node

vth node at level h in a tree

75

The initial assumption of authentication scheme is explained as follows.

Mi

x

’s long-term private key

i

M

 ∈ Bg𝑖𝑖

i

P

’s long-term public key

i

where α ∈

 = xi
 𝛼𝛼 xi

-1

 Bg

Therefore, the long-term public value of the group are {(B

is a published braid what be a sufficiently complicated braid.

gi

, α, xi
 𝛼𝛼 xi

-1) | i =

1,..., n}.The long-term public key of each member in the protocol is guaranteed by

some trust party such as off-line CA before group operation.

4.1 Two-party Key Agreement Protocol

Following the above mentioned notations, the authenticated two party key

agreement protocol based on Chaturvedi et al (2008) is described below. The protocol

works in the following steps.

Message 1 :

Message 2 :

 Figure 4.1 Two-party key agreement protocol

For message 1 : Alice challenges Bob

 Step 1: When Alice wants to share the key to Bob, Alice selects a session

random key sa ∈ Bga
to achieve BKa = saβ sa

-1and computes ka = xa Pb xa
-1, where xa is

Alice

kb
 BKb

 kb
-1

Bob

Alice

ka
 BKa

 ka
-1

Bob

76

Alice’s long term private key and Pb

 ka
 BKa

 ka
-1 = xa

 Pb
 xa

-1sa
 β sa

-1[xa
 Pb

 xa
-1]

-1
 ,

 is Bob’s long-term public key. Then Alice sends

the message, authenticated blinded key, through Bob with

where β ∈ Bg

is a published braid what be a sufficiently complicated braid.

Step 2: Bob computes Alice’s blinded key BKa

BK

 as follows:

a

 = [xb Pa xb
-1]

-1
[xa Pb xa

-1] sa β sa
-1[xa Pb xa

-1]

-1
[xb Pa xb

-1]

 = kb
-1ka

 BKa
 ka

-1kb

 = [xb xa 𝛼𝛼 xa
-1xb

-1]

-1
[xa xb 𝛼𝛼 xb

-1 xa
-1] saβ sa

-1[xa xb 𝛼𝛼 xb
-1 xa

-1]

-1
[xb xa 𝛼𝛼 xa

-1xb
-1]

 =

where Bob computes k

 sa β sa
-1

b = xb Pa

 xb
-1. Then the Alice’s blinded key what be

computed by Bob is saβ sa
-1.

Step 3: The Bob compute shared key as sb sa β sa
-1sb

-1where Bob’s session

random key sb

 ∈ Bgb
.

Moreover Alice

can compute shared key in the similar step as follows:

For message 2 : Bob challenges Alice

 Step 1 When Bob wants to share the key to Alice, Bob selects a session

random key sb ∈ Bgb
to achieve BKb = sbβ sb

-1and computes kb = xb Pa xb
-1, where

where xb is Bob’s long term private key and Pa

 kb
 BKb

 kb
-1 = xb

 Pa
 xb

-1sb
 β sb

-1[xb
 Pa

 xb
-1]

-1
 ,

 is Alice’s long-term public key. Then

Bob sends the message, authenticated blinded key, through Alice with

where β ∈ Bg

is a published braid what be a sufficiently complicated braid.

 Step 2: Alice computes Bob’s blinded key BKb as follows:

77

BKb

 = [xa Pb xa
-1]

-1
[xb Pa xb

-1] sbβ sb
-1[xb Pa xb

-1]

-1
[xa Pb xa

-1]

 = ka
-1kb

 BKb
 kb

-1ka

 = [xa xb 𝛼𝛼 xb
-1xa

-1]

-1
[xb xa 𝛼𝛼 xa

-1 xb
-1] sbβ sb

-1[xb xa 𝛼𝛼 xa
-1 xb

-1]

-1
[xa xb 𝛼𝛼 xb

-1xa
-1]

 =

where Alice computes k

 sbβ sb
-1

a = xa Pb

 xa
-1. Then the Bob’s blinded key what be

computed by Alice is sb
 β sb

-1.

Step 3: The Alice computes shared key as sasb β sb
-1sa

-1 where Alice’s session

random key sa ∈ Bga
.

Therefore, after the regular protocol running, the Alice and Bob achieve same

shared key because of sa
 sb

 β sb
-1sa

-1 = sb
 sa

 β sa
-1sb

-1.

4.2 Authenticated Group Key Agreement Protocol on Tree-based Braid Groups

(ATBG)

 This section describes how ATBG deals with the group operations including

setup, join, leave, merge, partition and refresh. The protocol is based on the

authentication phase according to section 4.1.

4.2.1 Setup Protocol

The members who want to form a group can be ordered according to some

criteria such as MAC address of device same as the previous protocol. The structure

of the key tree can be then derived from this order. The first member in the order is

selected as director. The blinded key of member Mi is BKi = si βr βi si
-1 where βr is

existing publish braid word at root node before the director will update next member

to key tree by order. Each member knows the own βr because it has some criteria such

as MAC address of all members. It can order the MAC address by itself, and then it

78

knows sequence of member. Each member sends its authenticated blinded key

according to director. For example, M5 sends authenticated blinded key as k5
 BK5

 k5
-1

where k5 is x5Pd x5
-1, x5 is M5’s long term private key and Pd is director’s long term

public key. The process is illustrated as follows:

 Step 1: Each Mi, i ∈ {1, · · · , n} sends its authenticated blinded session

random key to director Md.

 where ki_d
 = xi Pd xi

-1, xi is Mi’s long term private key and Pd is Md’s long term

public key.

Step 2: The director computes the member blinded keys from

kd_i
-1 ki_d

 BKi
 ki_d

-1 kd_i
 to achieve BKi

 , where kd_i
 = xd Pi xd

-1.

Step 3: The director creates key tree and computes keys and blinded keys to

the root.

Step 4: The director unicasts key tree with authenticated blinded keys to

each member.

Step 5: Each member computes authenticated blinded keys as

ki_d
-1 kd_i

 T[BK] kd_i
-1 ki_d

 to achieve the blinded keys in key tree, T[BK], where

ki_d = xi Pd xi
-1.

Step 6: Each member computes the secret group key.

Md

kd_i
 T[BK] kd_i

-1

{ Mi , i ∈ [1, n] } - Md

{ Mi , i ∈ [1, n] } - Md

ki_d
 BKi

 ki_d
-1

 Md

79

Then total communication message in setup protocol is n rounds including

the authenticated blinded key from each member to director in n – 1 rounds and

authenticated key tree information from director to all members in one round. The

number of unicast message is 2(n – 1) including the authenticated blinded key

from each member to director in n – 1 messages and authenticated key tree

information from director to all members in n – 1 messages.

4.2.2 Join Protocol

The current group has n members, the new member is identified with Mn+1.

The tree will be added a new intermediate node with two children: the root node of

the prior tree on the left and the new leaf node on the right for new member. This

node becomes the new root node. As mention in section 3.3.2, the director who is the

maximum signal strength with joining member is selected from current group

members. For simplicity, the protocol use n in the following to denote the number of

group members before operation join. To deal with the join operation, a member is

chosen as the director, because the new member detects the maximum signal strength.

The new member Mn+1 sends a join request, JOIN_MESSAGE, to the director. Later

the director refreshes the session random key, computes keys and blinded keys of

intermediate nodes up to the root node and sends authenticated blinded keys in key

tree to Mn+1. Next, the member Mn+1 computes the blinded keys in key tree and

updates existing key tree in accordance with creates a new root node and a new

member node. Next, the new member selects session random key and computes

keys and blinded keys going up to the root. The blinded key of new member Mn+1 is

BKn+1 = sn+1 βr βn+1 sn+1
-1 where βr is existing publish braid word at root node that the

new member can find in existing key tree information. The new member unicasts

the new key tree containing only authenticated blinded keys to all other members.

Finally, each member computes blinded keys and group key. This join protocol

provides key independence since director updates session random key that knowledge

of a previous group key cannot be used to compute the new group key. Figure 4.1

shows the authenticated key tree what director, M1, sends to new member, M4.

This instance, it means that the M1 is nearest with M4. Figure 4.2 shows the

80

authenticated key tree that M2 received from new member, M4. Figure 4.3 shows key

tree information after M1 computes keys and blinded keys. The summary process of

protocol is illustrated as follows:

Step 1: The new member detects the maximum signal strength of current

group members as director and sends JOIN_MESSAGE request message to join

the group. After the director receives the request message, it selects its new

session random key, computes keys and blinded keys, and sends the existing

authenticated key tree to new member.

 where kd_n+1
 = xd Pn+1 xd

-1, xd is director’s long term private key and Pn+1 is new

member’s long term public key.

Step 2: The new member computes the existing blinded keys from

kn+1_d
-1 kd_n+1

 T*[BK] kd_n+1
-1 kn+1_d

 to achieve blinded keys in key tree, where

 kn+1_d
 = xn+1 Pd xn+1

-1 .

Step 3: The new member selects its session random key, updates key tree

and computes keys and blinded keys.

Step 4: The new member unicasts the new key tree with authenticated

blinded keys to all member.

where kn+1_i
 = xn+1 Pi xn+1

-1 , xn+1 is new member’s long term private key and Pi

is Mi’s long term public key.

Mn+1

kn+1_i
 T*[BK] kn+1_i

-1

{ Mi , i ∈ [1, n] }

Md

kd_n+1
 T[BK] kd_n+1

-1

 Mn+1

81

Step 5: Each member computes authenticated blinded keys as

ki_n+1
-1 kn+1_i

 T*[BK] kn+1_i
-1 ki_n+1

 to achieve the blinded keys in new key tree, T*

[BK],

where ki_n+1
 = xi Pn+1 xi

-1.

Step 6: Each member computes the secret group key.

Then total communication message in setup protocol is two rounds

including existing authenticated key tree information from director to new member

in one round and new key tree information from new member to each member in

one round. The total amount of message is n + 1 including information from

director to new member in one message and information that is unicasted by new

member to current group members before change operation in n messages.

Figure 4.1 Join protocol : Updated tree that new member received from

director

BK[2,0] = k1_4
 s1

∗β[1,0] s1
-1∗k1_4

-1

director M1 M2

M3

 BK[2,1] = k1_4
 s2

 β[1,0] s2
-1k1_4

-1

 BK[1,1] = k1_4
 s3

 β[0,0] s3
-1k1_4

-1

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

BK[1,0] = k1_4
 K[1,0] β[0,0] K[1,0]

-1 k1_4
-1

82

Figure 4.2 Join protocol : Authenticated key tree that M2 received from new

member, M4

Figure 4.3 Join protocol : After M1 computes keys and blinded keys

[0,0]

[1,0] [1,1]

[2,0] [2,1]

[3,0] [3,1]

M1 M2

M3

M4

New member

BK[3,0] = s1
∗β [2,0] s1

-1∗

K[3,0] = s1
∗

BK[3,1] = s2
 β [2,0] s2

-1

BK[2,1] = s3
 β [1,0] s3

-1

BK[1,1] = s4
 β [0,0] s4

-1

 BK[2,0] = K[2,0] β [1,0] K[2,0]
-1

K[2,0] = s1
∗s2

 β [2,0] s2
-1s1

-1∗
β[2,0] = β1β2

BK[1,0] = K[1,0] β [0,0] K[1,0]
-1

K[1,0] = K[2,0] s3
 β[1,0] s3

-1K[2,0]
-1

β[1,0] = β1β2β3

 K[0,0] = K[1,0] s4
 β [0,0] s4

-1K[1,0]
-1

 β[0,0] = β1β2β3β4

director

BK[2,0] = k4_2
 K[2,0] β [1,0] K[2,0]

-1 k4_2
-1

BK[3,0] = k4_2
 s1

∗β [2,0] s1
-1*k4_2

-1

BK[2,1] = k4_2
 s3

 β [1,0] s3
-1k4_2

-1

BK[1,1] = k4_2
 s4

 β [0,0] s4
-1k4_2

-1

[0,0]

[1,1]

[2,1]

[3,0] [3,1]

BK[1,0] = k4_2
 K[1,0] β [0,0] K[1,0]

-1 k4_2
-1

M3

M4

M1 M2

[1,0]

[2,0]

BK[3,1] = k4_2
 s2

 β [2,0] s2
-1k4_2

-1

director

83

4.2.3 Leave Protocol

Like in TBG, the leave protocol is relatively simple, only one round is needed.

Suppose a group has n members and the member Mr with 1 ≤ r ≤ n leaves the group.

Again the protocol needs the director Md to updates its session random key. If the

leaving node is child of root, the director is leaf node directly below the removing

member, otherwise the director is the leaf node directly above the removing

member in existing key tree before leave event. After notification of the leave event

from the group communication system, the director refreshes a secret session

random key, updates the key tree by deleting the nodes of leaving member and

computes keys and blinded keys going up to the root. The director computes the

new blinded key of leaf nodes below and above removing node same as leave

protocol in section 3.3.3. Next, the director unicasts the new key tree containing

only authenticated blinded keys to remaining member. Figure 4.4 shows situation

before a member, M1, leaves. After that Figure 4.5 shows the authenticated key tree

that M3 received from director, M2, after the example of M1 leaving a group. Figure

4.6 shows key tree information after M4 computes keys and blinded keys. The

conclusion of leave protocol is illustrated as follows:

Step 1: The director selects the new session random key, updates the key

tree and computes keys and blinded keys.

Step 2: The director unicasts the new authenticated key tree to each

member except leaving member.

where kd_i
 = xd Pi xd

-1, xd is director’s long term private key and Pi is Mi’s long

term public key.

Md

kd_i
 T*[BK] kd_i

-1

{ Mi , i ∈ [1, n] } – Mr

84

Step 3: Each member computes authenticated blinded keys as

ki_d
-1 kd_i

 T*[BK] kd_i
-1 ki_d

 to achieve the blinded keys in new key tree, T*

[BK], where

ki_d
 = xi Pd xi

-1.

Step 4: Each member computes the secret group key.

Then total communication message in leave protocol is one round that

director unicasts message to each member. Then the total amount of unicast

message is n-1 including the messages that director unicasts information to

remaining group members except leaving member.

Figure 4.4 Leave protocol : Before tree updated that M1 leaves

[0,0]

[1,0] [1,1]

[2,0] [2,1]

[3,0] [3,1]

M1 M2

M3

M4

BK[3,0] = s1
 β [2,0] s1

-1

K[3,0] = s1

BK[3,1] = s2
 β [2,0] s2

-1

K[3,1] = s2

BK[2,1] = s3
 β [1,0] s3

-1

K[2,1] = s3

BK[1,1] = s4
 β [0,0] s4

-1

K[1,1] = s4

 BK[2,0] = K[2,0] β [1,0] K[2,0]
-1

K[2,0] = s1
 s2

 β [2,0] s2
-1s1

-1
β[2,0] = β1β2

BK[1,0] = K[1,0] β [0,0] K[1,0]
-1

K[1,0] = K[2,0] s3
 β[1,0] s3

-1K[2,0]
-1

β[1,0] = β1β2β3

 K[0,0] = K[1,0] s4
 β [0,0] s4

-1 K[1,0]
-1

 β[0,0] = β1β2β3β4

Leaving member

85

Figure 4.5 Leave protocol : Authenticated key tree that M3 receives from

director, M2

Figure 4.6 Leave protocol : After M4 computes keys and blinded keys

4.2.4 Merge Protocol

Like the TBG in previous protocol, this protocol assumes that m merging

group needs to merge with c current group. The existing merging group director

detects to achieve maximum signal strength what is measured as the closest

member between itself and current group members. The current group director is

the member that has maximum signal strength with merging group director. After

the merging process, the smaller group is merged onto the larger one, i.e. to place a

BK[2,0] = s2
∗β[1,0] s2

-1∗

M2 M3

M4

 BK[2,1] = s3
 β[1,0] s3

-1

 BK[1,1] = s4
 β[0,0] s4

-1

 K[1,1] = s4

BK[1,0] = K[1,0] β[0,0] K[1,0]
-1

β[1,0] = β2β3

 K[0,0] = s4
 K[1,0] β[0,0] K[1,0]

-1 s4
-1

 β[0,0] = β2β3β4

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

BK[2,0] = k2_3
 s2

∗β[1,0] s2
-1∗k2_3

-1

director M2 M3

M4

BK[2,1] = k2_3
 s3

 β[1,0] s3
-1k2_3

-1

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

 BK[1,1] = k2_3
 s4

 β[0,0] s4
-1k2_3

-1

BK[1,0] = k2_3
 K[1,0] β[0,0] K[1,0]

-1 k2_3
-1

86

smaller key tree directly on top of the larger one. If group sizes are equal, it can order

them according to some other criteria. A new intermediate node with two children is

created. The root of the larger tree becomes the left child of new intermediate node,

while the deepest leaf of the smaller tree the right child of new intermediate node. The

root of smaller tree becomes the root of the new tree.

After the current group director receives the MERGE_MESSAGE message,

it refreshes session random key, computes keys and blinded keys, and sends the

current group’s key tree containing the all authenticated blinded keys to merging

group director. Later, the merging group director computes blinded key of current

group’s key tree, updates key tree by combining the merging group’s key tree and

current group’s key tree at the new root node, the director chooses session random

key, computes keys and blinded keys up to the root node, and unicasts new key

tree containing the all authenticated blinded keys to all members in new group.

Finally, the group key is calculated independently by each member after computed

blinded key. Figure 4.7 shows the initial situation before current group merges

with other group. The member that has maximum signal strength of merging group

director, M6, is M4, and then M4 is current group director. After that Figure 4.8

shows the authenticated key tree that merging director, M6, received from current

group director, M4. Figure 4.9 shows the authenticated key tree that M3 received

from merging group director, M6, after merging group director merges the key tree.

Figure 4.10 shows the key tree after M2 computes keys and blinded keys. The

conclusion of merge protocol is shown as follows:

Step 1: The current group director that selects new session random key,

compute blinded keys and sends update key tree with authenticated blinded key to

the merging group director.

Mdc

kdc_dm

 Tdc
* [BK]kdc_dm

-1
 Mdm

87

 where kdc_dm

 = xdc
 Pdm

 xdc

-1, xdc
 is current group director’s long term private key,

Pdm
 is merging group director’s long term public key and Tdc

* [BK] is key tree of

current group with new session random key of current group director.

Step 2: The merging group director computes the current group blinded

key fromkdm_dc

-1 kdc_dm

 Tdc
* [BK] kdc_dm

-1 kdm_dc

 to achieve blinded keys in key tree,

where kdm_dc

 = xdm
 Pdc

 xdm

-1 .

Step 3: The merging group director selects its new session random key,

combines key tree, computes keys and blinded keys.

Step 4: The merging group director unicasts new key tree with

authenticated blinded keys to all members.

 where kdm_i
 = xdm

 Pi
 xdm

-1 , xdm
 is merging group director’s long term private key

and Pi is Mi’s long term public key.

Step 5: Each member computes authenticated blinded key as

ki_dm

-1 kdm_i
 T

*[BK] kdm_i
-1 ki_dm

 to achieve the blinded keys in new key tree, T*

[BK], where

ki_dm

 = xi
 Pdm

 xi
-1.

Step 6: Each member computes the secret group key.

Therefore the total communication message in leave protocol is two rounds

including current group director sends authenticated key tree to merging group

director in one round and merging group director unicasts authenticated new key

tree to each member in one round. The total amount of message is n + m including

Mdm

{ Mi , i ∈ [1, n+m] }

kdm_i
 T

*[BK]kdm_i
-1

88

the messages that current group director sends information to merging group

director in one message and merging group director sends authenticated key tree to

each group member in n + m – 1 messages.

Figure 4.7 Merge Protocol : Before merging process

BK[2,0] = s2
 β[1,0] s2

-1

 K[2,0] = s2

director

M2 M3

M4

 BK[2,1] = s3
 β[1,0] s3

-1

 K[2,1] = s3

 BK[1,1] = s4
∗β[0,0] s4

-1*

 K[1,1] = s4
∗

BK[1,0] = K[1,0] β[0,0] K[1,0]
-1

K[1,0] = s2
 s3

 β[1,0] s3
-1s2

-1
β[1,0] = β2β3

 K[0,0] = s4
∗ K[1,0] β[0,0] K[1,0]

-1 s4
-1*

 β[0,0] = β2β3β4

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

Current group

[1,0] [1,1]

[0,0]

 K[0,0] = K[1,0] s6
 β[0,0] s6

-1 K[1,0]
-1

 β[0,0] = β5β6

M5 M6

 BK[1,0] = s5
 β[0,0] s5

-1

 K[1,0] = s5

Merging group

 BK[1,1] = s6
 β[0,0] s6

-1

 K[1,1] = s6

89

Figure 4.8 Merge protocol : Authenticated key tree that merging director,

M6, received from current group director, M4

Figure 4.9 Merge protocol : Authenticated key tree that M3 received from

merging group director, M6

 BK[4,1] = k6_3
 s3

 β[3,0] s3
-1k6_3

-1

BK[4,0] = k6_3
 s2

 β[3,0] s2
-1

 k6_3
-1

M2

[1,0]

[2,1] [2,0]

[3,1] [3,0]

[4,1] [4,0] M3

M4

M5

M6 [1,1]

[0,0]

 BK[2,1] = k6_3
 s5

 β[1,0] s5
-1k6_3

-1

 BK[4,1] = k6_3
 s4

∗β[2,0] s4
-1*k6_3

-1

BK[3,0] = k6_3
 K[3,0] β[2,0] K[3,0]

-1 k6_3
-1

BK[2,0] = k6_3
 K[2,0] β[1,0] K[2,0]

-1 k6_3
-1

 BK[1,1] = k6_3
 s6

∗β[0,0] s6
-1*k6_3

-1

BK[1,0] = k6_3
 K[1,0] β[0,0] K[1,0]

-1 k6_3
-1

 director

BK[2,0] = k4_6
 s2

 β[1,0] s2
-1k4_6

-1

director

M2 M3

M4

 BK[2,1] = k4_6
 s3

 β[1,0] s3
-1k4_6

-1

 BK[1,1] = k4_6
 s4

∗β[0,0] s4
-1*k4_6

-1

BK[1,0] = k4_6
 K[1,0] β[0,0] K[1,0]

-1 k4_6
-1

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

90

Figure 4.10 Merge Protocol : After M2 computes keys and blinded keys

 4.2.5 Partition Protocol

This operation is similar as the TBG protocol. The partition operation can

occur when a network faults. The partition protocol actually presents a concurrent

multiple members leaving from group. When multiple members p need to leave

the group, the director is node above the undermost removing nodes in existing

key tree. Otherwise, if the leaving node is child of root and the undermost

removing nodes does not exist, the director is leaf node below the undermost the

removing node. The same as the leave protocol, after the director deletes all

leaving members from key tree, it selects new session random key, computes keys

and blinded keys going up to the root and unicasts the key tree with authenticated

 BK[4,1] = s3
 β[3,0] s3

-1

BK[4,0] = s2

 β[3,0] s2
-1

K[4,0] = s2

M2

[1,0]

[2,1] [2,0]

[3,1] [3,0]

[4,1] [4,0] M3

M4

M5

M6 [1,1]

[0,0]

 BK[2,1] = s5
 β[1,0] s5

-1

 BK[4,1] = s4
∗β[2,0] s4

-1*

 K[0,0] = K[1,0] s6
∗ β[0,0] s6

-1*
 K[1,0]

-1
 β[0,0] = β2β3β4β5β6

BK[3,0] = K[3,0] β[2,0] K[3,0]
-1

K[3,0] = s2
 s3

 β[3,0] s3
-1s2

-1
β[3,0] = β2β3

BK[2,0] = K[2,0] β[1,0] K[2,0]
-1

K[2,0] = K[3,0] s4
∗ β[2,0] s4

-1∗
 K[3,0]

-1
β[2,0] = β2β3β4

 BK[1,1] = s6
∗β[0,0] s6

-1*

BK[1,0] = K[1,0] β[0,0] K[1,0]
-1

K[1,0] = K[2,0] s5
 β[1,0] s5

-1 K[2,0]
-1

β[1,0] = β2β3β4β5 director

91

blinded keys to reminder members. Finally, each member computes blinded keys

and new group key. Figure 4.11 shows the initial situation before members leave

from the group. Later, the example shows partition operation when all members in

G1 see M2 and M5 as leaving nodes and M3 is director of G1 because it is above the

undermost removing node, M2, before partition. While all members in G2 see M3,

M4, and M6 as leaving members and M5 is director of G2 because it is above the

undermost removing node, M3, before partition. After partition process to two

groups, Figure 4.12 shows authenticated key tree that M4 received from director, M3

in G1 and Figure 4.13 shows authenticated key tree that M2 received from director,

M5 in G2. Figure 4.14 shows after M3, M2 computes keys and blinded keys in G1 and

G2, respectively.

Then total communication message in partition protocol is one round that

director unicasts message to reminding group members. Then the total amount of

unicast message is n-p including the messages that director unicasts information to

remaining group members except leaving members.

The conclusion of partition protocol is shown as follows:

Step 1: The director selects the new session random key, updates the key

tree, computes keys and blinded keys and unicasts the new authenticated key tree.

where kd_i
 = xd Pi xd

-1, xd is director’s long term private key and Pi is Mi’s long

term public key.

Step 2: The remaining members compute authenticated blinded key

as ki_d
-1 kd_i

 T*[BK] kd_i
-1 ki_d

 to achieve the blinded keys in new key tree, T*

[BK], where

ki_d
 = xi Pd xi

-1.

Step 3: Each member computes the secret group key

Md

kd_i
 T*[BK] kd_i

-1

{ Mi , i ∈ [1, n-p] }

92

Figure 4.11 Before tree updated: Partition Protocol

Figure 4.12 Partition protocol : Authenticated key tree that M4 received

from director, M3 in G1

BK[2,0] = k3_4
 s3

∗β[1,0] s3
-1*k3_4

-1

M3 M4

M6

 BK[2,1] = k3_4
 s4

 β[1,0] s4
-1k3_4

-1

 BK[1,1] = k3_4
 s6

 β[0,0] s6
-1k3_4

-1

BK[1,0] = k3_4
 K[1,0] β[0,0] K[1,0]

-1 k3_4
-1

[1,0] [1,1]

[2,1]

[0,0]

[2,0] director

 BK[4,1] = s3
 β[3,0] s3

-1

 K[4,1] = s3

BK[4,0] = s2
 β[3,0] s2

-1

K[4,0] = s2

M2

[1,0]

[2,1] [2,0]

[3,1] [3,0]

[4,1] [4,0] M3

M4

M5

M6 [1,1]

[0,0]

 BK[2,1] = s5
 β[1,0] s5

-1

 K[2,1] = s5

 BK[4,1] = s4
 β[2,0] s4

-1

 K[4,1] = s4

 K[0,0] = K[1,0] s6
 β[0,0] s6

-1 K[1,0]
-1

 β[0,0] = β2β3β4β5β6

BK[3,0] = K[3,0] β[2,0] K[3,0]
-1

K[3,0] = s2
 s3

 β[3,0] s3
-1s2

-1
β[3,0] = β2β3

BK[2,0] = K[2,0] β[1,0] K[2,0]
-1

K[2,0] = K[3,0] s4
 β[2,0] s4

-1 K[3,0]
-1

β[2,0] = β2β3β4

 BK[1,1] = s6
 β[0,0] s6

-1

 K[1,1] = s6

BK[1,0] = K[1,0] β[0,0] K[1,0]
-1

K[1,0] = K[2,0] s5
 β[1,0] s5

-1K[2,0]
-1

β[1,0] = β2β3β4β5
G1

G2 G1

G1

G2

93

Figure 4.13 Partition protocol : Authenticated key tree that M2 received

from director, M5 in G2

Figure 4.14 Partition Protocol : After M3, M2 computes keys and blinded

keys in G1 and G2, respectively

BK[2,0] = s3
∗β[1,0] s3

-1*

 K[2,0] =s3
∗

M3 M4

M6

 BK[2,1] = s4
 β[1,0] s4

-1

 BK[1,1] = s6
 β[0,0] s6

-1

BK[1,0] = K[1,0] β[0,0] K[1,0]
-1

K[1,0] = s3
∗s4

 β[1,0] s4
-1s3

-1*
β[1,0] = β3β4

 K[0,0] = K[1,0] s6
 β[0,0] s6

-1 K[1,0]
-1

 β[0,0] = β3β4β6

[1,0] [1,1]

[2,1]

[0,0]

[2,0]

G1

[1,0] [1,1]

[0,0]
 K[0,0] = s5

∗s2
 β[0,0] s2

-1s5
-1*

 β[0,0] = β2β5

M2 M5

 BK[1,1] = s5
∗β[0,0] s5

-1*

G2

 BK[1,0] = s2
 β[0,0] s2

-1

 K[1,0] = s2

director

director

[1,0] [1,1]

[0,0]

M2 M5

 BK[1,1] = k5_2
 s2

∗β[0,0] s5
-1*k2_5

-1
 BK[1,0] = k5_2

 s2
 β[0,0] s2

-1k2_5
-1

director

94

 4.2.6 Key Refreshing

Key refreshing in MANETs is necessary, since most nodes can be easily

compromised due to their mobility and physical vulnerability. Then the key refreshing

should be occurred periodically in order to limit exposure due the loss of keys and limit

the amount of ciphertext available to cryptanalysis for given group key. In this protocol

the node that needs to refresh the key acts as the director. In similar way of other

protocols, the director chooses the new session random key, computes keys and blinded

keys up to the root, and unicast updated key tree with authenticated blinded keys. All

members compute blinded keys and new group key. The conclusion of key refreshing

protocol is shown as follows:

Step 1: The director (refreshing node) selects new session random key,

computes keys and blinded keys and unicasts new key tree containing

authenticated blinded key.

where kd_i
 = xd Pi xd

-1, xd is director’s long term private key and Pi is Mi’s long

term public key.

Step 2: Each member computes authenticated blinded key

as ki_d
-1 kd_i

 T*[BK] kd_i
-1 ki_d

 to achieve the blinded keys in new key tree, T*

[BK], where

ki_d
 = xi Pd xi

-1.

Step 3: Each member computes the secret group key

4.3 Security Analysis

As described above, it can see that Group Key Agreement on Tree-based

Braid Groups satisfies forward and backward secrecy. It also satisfies key

Md

kd_i
 T*[BK] kd_i

-1

{ Mi , i ∈ [1, n] }

95

independence. Moreover, it shares the group key without the man-in-the-middle

attack by using authentication scheme. The passive adversaries are unable to compute

future and previous group key although they know all previous key trees and new key

tree respectively, since the director refreshes the session random key every event.

First, the protocol is considered the forward secrecy, note that members that

leave the group or passive adversaries who know a contiguous subset of old group key

are unable to compute future group key. The forward secrecy is determined in leave

and partition event. Assume A as leaving member at position a in key tree T. A knows

all secret keys on key-path that are valid during its group membership. However the

director of the leave and partition event updates own session random key and causes

the change of keys and blinded keys. Therefore A is unable to compute the subsequent

group key, because the key tree information is changed. Thus the protocol provides

the forward secrecy.

Later, the protocol is considered the backward secrecy to show that new group

members are unable to compute old group keys. Assume A becomes a new member at

position a in key tree T. As a new member A is able to compute all keys on key-path.

The director of the join and merge event updates own session random key and causes

the change of keys and blinded keys in key-path. Therefore A is unable to compute

previously used group key, since A can only compute new group keys due to changed

key tree information. Therefore the protocol satisfies the backward secrecy.

The combination of forward and backward secrecy, can conclude that ATBG

protocol satisfies key independence.

Finally, the research is considered the man-in-the-middle attack to show that

intruder cannot impersonate each member to the satisfaction of the other in any

membership event. Let C who can modify, delay or inject messages, is an active

opponent. The objective of opponent is sharing a key with either member by

disguising as some member. The attack on some member discusses as follows: C

intercepts the message to eavesdrop and possible deliver a false message to Alice and

Bob. First, Alice asks Bob for his blinded key. If Bob send his blinded key to Alice, a

man-in-the-middle-attack can begin if C is able to intercept it. C send message to

Alice that claims to be from Bob, but instead includes C’s blinded key. Alice sends

96

blinded key that to Bob with authenticated version that is ka
 BKa

 ka
-1 where ka = xaPb

xa
-1, xa is Alice’s long term private key and Pb is Bob’s long term public key. The

Alice’s message is intercepted by C and forged message. The forged message is sent

to Bob. Meanwhile, Bob sends kb
 BKb

 kb
-1 to Alice, and is also intercepted by C. C

forges message and sends it to Alice. The computing ka
-1kb

 BKb
 kb

-1ka

 and kb
-1ka

 BKa
 ka

-1kb

are difficult without the knowledge of ka and kb respectively. Therefore C difficult

compute blinded key of Alice and Bob.

 4.4 Complexity Analysis

 4.4.1 Communication Cost

The communication cost is shown in Table 4.1 that compared among TBG,

and ATBG. The number of rounds on both protocols is constant and equal in all

operations. Therefore this study can conclude that the amount of protocol rounds

do not depend on the number of members. The amount of messages that is sent

among group members, are constant except setup protocol. The amount of

messages in setup protocol depends on the number of group members. The total

number of message in setup, join and merge protocol of ATBG is more than the

previous protocol TBG due to the authentication process, otherwise it is same. The

number of unicast messages in merge protocol depends on the amount of merging

group member. The ATBG is efficient lower than TBG but it stronger.

 4.4.2 Computation Cost

 The computation cost in Table 4.2, the computation cost of both protocols

including TBG and ATBG are same, because the ATBG protocol is extended version

with authentication of TBG.

97

Table 4.1 Communication Cost of ATBG Protocol

Table 4.2 Computation Cost of ATBG Protocol

Protocol Operation Rounds Message
Unicast

Message

Multicast

Message

TBG

Setup 2 n n-1 1

Join 2 2 1 1

Leave 1 1 0 1

Merge 2 2 1 1

Partition 1 1 0 1

ATBG

Setup N 2(n-1) 2(n-1) 0

Join 2 n+1 n+1 0

Leave 1 n-1 n-1 0

Merge 2 n+m n+m 0

Partition 1 n-p n-p 0

Protocol Operation Permutation

TBG

Setup N

Join 2

Leave n-1

Merge n+m

Partition n-p

 Setup N

ATBG

Join 2

Leave n-1

Merge n+m

Partition n-p

CHAPTER 5

CONCLUSION

5.1 CONCLUSION

The research proposes tree-based group key agreement on braid groups and

extends to authenticated version. The modified STR using braid groups instead of

Diffie-Hellman supports dynamic membership group operation including join,

leave, merge and partition with satisfied forward and backward secrecy. My both

protocols involve braid groups operation including product and inverse with key

tree whose computation cost is much lower than modular exponentiation in STR

and braid groups on GDH. My protocols are fully contributory scenario for key

agreement that not require the trust party or long-term controller in online

operation to avoid the problems with the centralized trust and the single point of

failure. My protocols avoid the member serialization by using key tree. A number

of existing protocols require group member sequencing that in mobile ad hoc

networks is not efficient since the sequence may not correspond to the best

geographic node placement and may lead to increase communication cost.

Therefore communication cost in my protocols is less than braid groups on GDH

protocol. Moreover protocols reduce the computation cost in group event while

preserving the constant round communication and the security property. Finally

ATBG protects man-in-the-middle-attack by using identity authentication.

Therefore TBG and ATBG are suitable for environment of mobile ad hoc

networks.

The limitation of my protocol is discussed as follows. My protocols do not

consider the key length that using for each member. The key length effect the

performance in computation cost and security strength. The shorter key length leads

99

to weaker security strength but faster computation. Otherwise the longer key length

leads to stronger security strength but slower computation.

Moreover, in merge protocol, the merging group director in previous operation

before merging process is point of failure in the protocol. The merging group director

has to exist before needing to merge group. The authenticated group key agreement

protocol does not consider in authenticated phase. If the authentication of members

fails because the member needing to join the group is not group member, how the

protocol can handle in situation?

5.2 FUTURE WORKS
In the future works, the protocol should be adapted to completely solution.

First In mobile ad-hoc networks possible occurs multi-hop communication lead to

more overhead in communication between members. The protocol should be

considered about communication cost of non-members in all operations. Later the

total simulation should be done in any variable such as key length, number of

members, area etc. The result of simulation can be considered to adapt the protocol.

BIBLIOGRAPHY

Abdel-Hafex, A.; Miri, A. and Orozco-Barbosa, L. 2004. Authenticated Secure

Communications in Wireless Networks. The Fifth European Wireless

Conference: Mobile and Wireless Systems beyond 3G. Barcelona,

Spain: Technical University of Catalonia.

Anshel, I.; Anshel, M. and Fisher, B. 2001. New Key Agreement Protocols in Braid

Group Cryptography. In Proceedings of the 2001 Conference on Topics

in Cryptology: The Cryptographer's Track at RSA. London: Springer-

Verlag. Pp. 13-27.

Anton, E. and Duarte, O. 2002. Group Key Establishment in Wireless Ad Hoc

Networks. In Workshop on Quality of Service and Mobility. Angra dos

Reis, RJ.

Anzai, J. and Matsumoto, T. 2005. A Distributed User Revocation Scheme for Ad-

Hoc Networks. In IEICE Transactions and Communications. E88-B

(September): 3623-3634.

Asokan, N. and Ginzboorg, P. 1999. Key Agreement in Ad-hoc Networks. Computer

Communications. 23 (Feb): 1627-1637.

Ateniese, G.; Steiner, M. and Tsudik, G. 2000. New Multiparty Authentication

Services and Key Agreement Protocols. IEEE Journal of Selected Areas

in Communications. 18 (April): 628-639.

Augot, D.; Bhaskar, R.; Lssarny, V. and Sacchetti, D. 2005. An Efficient Group Key

Agreement Protocol for Ad hoc Networks. In 6th

World of Wireless Mobile and Multimedia

Networks.

 IEEE International

Symposium on a

 Washington, DC: IEEE Computer Society. Pp. 576-580.

Balachandran, R. K.; Ramamurthy, B.; Zou, X. and Vinodchandran, N.V. 2005.

CRTDH: An Efficient Key Agreement Scheme for Secure Group

Communications in Wireless Ad Hoc Networks. In IEEE International

Conference on Communications. Pp. 1123-1127.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9858�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9858�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9858�

101

Basagni, S.; Herrin, K.; Rosti, E. and Bruschi, D. 2001. Secure Pebblenets. In ACM

Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc). New York: ACM. Pp. 156-163.

Becker, K. and Wille, U. 1998. Communication Complexity of Group Key

Distribution. In Proceedings of the 5th ACM conference on Computer

and communications security. New York: ACM. Pp. 1-6.

Birman, J.; Ko, K. H. and Lee, S. J. 1998. A New Solution to the Word and

Conjugacy Problems in the Braid Groups. Advances in Mathematics.

139: 322-353.

Bresson, E.; Chevassut, O.; Essiari, A. and Pointcheval, D. 2003. Mutual

Authentication and Group Key Agreement for Low-Power Mobile

Device. Proceeding of the 5th IFIP-TC6 International Conference on

Mobile and Wireless Communication Networks. Singapore: IFIP. Pp.

59-62.

Burmester, M. and Desmedt, Y. 1994. A Secure and Efficient Conference Key

Distribution System. Advances in Cryptology (EUROCRYPT’94).

Perugia, Italy: Springer. LNCS 950: 275-286.

Cha, J. C.; Ko, K. H.; Lee, S. J.; Han, J. W. and Cheon, J. H. 2001. An Efficient

Implementation of Braid Groups. ASIACRYPT 2001. Queensland,

Australia: IACR. LNCS 2248: 144-156.

Chaturvedi, A. and Lal, S. 2008. An Authenticated Key Agreement Protocol Using

Conjugacy Problem in Braid Groups. International Journal of Network

Security. 6 (March): 181–184.

Hubaux, J. P.; Buttyan, L.; and Capkun, S. 2001. The Quest for Security in Mobile Ad

Hoc Networks. In ACM Symposium on Mobile Ad Hoc Networking

and Computing (MobiHoc). New York: ACM. Pp. 146-155.

Inoue, D. and Kuroda, M. 2004. FDLKH: Fully Decentralized Key Management

Scheme on Logical Key Hierarchy. In American Conference on

Neutron Scattering. Berlin / Heidelberg: Springer. 3089:339-354

102

Kim, Y.; Perrig, A. and Tsudik, G. 2000. Simple and Fault-tolerant Key Agreement

for Dynamic Collaborative Groups. In Proceedings of the 7th ACM

Conference on Computer and Communications Security. New York:

ACM. Pp. 235-244.

Kim, Y.; Perrig, A. and Tsudik, G. 2001. Communication-Efficient Group Key

Agreement. In Information Systems Security, Proceedings of the 17th

International Information Security Conference IFIP SEC’01.

Netherlands: Kluwer. Pp. 229-244.

Kim, Y.; Perrig, A. and Tsudik, G. 2004. Tree-based Group Key Agreement. ACM

Transactions on Information and System Security. 7 (1): 60-96.

Ko, K. H.; Lee, S. J.; Cheon, J. H.; Han, J. W.; Kang, J. and Park, C. 2000. New

Public-Key Cryptosystem Using Braid Groups. Proceedings of Crypto

2000. Santa Barbara, California: Springer-Verlag. LNCS 1880: 166-183.

Kong, J.; Lee, Y. Z. and Gerla, M. 2006. Distributed Multicast Group Security

Architecture for Mobile Ad Hoc Networks. In Wireless Communications

and Networking Conference. Las Vegas, NV: IEEE. Pp. 640-645.

Kong, J.; Zerfos, P.; Luo, H.; Lu, S. and Zhang, L. 2001. Providing Robust and

Ubiquitous Security Support for Mobile Ad-Hoc Networks. In IEEE

International Conference on Network Protocols. California: IEEE. Pp.

251-260.

Kui, R. and Gang, Y. 2004. Efficient Key Agreements in Ad-hoc Networks. In

Proceedings of 8th

Lee, P.; Lui, J. and Yau, D. 2006. Distributed Collaborative Key Agreement Protocols

for Dynamic Peer Groups.

 Conference of China Cryptography. Shanghai,

China: Science Press.

Law, L.; Menezes, A.; Qu, M.; Solinas, J. and Vanstone, S. 2003. An Efficient

Protocol for Authenticated Key Agreement Protocol. Design, Codes and

Cryptography. 28 (2): 119–134.

Lazos, L. and Poovendran, R.. 2005. Power Proximity Based Key Management for

secure Multicast in Ad Hoc Networks. Wireless Networks. 13 (January):

127-148.

IEEE/ACM Transactions on Networking. 14

(April): 263-276.

103

Li, X.Y.; Wang, Y. and Frieder, O. 2002. Efficient Hybrid Key Agreement Protocol

for Wireless Ad-Hoc Networks. In Proceedings of 11th International

Conference on Computer Communications and Networks. Miami,

Florida:IEEE. Pp. 404-409.

Maki, S.; Aura, T. and Hietalahti, M. 2000. Robust Membership Management for Ad-

hoc Groups. In Proceedings of the 5th Nordic Workshop on Secure IT

Systems. Reykjavík, Iceland: Reykjavík University.

Manulis, M. 2005. Key Agreement for Heterogeneous Mobile Ad-Hoc Groups.

Proceeding of the 11th International Conference on Parallel and

Distributed Systems. Fukuoka, Japan: IEEE. Pp. 290-294.

Nukherjee, A.; Gupta, A. and Agrawal, D. P. 2005. Totally Distributed Key

Management for Dynamic Groups in MANETs. In IEEE International

Performance Computing, and Communications Conference. Phoenix:

Arizona: IEEE. Pp. 185-192.

Pereira, O. and Quisquater, J. 2001. A Security Analysis of the Cliques Protocols

Suites. In Proceedings of the 14th IEEE Computer Security

Foundations Workshop. Washington, DC: IEEE Computer Society. Pp.

73-81.

Ressson, E. and Catalano, D. 2004. Constant Round Authenticated Group Key

Agreement from General Assumptions. In Proceeding of Public Key

Cryptography. Singapore: Springer. Pp. 115-129.

Rhee, K. H.; Park, Y. H. and Tsudik, G. 2005. A Group Key Management

Architecture for Mobile Ad-hoc Wireless Network. Journal of

Information Science and Engineering. 21:415-428.

Seys, S. and Preneel, B. 2005. The Wandering Nodes: Key Management for Low-

power Mobile Ad Hoc Network. In Proceeding of the 25th

Shpilrain, V. and Ushakov, A. 2008. An Authentication Scheme Based on the Twisted

Conjugacy Problem.

 IEEE

International Conference on Distributed Computing System.

Columbus, Ohio: IEEE. Pp. 916-922.

Applied Cryptography and Network Security.

LNCS 5037: 366-372.

http://www.springerlink.com/content/978-3-540-68913-3/�

104

Sibert, H.; Dehornoy, P. and Girault, M. 2006. Entity Authentication Schemes Using

Braid Word Reduction. Discrete Applied Mathematics

Yao, G.; Ren, K.; Bao, F.; Deng, R. H. and Feng, D. 2003. Making the Key

Agreement Protocol in Mobile Ad Hoc Network More Efficient. In

International Conference on

. 154 (February):

420-436.

Steer, D.; Strawczynski, L.; Diffie, W. and Wiener, M. 1988. A Secure Audio

Teleconference System. In Advances in Cryptology - CRYPTO’88.

Santa Barbara, California: Springer. LNCS 403 (August): 520-528.

Steiner, M.; Tsudik, G. and Waidner, M. 1998. Cliques: A New Approach to Group

Key Agreement. In International Conference on Distributed

Computing Systems. Amsterdam, Netherlands: IEEE. Pp. 380-387.

Steiner, M.; Tsudik, G. and Waidner, M. 2000. Key Agreement in Dynamic Peer

Groups. IEEE TRANSACTIONS on Parallel and Distributed Systems.

11 (August): 769-780.

Wang, L. and Wu, C.K. 2006. Efficient Key Agreement for Large and Dynamic

Multicast Groups. International Journal of Network Security. 3 (July):

8-17.

Wallner, D.; Harder, E. and Agee, R. 1999. Key Management for Multicast: Issue and

architecture. RFC. 2676.

Applied Cryptography and Network

Security. Kunming, China: Springer-Verlag. Pp. 343-356.

Yasinsac, A.; Thakur, V.; Carter, S. and Cubukcu, I. 2002. A Family of Protocols for

Group Key Generation in Ad Hoc Networks. In IASTED International

Conference on Communication and Computer Networks. Innsbruck,

Austria: IASTED. Pp. 183-187.

Yi, S. and Kraverts, R. 2002. Key Management in Heterogeneous Ad Hoc Wireless

Networks. In IEEE International Conference on Network Protocols.

Paris, France: IEEE. Pp. 202-205.

Yu, W.; Sun, Y. and Liu, K. J. R. 2005. Minimization of Rekeying Cost for

Contributory Group Communication. In IEEE Global

Telecommunications Conference. St. Louis, Missouri: IEEE. Pp. 1716-

1720.

http://www.springerlink.com/content/978-3-540-20208-0/�
http://www.springerlink.com/content/978-3-540-20208-0/�

105

Zhou, L. and Ravishankar, C. V. 2004. Efficient, Authenticated, and Fault-Tolerant

Key Agreement for Dynamic Peer Groups. In Third International IFIP-

TC6 Networking Conference. Athens, Greece: Springer. 3042: 759-770.

Zhu, S.; Xu, S.; Setia, S. and Jajodia, S. 2003. Establishing Pair-Wise Keys for Secure

Communication in Ad-Hoc Networks: A Probabilistic Approach. In IEEE

International Conference on Network Protocols. Atlanta, GA: IEEE.

BIOGRAPHY

Name Thanongsak Aneksrup

ACADEMIC BACKGROUND M.E. (Civil Engineering), Asian Institute

of Technology, Thailand.

 B.E. (Civil Engineering). Royal Thai Air

Force Academy, Thailand.

PRESENT POSITION Engineer in Directorate of Civil

Engineering, Royal Thai Air Force.

 Lecturer in Department of Computer

Sciences, Siam University.

EXPERIENCES Software Analyst in Core Bank System,

Exim Bank.

 ICT Consultant in Department of

Business Development.

	AN EFFICIENT AUTHENTICATED GROUP KEY AGREEMENT
ON TREE-BASED BRAID GROUPS IN MOBILE AD HOC
NETWORKS

	
ABSTRACT
	
TABLE OF CONTENTS
	 CHAPTER 1 INTRODUCTION

	 CHAPTER 2 LITERATURE REVIEW

	 CHAPTER 3 GROUP KEY AGREEMENT USING
TREE-BASED BRAID GROUPS

	 CHAPTER 4 AUTHENTICATED GROUP KEY AGREEMENT USING
TREE-BASED BRAID GROUPS

	 CHAPTER 5 CONCLUSION

	BIBLIOGRAPHY

	
BIOGRAPHY

